1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "user-internals.h" 22 #include "signal-common.h" 23 #include "linux-user/trace.h" 24 25 struct target_sigcontext { 26 uint64_t fault_address; 27 /* AArch64 registers */ 28 uint64_t regs[31]; 29 uint64_t sp; 30 uint64_t pc; 31 uint64_t pstate; 32 /* 4K reserved for FP/SIMD state and future expansion */ 33 char __reserved[4096] __attribute__((__aligned__(16))); 34 }; 35 36 struct target_ucontext { 37 abi_ulong tuc_flags; 38 abi_ulong tuc_link; 39 target_stack_t tuc_stack; 40 target_sigset_t tuc_sigmask; 41 /* glibc uses a 1024-bit sigset_t */ 42 char __unused[1024 / 8 - sizeof(target_sigset_t)]; 43 /* last for future expansion */ 44 struct target_sigcontext tuc_mcontext; 45 }; 46 47 /* 48 * Header to be used at the beginning of structures extending the user 49 * context. Such structures must be placed after the rt_sigframe on the stack 50 * and be 16-byte aligned. The last structure must be a dummy one with the 51 * magic and size set to 0. 52 */ 53 struct target_aarch64_ctx { 54 uint32_t magic; 55 uint32_t size; 56 }; 57 58 #define TARGET_FPSIMD_MAGIC 0x46508001 59 60 struct target_fpsimd_context { 61 struct target_aarch64_ctx head; 62 uint32_t fpsr; 63 uint32_t fpcr; 64 uint64_t vregs[32 * 2]; /* really uint128_t vregs[32] */ 65 }; 66 67 #define TARGET_EXTRA_MAGIC 0x45585401 68 69 struct target_extra_context { 70 struct target_aarch64_ctx head; 71 uint64_t datap; /* 16-byte aligned pointer to extra space cast to __u64 */ 72 uint32_t size; /* size in bytes of the extra space */ 73 uint32_t reserved[3]; 74 }; 75 76 #define TARGET_SVE_MAGIC 0x53564501 77 78 struct target_sve_context { 79 struct target_aarch64_ctx head; 80 uint16_t vl; 81 uint16_t flags; 82 uint16_t reserved[2]; 83 /* The actual SVE data immediately follows. It is laid out 84 * according to TARGET_SVE_SIG_{Z,P}REG_OFFSET, based off of 85 * the original struct pointer. 86 */ 87 }; 88 89 #define TARGET_SVE_VQ_BYTES 16 90 91 #define TARGET_SVE_SIG_ZREG_SIZE(VQ) ((VQ) * TARGET_SVE_VQ_BYTES) 92 #define TARGET_SVE_SIG_PREG_SIZE(VQ) ((VQ) * (TARGET_SVE_VQ_BYTES / 8)) 93 94 #define TARGET_SVE_SIG_REGS_OFFSET \ 95 QEMU_ALIGN_UP(sizeof(struct target_sve_context), TARGET_SVE_VQ_BYTES) 96 #define TARGET_SVE_SIG_ZREG_OFFSET(VQ, N) \ 97 (TARGET_SVE_SIG_REGS_OFFSET + TARGET_SVE_SIG_ZREG_SIZE(VQ) * (N)) 98 #define TARGET_SVE_SIG_PREG_OFFSET(VQ, N) \ 99 (TARGET_SVE_SIG_ZREG_OFFSET(VQ, 32) + TARGET_SVE_SIG_PREG_SIZE(VQ) * (N)) 100 #define TARGET_SVE_SIG_FFR_OFFSET(VQ) \ 101 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 16)) 102 #define TARGET_SVE_SIG_CONTEXT_SIZE(VQ) \ 103 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 17)) 104 105 #define TARGET_SVE_SIG_FLAG_SM 1 106 107 #define TARGET_ZA_MAGIC 0x54366345 108 109 struct target_za_context { 110 struct target_aarch64_ctx head; 111 uint16_t vl; 112 uint16_t reserved[3]; 113 /* The actual ZA data immediately follows. */ 114 }; 115 116 #define TARGET_ZA_SIG_REGS_OFFSET \ 117 QEMU_ALIGN_UP(sizeof(struct