xref: /openbmc/qemu/linux-user/arm/cpu_loop.c (revision 654d6b04)
1 /*
2  *  qemu user cpu loop
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu.h"
23 #include "user-internals.h"
24 #include "elf.h"
25 #include "cpu_loop-common.h"
26 #include "signal-common.h"
27 #include "semihosting/common-semi.h"
28 
29 #define get_user_code_u32(x, gaddr, env)                \
30     ({ abi_long __r = get_user_u32((x), (gaddr));       \
31         if (!__r && bswap_code(arm_sctlr_b(env))) {     \
32             (x) = bswap32(x);                           \
33         }                                               \
34         __r;                                            \
35     })
36 
37 #define get_user_code_u16(x, gaddr, env)                \
38     ({ abi_long __r = get_user_u16((x), (gaddr));       \
39         if (!__r && bswap_code(arm_sctlr_b(env))) {     \
40             (x) = bswap16(x);                           \
41         }                                               \
42         __r;                                            \
43     })
44 
45 #define get_user_data_u32(x, gaddr, env)                \
46     ({ abi_long __r = get_user_u32((x), (gaddr));       \
47         if (!__r && arm_cpu_bswap_data(env)) {          \
48             (x) = bswap32(x);                           \
49         }                                               \
50         __r;                                            \
51     })
52 
53 #define get_user_data_u16(x, gaddr, env)                \
54     ({ abi_long __r = get_user_u16((x), (gaddr));       \
55         if (!__r && arm_cpu_bswap_data(env)) {          \
56             (x) = bswap16(x);                           \
57         }                                               \
58         __r;                                            \
59     })
60 
61 #define put_user_data_u32(x, gaddr, env)                \
62     ({ typeof(x) __x = (x);                             \
63         if (arm_cpu_bswap_data(env)) {                  \
64             __x = bswap32(__x);                         \
65         }                                               \
66         put_user_u32(__x, (gaddr));                     \
67     })
68 
69 #define put_user_data_u16(x, gaddr, env)                \
70     ({ typeof(x) __x = (x);                             \
71         if (arm_cpu_bswap_data(env)) {                  \
72             __x = bswap16(__x);                         \
73         }                                               \
74         put_user_u16(__x, (gaddr));                     \
75     })
76 
77 /* Commpage handling -- there is no commpage for AArch64 */
78 
79 /*
80  * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
81  * Input:
82  * r0 = pointer to oldval
83  * r1 = pointer to newval
84  * r2 = pointer to target value
85  *
86  * Output:
87  * r0 = 0 if *ptr was changed, non-0 if no exchange happened
88  * C set if *ptr was changed, clear if no exchange happened
89  *
90  * Note segv's in kernel helpers are a bit tricky, we can set the
91  * data address sensibly but the PC address is just the entry point.
92  */
93 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
94 {
95     uint64_t oldval, newval, val;
96     uint32_t addr, cpsr;
97 
98     /* Based on the 32 bit code in do_kernel_trap */
99 
100     /* XXX: This only works between threads, not between processes.
