xref: /openbmc/qemu/linux-user/arm/nwfpe/fpa11.c (revision f7ceab1e)
1 /*
2     NetWinder Floating Point Emulator
3     (c) Rebel.COM, 1998,1999
4 
5     Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 
12     This program is distributed in the hope that it will be useful,
13     but WITHOUT ANY WARRANTY; without even the implied warranty of
14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15     GNU General Public License for more details.
16 
17     You should have received a copy of the GNU General Public License
18     along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20 
21 #include "qemu/osdep.h"
22 #include "fpa11.h"
23 
24 #include "fpopcode.h"
25 
26 //#include "fpmodule.h"
27 //#include "fpmodule.inl"
28 
29 //#include <asm/system.h>
30 
31 
32 FPA11* qemufpa = NULL;
33 CPUARMState* user_registers;
34 
35 /* Reset the FPA11 chip.  Called to initialize and reset the emulator. */
36 void resetFPA11(void)
37 {
38   int i;
39   FPA11 *fpa11 = GET_FPA11();
40 
41   /* initialize the register type array */
42   for (i=0;i<=7;i++)
43   {
44     fpa11->fType[i] = typeNone;
45   }
46 
47   /* FPSR: set system id to FP_EMULATOR, set AC, clear all other bits */
48   fpa11->fpsr = FP_EMULATOR | BIT_AC;
49 
50   /* FPCR: set SB, AB and DA bits, clear all others */
51 #ifdef MAINTAIN_FPCR
52   fpa11->fpcr = MASK_RESET;
53 #endif
54 
55   /*
56    * Real FPA11 hardware does not handle NaNs, but always takes an
57    * exception for them to be software-emulated (ARM7500FE datasheet
58    * section 10.4). There is no documented architectural requirement
59    * for NaN propagation rules and it will depend on how the OS
60    * level software emulation opted to do it. We here use prop_s_ab
61    * which matches the later VFP hardware choice and how QEMU's
62    * fpa11 emulation has worked in the past. The real Linux kernel
63    * does something slightly different: arch/arm/nwfpe/softfloat-specialize
64    * propagateFloat64NaN() has the curious behaviour that it prefers
65    * the QNaN over the SNaN, but if both are QNaN it picks A and
66    * if both are SNaN it picks B. In theory we could add this as
67    * a NaN propagation rule, but in practice FPA11 emulation is so
68    * close to totally dead that it's not worth trying to match it at
69    * this late date.
70    */
71   set_float_2nan_prop_rule(float_2nan_prop_s_ab, &fpa11->fp_status);
72 }
73 
74 void SetRoundingMode(const unsigned int opcode)
75 {
76     int rounding_mode;
77    FPA11 *fpa11 = GET_FPA11();
78 
79 #ifdef MAINTAIN_FPCR
80    fpa11->fpcr &= ~MASK_ROUNDING_MODE;
81 #endif
82    switch (opcode & MASK_ROUNDING_MODE)
83    {
84       default:
85       case ROUND_TO_NEAREST:
86          rounding_mode = float_round_nearest_even;
87 #ifdef MAINTAIN_FPCR
88          fpa11->fpcr |= ROUND_TO_NEAREST;
89 #endif
90       break;
91 
92       case ROUND_TO_PLUS_INFINITY:
93          rounding_mode = float_round_up;
94 #ifdef MAINTAIN_FPCR
95          fpa11->fpcr |= ROUND_TO_PLUS_INFINITY;
96 #endif
97       break;
98 
99       case ROUND_TO_MINUS_INFINITY:
100          rounding_mode = float_round_down;
101 #ifdef MAINTAIN_FPCR
102          fpa11->fpcr |= ROUND_TO_MINUS_INFINITY;
103 #endif
104       break;
105 
106       case ROUND_TO_ZERO:
107          rounding_mode = float_round_to_zero;
108 #ifdef MAINTAIN_FPCR
109          fpa11->fpcr |= ROUND_TO_ZERO;
110 #endif
111       break;
112   }
113    set_float_rounding_mode(rounding_mode, &fpa11->fp_status);
114 }
115 
116 void SetRoundingPrecision(const unsigned int opcode)
117 {
118     FloatX80RoundPrec rounding_precision;
119     FPA11 *fpa11 = GET_FPA11();
120 #ifdef MAINTAIN_FPCR
121     fpa11->fpcr &= ~MASK_ROUNDING_PRECISION;
122 #endif
123     switch (opcode & MASK_ROUNDING_PRECISION) {
124     case ROUND_SINGLE:
125         rounding_precision = floatx80_precision_s;
126 #ifdef MAINTAIN_FPCR
127         fpa11->fpcr |= ROUND_SINGLE;
128 #endif
129         break;
130 
131     case ROUND_DOUBLE:
132         rounding_precision = floatx80_precision_d;
133 #ifdef MAINTAIN_FPCR
134         fpa11->fpcr |= ROUND_DOUBLE;
135 #endif
136         break;
137 
138     case ROUND_EXTENDED:
139         rounding_precision = floatx80_precision_x;
140 #ifdef MAINTAIN_FPCR
141         fpa11->fpcr |= ROUND_EXTENDED;
142 #endif
143         break;
144 
145     default:
146         rounding_precision = floatx80_precision_x;
147         break;
148     }
149     set_floatx80_rounding_precision(rounding_precision, &fpa11->fp_status);
150 }
151 
152 /* Emulate the instruction in the opcode. */
153 /* ??? This is not thread safe.  */
154 unsigned int EmulateAll(unsigned int opcode, FPA11* qfpa, CPUARMState* qregs)
155 {
156   unsigned int nRc = 0;
157 //  unsigned long flags;
158   FPA11 *fpa11;
159   unsigned int cp;
160 //  save_flags(flags); sti();
161 
162   /* Check that this is really an FPA11 instruction: the coprocessor
163    * field in bits [11:8] must be 1 or 2.