target_za_context), TARGET_SVE_VQ_BYTES) 118 #define TARGET_ZA_SIG_ZAV_OFFSET(VQ, N) \ 119 (TARGET_ZA_SIG_REGS_OFFSET + (VQ) * TARGET_SVE_VQ_BYTES * (N)) 120 #define TARGET_ZA_SIG_CONTEXT_SIZE(VQ) \ 121 TARGET_ZA_SIG_ZAV_OFFSET(VQ, VQ * TARGET_SVE_VQ_BYTES) 122 123 struct target_rt_sigframe { 124 struct target_siginfo info; 125 struct target_ucontext uc; 126 }; 127 128 struct target_rt_frame_record { 129 uint64_t fp; 130 uint64_t lr; 131 }; 132 133 static void target_setup_general_frame(struct target_rt_sigframe *sf, 134 CPUARMState *env, target_sigset_t *set) 135 { 136 int i; 137 138 __put_user(0, &sf->uc.tuc_flags); 139 __put_user(0, &sf->uc.tuc_link); 140 141 target_save_altstack(&sf->uc.tuc_stack, env); 142 143 for (i = 0; i < 31; i++) { 144 __put_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); 145 } 146 __put_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); 147 __put_user(env->pc, &sf->uc.tuc_mcontext.pc); 148 __put_user(pstate_read(env), &sf->uc.tuc_mcontext.pstate); 149 150 __put_user(env->exception.vaddress, &sf->uc.tuc_mcontext.fault_address); 151 152 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 153 __put_user(set->sig[i], &sf->uc.tuc_sigmask.sig[i]); 154 } 155 } 156 157 static void target_setup_fpsimd_record(struct target_fpsimd_context *fpsimd, 158 CPUARMState *env) 159 { 160 int i; 161 162 __put_user(TARGET_FPSIMD_MAGIC, &fpsimd->head.magic); 163 __put_user(sizeof(struct target_fpsimd_context), &fpsimd->head.size); 164 __put_user(vfp_get_fpsr(env), &fpsimd->fpsr); 165 __put_user(vfp_get_fpcr(env), &fpsimd->fpcr); 166 167 for (i = 0; i < 32; i++) { 168 uint64_t *q = aa64_vfp_qreg(env, i); 169 #if TARGET_BIG_ENDIAN 170 __put_user(q[0], &fpsimd->vregs[i * 2 + 1]); 171 __put_user(q[1], &fpsimd->vregs[i * 2]); 172 #else 173 __put_user(q[0], &fpsimd->vregs[i * 2]); 174 __put_user(q[1], &fpsimd->vregs[i * 2 + 1]); 175 #endif 176 } 177 } 178 179 static void target_setup_extra_record(struct target_extra_context *extra, 180 uint64_t datap, uint32_t extra_size) 181 { 182 __put_user(TARGET_EXTRA_MAGIC, &extra->head.magic); 183 __put_user(sizeof(struct target_extra_context), &extra->head.size); 184 __put_user(datap, &extra->datap); 185 __put_user(extra_size, &extra->size); 186 } 187 188 static void target_setup_end_record(struct target_aarch64_ctx *end) 189 { 190 __put_user(0, &end->magic); 191 __put_user(0, &end->size); 192 } 193 194 static void target_setup_sve_record(struct target_sve_context *sve, 195 CPUARMState *env, int size) 196 { 197 int i, j, vq = sve_vq(env); 198 199 memset(sve, 0, sizeof(*sve)); 200 __put_user(TARGET_SVE_MAGIC, &sve->head.magic); 201 __put_user(size, &sve->head.size); 202 __put_user(vq * TARGET_SVE_VQ_BYTES, &sve->vl); 203 if (FIELD_EX64(env->svcr, SVCR, SM)) { 204 __put_user(TARGET_SVE_SIG_FLAG_SM, &sve->flags); 205 } 206 207 /* Note that SVE regs are stored as a byte stream, with each byte element 208 * at a subsequent address. This corresponds to a little-endian store 209 * of our 64-bit hunks. 