101        It's probably possible to implement this with native host
102        operations. However things like ldrex/strex are much harder so
103        there's not much point trying.  */
104     start_exclusive();
105     cpsr = cpsr_read(env);
106     addr = env->regs[2];
107 
108     if (get_user_u64(oldval, env->regs[0])) {
109         env->exception.vaddress = env->regs[0];
110         goto segv;
111     };
112 
113     if (get_user_u64(newval, env->regs[1])) {
114         env->exception.vaddress = env->regs[1];
115         goto segv;
116     };
117 
118     if (get_user_u64(val, addr)) {
119         env->exception.vaddress = addr;
120         goto segv;
121     }
122 
123     if (val == oldval) {
124         val = newval;
125 
126         if (put_user_u64(val, addr)) {
127             env->exception.vaddress = addr;
128             goto segv;
129         };
130 
131         env->regs[0] = 0;
132         cpsr |= CPSR_C;
133     } else {
134         env->regs[0] = -1;
135         cpsr &= ~CPSR_C;
136     }
137     cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
138     end_exclusive();
139     return;
140 
141 segv:
142     end_exclusive();
143     /* We get the PC of the entry address - which is as good as anything,
144        on a real kernel what you get depends on which mode it uses. */
145     /* XXX: check env->error_code */
146     force_sig_fault(TARGET_SIGSEGV, TARGET_SEGV_MAPERR,
147                     env->exception.vaddress);
148 }
149 
150 /* Handle a jump to the kernel code page.  */
151 static int
152 do_kernel_trap(CPUARMState *env)
153 {
154     uint32_t addr;
155     uint32_t cpsr;
156     uint32_t val;
157 
158     switch (env->regs[15]) {
159     case 0xffff0fa0: /* __kernel_memory_barrier */
160         /* ??? No-op. Will need to do better for SMP.  */
161         break;
162     case 0xffff0fc0: /* __kernel_cmpxchg */
163          /* XXX: This only works between threads, not between processes.
164             It's probably possible to implement this with native host
165             operations. However things like ldrex/strex are much harder so
166             there's not much point trying.  */
167         start_exclusive();
168         cpsr = cpsr_read(env);
169         addr = env->regs[2];
170         /* FIXME: This should SEGV if the access fails.  */
171         if (get_user_u32(val, addr))
172             val = ~env->regs[0];
173         if (val == env->regs[0]) {
174             val = env->regs[1];
175             /* FIXME: Check for segfaults.  */
176             put_user_u32(val, addr);
177             env->regs[0] = 0;
178             cpsr |= CPSR_C;
179         } else {
180             env->regs[0] = -1;
181             cpsr &= ~CPSR_C;
182         }
183         cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
184         end_exclusive();
185         break;
186     case 0xffff0fe0: /* __kernel_get_tls */
187         env->regs[0] = cpu_get_tls(env);
188         break;
189     case 0xffff0f60: /* __kernel_cmpxchg64 */
190         arm_kernel_cmpxchg64_helper(env);
191         break;
192 
193     default:
194         return 1;
195     }
196     /* Jump back to the caller.  */
197     addr = env->regs[14];
198     if (addr & 1) {
199         env->thumb = 1;
200         addr &= ~1;
201     }
202     env->regs[15] = addr;
203 
204     return 0;
205 }
206 
207 static bool insn_is_linux_bkpt(uint32_t opcode, bool is_thumb)
208 {
209     /*
210      * Return true if this insn is one of the three magic UDF insns
211      * which the kernel treats as breakpoint insns.
212      */
213     if (!is_thumb) {
214         return (opcode & 0x0fffffff) == 0x07f001f0;
215     } else {
216         /*
217          * Note that we get the two halves of the 32-bit T32 insn
218          * in the opposite order to the value the kernel uses in
219          * its undef_hook struct.
220          */
221         return ((opcode & 0xffff) == 0xde01) || (opcode == 0xa000f7f0);
222     }
223 }
224 
225 static bool emulate_arm_fpa11(CPUARMState *env, uint32_t opcode)
226 {
227     TaskState *ts = env_cpu(env)->opaque;
228     int rc = EmulateAll(opcode, &ts->fpa, env);
229     int raise, enabled;
230 
231     if (rc == 0) {
232         /* Illegal instruction */
233         return false;
234     }
235     if (rc > 0) {
236         /* Everything ok. */
237         env->regs[15] += 4;
238         return true;
239     }
240 
241     /* FP exception */
242     rc = -rc;
243     raise = 0;
244 
245     /* Translate softfloat flags to FPSR flags */
246     if (rc & float_flag_invalid) {
247         raise |= BIT_IOC;
248     }
249     if (rc & float_flag_divbyzero) {
250         raise |= BIT_DZC;
251     }
252     if (rc & float_flag_overflow) {
253         raise |= BIT_OFC;
254     }
255     if (rc & float_flag_underflow) {
256         raise |= BIT_UFC;
257     }
258     if (rc & float_flag_inexact) {
259         raise |= BIT_IXC;
260     }
261 
262     /* Accumulate unenabled exceptions */
263     enabled = ts->fpa.fpsr >> 16;
264     ts->fpa.fpsr |= raise & ~enabled;
265 
266     if (raise & enabled) {
267         /*
268          * The kernel's nwfpe emulator does not pass a real si_code.