164    */
165   cp = (opcode >> 8) & 0xf;
166   if (cp != 1 && cp != 2) {
167     return 0;
168   }
169 
170   qemufpa=qfpa;
171   user_registers=qregs;
172 
173 #if 0
174   fprintf(stderr,"emulating FP insn 0x%08x, PC=0x%08x\n",
175           opcode, qregs[ARM_REG_PC]);
176 #endif
177   fpa11 = GET_FPA11();
178 
179   if (fpa11->initflag == 0)		/* good place for __builtin_expect */
180   {
181     resetFPA11();
182     SetRoundingMode(ROUND_TO_NEAREST);
183     SetRoundingPrecision(ROUND_EXTENDED);
184     fpa11->initflag = 1;
185   }
186 
187   set_float_exception_flags(0, &fpa11->fp_status);
188 
189   if (TEST_OPCODE(opcode,MASK_CPRT))
190   {
191     //fprintf(stderr,"emulating CPRT\n");
192     /* Emulate conversion opcodes. */
193     /* Emulate register transfer opcodes. */
194     /* Emulate comparison opcodes. */
195     nRc = EmulateCPRT(opcode);
196   }
197   else if (TEST_OPCODE(opcode,MASK_CPDO))
198   {
199     //fprintf(stderr,"emulating CPDO\n");
200     /* Emulate monadic arithmetic opcodes. */
201     /* Emulate dyadic arithmetic opcodes. */
202     nRc = EmulateCPDO(opcode);
203   }
204   else if (TEST_OPCODE(opcode,MASK_CPDT))
205   {
206     //fprintf(stderr,"emulating CPDT\n");
207     /* Emulate load/store opcodes. */
208     /* Emulate load/store multiple opcodes. */
209     nRc = EmulateCPDT(opcode);
210   }
211   else
212   {
213     /* Invalid instruction detected.  Return FALSE. */
214     nRc = 0;
215   }
216 
217 //  restore_flags(flags);
218   if(nRc == 1 && get_float_exception_flags(&fpa11->fp_status))
219   {
220     //printf("fef 0x%x\n",float_exception_flags);
221     nRc = -get_float_exception_flags(&fpa11->fp_status);
222   }
223 
224   //printf("returning %d\n",nRc);
225   return(nRc);
226 }
227 
228 #if 0
229 unsigned int EmulateAll1(unsigned int opcode)
230 {
231   switch ((opcode >> 24) & 0xf)
232   {
233      case 0xc:
234      case 0xd:
235        if ((opcode >> 20) & 0x1)
236        {
237           switch ((opcode >> 8) & 0xf)
238           {
239              case 0x1: return PerformLDF(opcode); break;
240              case 0x2: return PerformLFM(opcode); break;
241              default: return 0;
242           }
243        }
244        else
245        {
246           switch ((opcode >> 8) & 0xf)
247           {
248              case 0x1: return PerformSTF(opcode); break;
249              case 0x2: return PerformSFM(opcode); break;
250              default: return 0;
251           }
252       }
253      break;
254 
255      case 0xe:
256        if (opcode & 0x10)
257          return EmulateCPDO(opcode);
258        else
259          return EmulateCPRT(opcode);
260      break;
261 
262      default: return 0;
263   }
264 }
265 #endif
266