210 */ 211 for (i = 0; i < 32; ++i) { 212 uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i); 213 for (j = 0; j < vq * 2; ++j) { 214 __put_user_e(env->vfp.zregs[i].d[j], z + j, le); 215 } 216 } 217 for (i = 0; i <= 16; ++i) { 218 uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i); 219 for (j = 0; j < vq; ++j) { 220 uint64_t r = env->vfp.pregs[i].p[j >> 2]; 221 __put_user_e(r >> ((j & 3) * 16), p + j, le); 222 } 223 } 224 } 225 226 static void target_setup_za_record(struct target_za_context *za, 227 CPUARMState *env, int size) 228 { 229 int vq = sme_vq(env); 230 int vl = vq * TARGET_SVE_VQ_BYTES; 231 int i, j; 232 233 memset(za, 0, sizeof(*za)); 234 __put_user(TARGET_ZA_MAGIC, &za->head.magic); 235 __put_user(size, &za->head.size); 236 __put_user(vl, &za->vl); 237 238 if (size == TARGET_ZA_SIG_CONTEXT_SIZE(0)) { 239 return; 240 } 241 assert(size == TARGET_ZA_SIG_CONTEXT_SIZE(vq)); 242 243 /* 244 * Note that ZA vectors are stored as a byte stream, 245 * with each byte element at a subsequent address. 246 */ 247 for (i = 0; i < vl; ++i) { 248 uint64_t *z = (void *)za + TARGET_ZA_SIG_ZAV_OFFSET(vq, i); 249 for (j = 0; j < vq * 2; ++j) { 250 __put_user_e(env->zarray[i].d[j], z + j, le); 251 } 252 } 253 } 254 255 static void target_restore_general_frame(CPUARMState *env, 256 struct target_rt_sigframe *sf) 257 { 258 sigset_t set; 259 uint64_t pstate; 260 int i; 261 262 target_to_host_sigset(&set, &sf->uc.tuc_sigmask); 263 set_sigmask(&set); 264 265 for (i = 0; i < 31; i++) { 266 __get_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); 267 } 268 269 __get_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); 270 __get_user(env->pc, &sf->uc.tuc_mcontext.pc); 271 __get_user(pstate, &sf->uc.tuc_mcontext.pstate); 272 pstate_write(env, pstate); 273 } 274 275 static void target_restore_fpsimd_record(CPUARMState *env, 276 struct target_fpsimd_context *fpsimd) 277 { 278 uint32_t fpsr, fpcr; 279 int i; 280 281 __get_user(fpsr, &fpsimd->fpsr); 282 vfp_set_fpsr(env, fpsr); 283 __get_user(fpcr, &fpsimd->fpcr); 284 vfp_set_fpcr(env, fpcr); 285 286 for (i = 0; i < 32; i++) { 287 uint64_t *q = aa64_vfp_qreg(env, i); 288 #if TARGET_BIG_ENDIAN 289 __get_user(q[0], &fpsimd->vregs[i * 2 + 1]); 290 __get_user(q[1], &fpsimd->vregs[i * 2]); 291 #else 292 __get_user(q[0], &fpsimd->vregs[i * 2]); 293 __get_user(q[1], &fpsimd->vregs[i * 2 + 1]); 294 #endif 295 } 296 } 297 298 static bool target_restore_sve_record(CPUARMState *env, 299 struct target_sve_context *sve, 300 int size, int *svcr) 301 { 302 int i, j, vl, vq, flags; 303 bool sm; 304 305 __get_user(vl, &sve->vl); 306 __get_user(flags, &sve->flags); 307 308 sm = flags & TARGET_SVE_SIG_FLAG_SM; 309 310 /* The cpu must support Streaming or Non-streaming SVE. */ 311 if (sm 312 ? !cpu_isar_feature(aa64_sme, env_archcpu(env)) 313 : !cpu_isar_feature(aa64_sve, env_archcpu(env))) { 314 return false; 315 } 316 317 /* 318 * Note that we cannot use sve_vq() because that depends on the 319 * current setting of PSTATE.SM, not the state to be restored. 