269          * It merely uses send_sig(SIGFPE, current, 1), which results in
270          * __send_signal() filling out SI_KERNEL with pid and uid 0 (under
271          * the "SEND_SIG_PRIV" case). That's what our force_sig() does.
272          */
273         force_sig(TARGET_SIGFPE);
274     } else {
275         env->regs[15] += 4;
276     }
277     return true;
278 }
279 
280 void cpu_loop(CPUARMState *env)
281 {
282     CPUState *cs = env_cpu(env);
283     int trapnr;
284     unsigned int n, insn;
285     abi_ulong ret;
286 
287     for(;;) {
288         cpu_exec_start(cs);
289         trapnr = cpu_exec(cs);
290         cpu_exec_end(cs);
291         process_queued_cpu_work(cs);
292 
293         switch(trapnr) {
294         case EXCP_UDEF:
295         case EXCP_NOCP:
296         case EXCP_INVSTATE:
297             {
298                 uint32_t opcode;
299 
300                 /* we handle the FPU emulation here, as Linux */
301                 /* we get the opcode */
302                 /* FIXME - what to do if get_user() fails? */
303                 get_user_code_u32(opcode, env->regs[15], env);
304 
305                 /*
306                  * The Linux kernel treats some UDF patterns specially
307                  * to use as breakpoints (instead of the architectural
308                  * bkpt insn). These should trigger a SIGTRAP rather
309                  * than SIGILL.
310                  */
311                 if (insn_is_linux_bkpt(opcode, env->thumb)) {
312                     goto excp_debug;
313                 }
314 
315                 if (!env->thumb && emulate_arm_fpa11(env, opcode)) {
316                     break;
317                 }
318 
319                 force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN,
320                                 env->regs[15]);
321             }
322             break;
323         case EXCP_SWI:
324             {
325                 env->eabi = 1;
326                 /* system call */
327                 if (env->thumb) {
328                     /* Thumb is always EABI style with syscall number in r7 */
329                     n = env->regs[7];
330                 } else {
331                     /*
332                      * Equivalent of kernel CONFIG_OABI_COMPAT: read the
333                      * Arm SVC insn to extract the immediate, which is the
334                      * syscall number in OABI.
335                      */
336                     /* FIXME - what to do if get_user() fails? */
337                     get_user_code_u32(insn, env->regs[15] - 4, env);
338                     n = insn & 0xffffff;
339                     if (n == 0) {
340                         /* zero immediate: EABI, syscall number in r7 */
341                         n = env->regs[7];
342                     } else {
343                         /*
344                          * This XOR matches the kernel code: an immediate
345                          * in the valid range (0x900000 .. 0x9fffff) is
346                          * converted into the correct EABI-style syscall
347                          * number; invalid immediates end up as values
348                          * > 0xfffff and are handled below as out-of-range.
349                          */
350                         n ^= ARM_SYSCALL_BASE;
351                         env->eabi = 0;
352                     }
353                 }
354 
355                 if (n > ARM_NR_BASE) {
356                     switch (n) {
357                     case ARM_NR_cacheflush:
358                         /* nop */
359                         break;
360                     case ARM_NR_set_tls:
361                         cpu_set_tls(env, env->regs[0]);
362                         env->regs[0] = 0;
363                         break;
364                     case ARM_NR_breakpoint:
365                         env->regs[15] -= env->thumb ? 2 : 4;
366                         goto excp_debug;
367                     case ARM_NR_get_tls:
368                         env->regs[0] = cpu_get_tls(env);
369                         break;
370                     default:
371                         if (n < 0xf0800) {
372                             /*
373                              * Syscalls 0xf0000..0xf07ff (or 0x9f0000..