320 */ 321 vq = sve_vqm1_for_el_sm(env, 0, sm) + 1; 322 323 /* Reject mismatched VL. */ 324 if (vl != vq * TARGET_SVE_VQ_BYTES) { 325 return false; 326 } 327 328 /* Accept empty record -- used to clear PSTATE.SM. */ 329 if (size <= sizeof(*sve)) { 330 return true; 331 } 332 333 /* Reject non-empty but incomplete record. */ 334 if (size < TARGET_SVE_SIG_CONTEXT_SIZE(vq)) { 335 return false; 336 } 337 338 *svcr = FIELD_DP64(*svcr, SVCR, SM, sm); 339 340 /* 341 * Note that SVE regs are stored as a byte stream, with each byte element 342 * at a subsequent address. This corresponds to a little-endian load 343 * of our 64-bit hunks. 344 */ 345 for (i = 0; i < 32; ++i) { 346 uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i); 347 for (j = 0; j < vq * 2; ++j) { 348 __get_user_e(env->vfp.zregs[i].d[j], z + j, le); 349 } 350 } 351 for (i = 0; i <= 16; ++i) { 352 uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i); 353 for (j = 0; j < vq; ++j) { 354 uint16_t r; 355 __get_user_e(r, p + j, le); 356 if (j & 3) { 357 env->vfp.pregs[i].p[j >> 2] |= (uint64_t)r << ((j & 3) * 16); 358 } else { 359 env->vfp.pregs[i].p[j >> 2] = r; 360 } 361 } 362 } 363 return true; 364 } 365 366 static bool target_restore_za_record(CPUARMState *env, 367 struct target_za_context *za, 368 int size, int *svcr) 369 { 370 int i, j, vl, vq; 371 372 if (!cpu_isar_feature(aa64_sme, env_archcpu(env))) { 373 return false; 374 } 375 376 __get_user(vl, &za->vl); 377 vq = sme_vq(env); 378 379 /* Reject mismatched VL. */ 380 if (vl != vq * TARGET_SVE_VQ_BYTES) { 381 return false; 382 } 383 384 /* Accept empty record -- used to clear PSTATE.ZA. */ 385 if (size <= TARGET_ZA_SIG_CONTEXT_SIZE(0)) { 386 return true; 387 } 388 389 /* Reject non-empty but incomplete record. */ 390 if (size < TARGET_ZA_SIG_CONTEXT_SIZE(vq)) { 391 return false; 392 } 393 394 *svcr = FIELD_DP64(*svcr, SVCR, ZA, 1); 395 396 for (i = 0; i < vl; ++i) { 397 uint64_t *z = (void *)za + TARGET_ZA_SIG_ZAV_OFFSET(vq, i); 398 for (j = 0; j < vq * 2; ++j) { 399 __get_user_e(env->zarray[i].d[j], z + j, le); 400 } 401 } 402 return true; 403 } 404 405 static int target_restore_sigframe(CPUARMState *env, 406 struct target_rt_sigframe *sf) 407 { 408 struct target_aarch64_ctx *ctx, *extra = NULL; 409 struct target_fpsimd_context *fpsimd = NULL; 410 struct target_sve_context *sve = NULL; 411 struct target_za_context *za = NULL; 412 uint64_t extra_datap = 0; 413 bool used_extra = false; 414 int sve_size = 0; 415 int za_size = 0; 416 int svcr = 0; 417 418 target_restore_general_frame(env, sf); 419 420 ctx = (struct target_aarch64_ctx *)sf->uc.tuc_mcontext.__reserved; 421 while (ctx) { 422 uint32_t magic, size, extra_size; 423 424 __get_user(magic, &ctx->magic); 425 __get_user(size, &ctx->size); 426 switch (magic) { 427 case 0: 428 if (size != 0) { 429 goto err; 430 } 431 if (used_extra) { 432 ctx = NULL; 433 } else { 434 ctx = extra; 435 used_extra = true; 436 } 437 continue; 438 439 case TARGET_FPSIMD_MAGIC: 440 if (fpsimd || size != sizeof(struct target_fpsimd_context)) { 441 goto err; 442 } 443 fpsimd = (struct target_fpsimd_context *)ctx; 444 break; 445 446 case TARGET_SVE_MAGIC: 447 if (sve || size < sizeof(struct target_sve_context)) { 448 goto err; 449 } 450 sve = (struct target_sve_context *)ctx; 451 sve_size = size; 452 break; 453 454 case TARGET_ZA_MAGIC: 455 if (za || size < sizeof(struct target_za_context)) { 456 goto err; 457 } 458 za = (struct target_za_context *)ctx; 459 za_size = size; 460 break; 461 462 case TARGET_EXTRA_MAGIC: 463 if (extra || size != sizeof(struct target_extra_context)) { 464 goto err; 465 } 466 __get_user(extra_datap, 467 &((struct target_extra_context *)ctx)->datap); 468 __get_user(extra_size, 469 &((struct target_extra_context *)ctx)->size); 470 extra = lock_user(VERIFY_READ, extra_datap, extra_size, 0); 471 if (!extra) { 472 return 1; 473 } 474 break; 475 476 default: 477 /* Unknown record -- we certainly didn't generate it. 478 * Did we in fact get out of sync? 479 */ 480 goto err; 481 } 482 ctx = (void *)ctx + size; 483 } 484 485 /* Require FPSIMD always. */ 486 if (fpsimd) { 487 target_restore_fpsimd_record(env, fpsimd); 488 } else { 489 goto err; 490 } 491 492 /* SVE data, if present, overwrites FPSIMD data. */ 493 if (sve && !target_restore_sve_record(env, sve, sve_size, &svcr)) { 494 goto err; 495 } 496 if (za && !target_restore_za_record(env, za, za_size, &svcr)) { 497 goto err; 498 } 499 if (env->svcr != svcr) { 500 env->svcr = svcr; 501 arm_rebuild_hflags(env); 502 } 503 unlock_user(extra, extra_datap, 0); 504 return 0; 505 506 err: 507 unlock_user(extra, extra_datap, 0); 508 return 1; 509 } 510 511 static abi_ulong get_sigframe(struct target_sigaction *ka, 512 CPUARMState *env, int size) 513 { 514 abi_ulong sp; 515 516 sp = target_sigsp(get_sp_from_cpustate(env), ka); 517 518 sp = (sp - size) & ~15; 519 520 return sp; 521 } 522 523 typedef struct { 524 int total_size; 525 int extra_base; 526 int extra_size; 527 int std_end_ofs; 528 int extra_ofs; 529 int extra_end_ofs; 530 } target_sigframe_layout; 531 532 static int alloc_sigframe_space(int this_size, target_sigframe_layout *l) 533 { 534 /* Make sure there will always be space for the end marker. */ 535 const int std_size = sizeof(struct target_rt_sigframe) 536 - sizeof(struct target_aarch64_ctx); 537 int this_loc = l->total_size; 538 539 if (l->extra_base) { 540 /* Once we have begun an extra space, all allocations go there. */ 541 l->extra_size += this_size; 542 } else if (this_size + this_loc > std_size) { 543 /* This allocation does not fit in the standard space. */ 544 /* Allocate the extra record. */ 545 l->extra_ofs = this_loc; 546 l->total_size += sizeof(struct target_extra_context); 547 548 /* Allocate the standard end record. */ 549 l->std_end_ofs = l->total_size; 550 l->total_size += sizeof(struct target_aarch64_ctx); 551 552 /* Allocate the requested record. */ 553 l->extra_base = this_loc = l->total_size; 554 l->extra_size = this_size; 555 } 556 l->total_size += this_size; 557 558 return this_loc; 559 } 560 561 static void target_setup_frame(int usig, struct target_sigaction *ka, 562 target_siginfo_t *info, target_sigset_t *set, 563 CPUARMState *env) 564 { 565 target_sigframe_layout layout = { 566 /* Begin with the size pointing to the reserved space. */ 567 .total_size = offsetof(struct target_rt_sigframe, 568 uc.tuc_mcontext.