374                              * 0x9f07ff in OABI numbering) are defined
375                              * to return -ENOSYS rather than raising
376                              * SIGILL. Note that we have already
377                              * removed the 0x900000 prefix.
378                              */
379                             qemu_log_mask(LOG_UNIMP,
380                                 "qemu: Unsupported ARM syscall: 0x%x\n",
381                                           n);
382                             env->regs[0] = -TARGET_ENOSYS;
383                         } else {
384                             /*
385                              * Otherwise SIGILL. This includes any SWI with
386                              * immediate not originally 0x9fxxxx, because
387                              * of the earlier XOR.
388                              * Like the real kernel, we report the addr of the
389                              * SWI in the siginfo si_addr but leave the PC
390                              * pointing at the insn after the SWI.
391                              */
392                             abi_ulong faultaddr = env->regs[15];
393                             faultaddr -= env->thumb ? 2 : 4;
394                             force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLTRP,
395                                             faultaddr);
396                         }
397                         break;
398                     }
399                 } else {
400                     ret = do_syscall(env,
401                                      n,
402                                      env->regs[0],
403                                      env->regs[1],
404                                      env->regs[2],
405                                      env->regs[3],
406                                      env->regs[4],
407                                      env->regs[5],
408                                      0, 0);
409                     if (ret == -TARGET_ERESTARTSYS) {
410                         env->regs[15] -= env->thumb ? 2 : 4;
411                     } else if (ret != -TARGET_QEMU_ESIGRETURN) {
412                         env->regs[0] = ret;
413                     }
414                 }
415             }
416             break;
417         case EXCP_SEMIHOST:
418             env->regs[0] = do_common_semihosting(cs);
419             env->regs[15] += env->thumb ? 2 : 4;
420             break;
421         case EXCP_INTERRUPT:
422             /* just indicate that signals should be handled asap */
423             break;
424         case EXCP_PREFETCH_ABORT:
425         case EXCP_DATA_ABORT:
426             /* XXX: check env->error_code */
427             force_sig_fault(TARGET_SIGSEGV, TARGET_SEGV_MAPERR,
428                             env->exception.vaddress);
429             break;
430         case EXCP_DEBUG:
431         case EXCP_BKPT:
432         excp_debug:
433             force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->regs[15]);
434             break;
435         case EXCP_KERNEL_TRAP:
436             if (do_kernel_trap(env))
437               goto error;
438             break;
439         case EXCP_YIELD:
440             /* nothing to do here for user-mode, just resume guest code */
441             break;
442         case EXCP_ATOMIC:
443             cpu_exec_step_atomic(cs);
444             break;
445         default:
446         error:
447             EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
448             abort();
449         }
450         process_pending_signals(env);
451     }
452 }
453 
454 void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
455 {
456     CPUState *cpu = env_cpu(env);
457     TaskState *ts = cpu->opaque;
458     struct image_info *info = ts->info;
459     int i;
460 
461     cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
462                CPSRWriteByInstr);
463     for(i = 0; i < 16; i++) {
464         env->regs[i] = regs->uregs[i];
465     }
466 #ifdef TARGET_WORDS_BIGENDIAN
467     /* Enable BE8.  */
468     if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
469         && (info->elf_flags & EF_ARM_BE8)) {
470         env->uncached_cpsr |= CPSR_E;
471         env->cp15.sctlr_el[1] |= SCTLR_E0E;
472     } else {
473         env->cp15.sctlr_el[1] |= SCTLR_B;
474     }
475     arm_rebuild_hflags(env);
476 #endif
477 
478     ts->stack_base = info->start_stack;
479     ts->heap_base = info->brk;
480     /* This will be filled in on the first SYS_HEAPINFO call.  */
481     ts->heap_limit = 0;
482 }
483