__reserved), 569 }; 570 int fpsimd_ofs, fr_ofs, sve_ofs = 0, za_ofs = 0; 571 int sve_size = 0, za_size = 0; 572 struct target_rt_sigframe *frame; 573 struct target_rt_frame_record *fr; 574 abi_ulong frame_addr, return_addr; 575 576 /* FPSIMD record is always in the standard space. */ 577 fpsimd_ofs = alloc_sigframe_space(sizeof(struct target_fpsimd_context), 578 &layout); 579 580 /* SVE state needs saving only if it exists. */ 581 if (cpu_isar_feature(aa64_sve, env_archcpu(env)) || 582 cpu_isar_feature(aa64_sme, env_archcpu(env))) { 583 sve_size = QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(sve_vq(env)), 16); 584 sve_ofs = alloc_sigframe_space(sve_size, &layout); 585 } 586 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 587 /* ZA state needs saving only if it is enabled. */ 588 if (FIELD_EX64(env->svcr, SVCR, ZA)) { 589 za_size = TARGET_ZA_SIG_CONTEXT_SIZE(sme_vq(env)); 590 } else { 591 za_size = TARGET_ZA_SIG_CONTEXT_SIZE(0); 592 } 593 za_ofs = alloc_sigframe_space(za_size, &layout); 594 } 595 596 if (layout.extra_ofs) { 597 /* Reserve space for the extra end marker. The standard end marker 598 * will have been allocated when we allocated the extra record. 599 */ 600 layout.extra_end_ofs 601 = alloc_sigframe_space(sizeof(struct target_aarch64_ctx), &layout); 602 } else { 603 /* Reserve space for the standard end marker. 604 * Do not use alloc_sigframe_space because we cheat 605 * std_size therein to reserve space for this. 606 */ 607 layout.std_end_ofs = layout.total_size; 608 layout.total_size += sizeof(struct target_aarch64_ctx); 609 } 610 611 /* We must always provide at least the standard 4K reserved space, 612 * even if we don't use all of it (this is part of the ABI) 613 */ 614 layout.total_size = MAX(layout.total_size, 615 sizeof(struct target_rt_sigframe)); 616 617 /* 618 * Reserve space for the standard frame unwind pair: fp, lr. 619 * Despite the name this is not a "real" record within the frame. 620 */ 621 fr_ofs = layout.total_size; 622 layout.total_size += sizeof(struct target_rt_frame_record); 623 624 frame_addr = get_sigframe(ka, env, layout.total_size); 625 trace_user_setup_frame(env, frame_addr); 626 frame = lock_user(VERIFY_WRITE, frame_addr, layout.total_size, 0); 627 if (!frame) { 628 goto give_sigsegv; 629 } 630 631 target_setup_general_frame(frame, env, set); 632 target_setup_fpsimd_record((void *)frame + fpsimd_ofs, env); 633 target_setup_end_record((void *)frame + layout.std_end_ofs); 634 if (layout.extra_ofs) { 635 target_setup_extra_record((void *)frame + layout.extra_ofs, 636 frame_addr + layout.extra_base, 637 layout.extra_size); 638 target_setup_end_record((void *)frame + layout.extra_end_ofs); 639 } 640 if (sve_ofs) { 641 target_setup_sve_record((void *)frame + sve_ofs, env, sve_size); 642 } 643 if (za_ofs) { 644 target_setup_za_record((void *)frame + za_ofs, env, za_size); 645 } 646 647 /* Set up the stack frame for unwinding. */ 648 fr = (void *)frame + fr_ofs; 649 __put_user(env->xregs[29], &fr->fp); 650 __put_user(env->xregs[30], &fr->lr); 651 652 if (ka->sa_flags & TARGET_SA_RESTORER) { 653 return_addr = ka->sa_restorer; 654 } else { 655 return_addr = default_rt_sigreturn; 656 } 657 env->xregs[0] = usig; 658 env->xregs[29] = frame_addr + fr_ofs; 659 env->xregs[30] = return_addr; 660 env->xregs[31] = frame_addr; 661 env->pc = ka->_sa_handler; 662 663 /* Invoke the signal handler as if by indirect call. */ 664 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 665 env->btype = 2; 666 } 667 668 /* Invoke the signal handler with both SM and ZA disabled. */ 669 aarch64_set_svcr(env, 0, R_SVCR_SM_MASK | R_SVCR_ZA_MASK); 670 671 if (info) { 672 tswap_siginfo(&frame->info, info); 673 env->xregs[1] = frame_addr + offsetof(struct target_rt_sigframe, info); 674 env->xregs[2] = frame_addr + offsetof(struct target_rt_sigframe, uc); 675 } 676 677 unlock_user(frame, frame_addr, layout.total_size); 678 return; 679 680 give_sigsegv: 681 unlock_user(frame, frame_addr, layout.total_size); 682 force_sigsegv(usig); 683 } 684 685 void setup_rt_frame(int sig, struct target_sigaction *ka, 686 target_siginfo_t *info, target_sigset_t *set, 687 CPUARMState *env) 688 { 689 target_setup_frame(sig, ka, info, set, env); 690 } 691 692 void setup_frame(int sig, struct target_sigaction *ka, 693 target_sigset_t *set, CPUARMState *env) 694 { 695 target_setup_frame(sig, ka, 0, set, env); 696 } 697 698 long do_rt_sigreturn(CPUARMState *env) 699 { 700 struct target_rt_sigframe *frame = NULL; 701 abi_ulong frame_addr = env->xregs[31]; 702 703 trace_user_do_rt_sigreturn(env, frame_addr); 704 if (frame_addr & 15) { 705 goto badframe; 706 } 707 708 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 709 goto badframe; 710 } 711 712 if (target_restore_sigframe(env, frame)) { 713 goto badframe; 714 } 715 716 target_restore_altstack(&frame->uc.tuc_stack, env); 717 718 unlock_user_struct(frame, frame_addr, 0); 719 return -QEMU_ESIGRETURN; 720 721 badframe: 722 unlock_user_struct(frame, frame_addr, 0); 723 force_sig(TARGET_SIGSEGV); 724 return -QEMU_ESIGRETURN; 725 } 726 727 long do_sigreturn(CPUARMState *env) 728 { 729 return do_rt_sigreturn(env); 730 } 731 732 void setup_sigtramp(abi_ulong sigtramp_page) 733 { 734 uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 8, 0); 735 assert(tramp != NULL); 736 737 /* 738 * mov x8,#__NR_rt_sigreturn; svc #0 739 * Since these are instructions they need to be put as little-endian 740 * regardless of target default or current CPU endianness. 741 */ 742 __put_user_e(0xd2801168, &tramp[0], le); 743 __put_user_e(0xd4000001, &tramp[1], le); 744 745 default_rt_sigreturn = sigtramp_page; 746 unlock_user(tramp, sigtramp_page, 8); 747 } 748