1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "target_signal.h" 22 #include "signal-common.h" 23 #include "linux-user/trace.h" 24 25 struct target_sigcontext { 26 uint64_t fault_address; 27 /* AArch64 registers */ 28 uint64_t regs[31]; 29 uint64_t sp; 30 uint64_t pc; 31 uint64_t pstate; 32 /* 4K reserved for FP/SIMD state and future expansion */ 33 char __reserved[4096] __attribute__((__aligned__(16))); 34 }; 35 36 struct target_ucontext { 37 abi_ulong tuc_flags; 38 abi_ulong tuc_link; 39 target_stack_t tuc_stack; 40 target_sigset_t tuc_sigmask; 41 /* glibc uses a 1024-bit sigset_t */ 42 char __unused[1024 / 8 - sizeof(target_sigset_t)]; 43 /* last for future expansion */ 44 struct target_sigcontext tuc_mcontext; 45 }; 46 47 /* 48 * Header to be used at the beginning of structures extending the user 49 * context. Such structures must be placed after the rt_sigframe on the stack 50 * and be 16-byte aligned. The last structure must be a dummy one with the 51 * magic and size set to 0. 52 */ 53 struct target_aarch64_ctx { 54 uint32_t magic; 55 uint32_t size; 56 }; 57 58 #define TARGET_FPSIMD_MAGIC 0x46508001 59 60 struct target_fpsimd_context { 61 struct target_aarch64_ctx head; 62 uint32_t fpsr; 63 uint32_t fpcr; 64 uint64_t vregs[32 * 2]; /* really uint128_t vregs[32] */ 65 }; 66 67 #define TARGET_EXTRA_MAGIC 0x45585401 68 69 struct target_extra_context { 70 struct target_aarch64_ctx head; 71 uint64_t datap; /* 16-byte aligned pointer to extra space cast to __u64 */ 72 uint32_t size; /* size in bytes of the extra space */ 73 uint32_t reserved[3]; 74 }; 75 76 #define TARGET_SVE_MAGIC 0x53564501 77 78 struct target_sve_context { 79 struct target_aarch64_ctx head; 80 uint16_t vl; 81 uint16_t reserved[3]; 82 /* The actual SVE data immediately follows. It is layed out 83 * according to TARGET_SVE_SIG_{Z,P}REG_OFFSET, based off of 84 * the original struct pointer. 85 */ 86 }; 87 88 #define TARGET_SVE_VQ_BYTES 16 89 90 #define TARGET_SVE_SIG_ZREG_SIZE(VQ) ((VQ) * TARGET_SVE_VQ_BYTES) 91 #define TARGET_SVE_SIG_PREG_SIZE(VQ) ((VQ) * (TARGET_SVE_VQ_BYTES / 8)) 92 93 #define TARGET_SVE_SIG_REGS_OFFSET \ 94 QEMU_ALIGN_UP(sizeof(struct target_sve_context), TARGET_SVE_VQ_BYTES) 95 #define TARGET_SVE_SIG_ZREG_OFFSET(VQ, N) \ 96 (TARGET_SVE_SIG_REGS_OFFSET + TARGET_SVE_SIG_ZREG_SIZE(VQ) * (N)) 97 #define TARGET_SVE_SIG_PREG_OFFSET(VQ, N) \ 98 (TARGET_SVE_SIG_ZREG_OFFSET(VQ, 32) + TARGET_SVE_SIG_PREG_SIZE(VQ) * (N)) 99 #define TARGET_SVE_SIG_FFR_OFFSET(VQ) \ 100 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 16)) 101 #define TARGET_SVE_SIG_CONTEXT_SIZE(VQ) \ 102 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 17)) 103 104 struct target_rt_sigframe { 105 struct target_siginfo info; 106 struct target_ucontext uc; 107 }; 108 109 struct target_rt_frame_record { 110 uint64_t fp; 111 uint64_t lr; 112 uint32_t tramp[2]; 113 }; 114 115 static void target_setup_general_frame(struct target_rt_sigframe *sf, 116 CPUARMState *env, target_sigset_t *set) 117 { 118 int i; 119 120 __put_user(0, &sf->uc.tuc_flags); 121 __put_user(0, &sf->uc.tuc_link); 122 123 target_save_altstack(&sf->uc.tuc_stack, env); 124 125 for (i = 0; i < 31; i++) { 126 __put_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); 127 } 128 __put_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); 129 __put_user(env->pc, &sf->uc.tuc_mcontext.pc); 130 __put_user(pstate_read(env), &sf->uc.tuc_mcontext.pstate); 131 132 __put_user(env->exception.vaddress, &sf->uc.tuc_mcontext.fault_address); 133 134 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 135 __put_user(set->sig[i], &sf->uc.tuc_sigmask.sig[i]); 136 } 137 } 138 139 static void target_setup_fpsimd_record(struct target_fpsimd_context *fpsimd, 140 CPUARMState *env) 141 { 142 int i; 143 144 __put_user(TARGET_FPSIMD_MAGIC, &fpsimd->head.magic); 145 __put_user(sizeof(struct target_fpsimd_context), &fpsimd->head.size); 146 __put_user(vfp_get_fpsr(env), &fpsimd->fpsr); 147 __put_user(vfp_get_fpcr(env), &fpsimd->fpcr); 148 149 for (i = 0; i < 32; i++) { 150 uint64_t *q = aa64_vfp_qreg(env, i); 151 #ifdef TARGET_WORDS_BIGENDIAN 152 __put_user(q[0], &fpsimd->vregs[i * 2 + 1]); 153 __put_user(q[1], &fpsimd->vregs[i * 2]); 154 #else 155 __put_user(q[0], &fpsimd->vregs[i * 2]); 156 __put_user(q[1], &fpsimd->vregs[i * 2 + 1]); 157 #endif 158 } 159 } 160 161 static void target_setup_extra_record(struct target_extra_context *extra, 162 uint64_t datap, uint32_t extra_size) 163 { 164 __put_user(TARGET_EXTRA_MAGIC, &extra->head.magic); 165 __put_user(sizeof(struct target_extra_context), &extra->head.size); 166 __put_user(datap, &extra->datap); 167 __put_user(extra_size, &extra->size); 168 } 169 170 static void target_setup_end_record(struct target_aarch64_ctx *end) 171 { 172 __put_user(0, &end->magic); 173 __put_user(0, &end->size); 174 } 175 176 static void target_setup_sve_record(struct target_sve_context *sve, 177 CPUARMState *env, int vq, int size) 178 { 179 int i, j; 180 181 __put_user(TARGET_SVE_MAGIC, &sve->head.magic); 182 __put_user(size, &sve->head.size); 183 __put_user(vq * TARGET_SVE_VQ_BYTES, &sve->vl); 184 185 /* Note that SVE regs are stored as a byte stream, with each byte element 186 * at a subsequent address. This corresponds to a little-endian store 187 * of our 64-bit hunks. 188 */ 189 for (i = 0; i < 32; ++i) { 190 uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i); 191 for (j = 0; j < vq * 2; ++j) { 192 __put_user_e(env->vfp.zregs[i].d[j], z + j, le); 193 } 194 } 195 for (i = 0; i <= 16; ++i) { 196 uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i); 197 for (j = 0; j < vq; ++j) { 198 uint64_t r = env->vfp.pregs[i].p[j >> 2]; 199 __put_user_e(r >> ((j & 3) * 16), p + j, le); 200 } 201 } 202 } 203 204 static void target_restore_general_frame(CPUARMState *env, 205 struct target_rt_sigframe *sf) 206 { 207 sigset_t set; 208 uint64_t pstate; 209 int i; 210 211 target_to_host_sigset(&set, &sf->uc.tuc_sigmask); 212 set_sigmask(&set); 213 214 for (i = 0; i < 31; i++) { 215 __get_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); 216 } 217 218 __get_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); 219 __get_user(env->pc, &sf->uc.tuc_mcontext.pc); 220 __get_user(pstate, &sf->uc.tuc_mcontext.pstate); 221 pstate_write(env, pstate); 222 } 223 224 static void target_restore_fpsimd_record(CPUARMState *env, 225 struct target_fpsimd_context *fpsimd) 226 { 227 uint32_t fpsr, fpcr; 228 int i; 229 230 __get_user(fpsr, &fpsimd->fpsr); 231 vfp_set_fpsr(env, fpsr); 232 __get_user(fpcr, &fpsimd->fpcr); 233 vfp_set_fpcr(env, fpcr); 234 235 for (i = 0; i < 32; i++) { 236 uint64_t *q = aa64_vfp_qreg(env, i); 237 #ifdef TARGET_WORDS_BIGENDIAN 238 __get_user(q[0], &fpsimd->vregs[i * 2 + 1]); 239 __get_user(q[1], &fpsimd->vregs[i * 2]); 240 #else 241 __get_user(q[0], &fpsimd->vregs[i * 2]); 242 __get_user(q[1], &fpsimd->vregs[i * 2 + 1]); 243 #endif 244 } 245 } 246 247 static void target_restore_sve_record(CPUARMState *env, 248 struct target_sve_context *sve, int vq) 249 { 250 int i, j; 251 252 /* Note that SVE regs are stored as a byte stream, with each byte element 253 * at a subsequent address. This corresponds to a little-endian load 254 * of our 64-bit hunks. 255 */ 256 for (i = 0; i < 32; ++i) { 257 uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i); 258 for (j = 0; j < vq * 2; ++j) { 259 __get_user_e(env->vfp.zregs[i].d[j], z + j, le); 260 } 261 } 262 for (i = 0; i <= 16; ++i) { 263 uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i); 264 for (j = 0; j < vq; ++j) { 265 uint16_t r; 266 __get_user_e(r, p + j, le); 267 if (j & 3) { 268 env->vfp.pregs[i].p[j >> 2] |= (uint64_t)r << ((j & 3) * 16); 269 } else { 270 env->vfp.pregs[i].p[j >> 2] = r; 271 } 272 } 273 } 274 } 275 276 static int target_restore_sigframe(CPUARMState *env, 277 struct target_rt_sigframe *sf) 278 { 279 struct target_aarch64_ctx *ctx, *extra = NULL; 280 struct target_fpsimd_context *fpsimd = NULL; 281 struct target_sve_context *sve = NULL; 282 uint64_t extra_datap = 0; 283 bool used_extra = false; 284 bool err = false; 285 int vq = 0, sve_size = 0; 286 287 target_restore_general_frame(env, sf); 288 289 ctx = (struct target_aarch64_ctx *)sf->uc.tuc_mcontext.__reserved; 290 while (ctx) { 291 uint32_t magic, size, extra_size; 292 293 __get_user(magic, &ctx->magic); 294 __get_user(size, &ctx->size); 295 switch (magic) { 296 case 0: 297 if (size != 0) { 298 err = true; 299 goto exit; 300 } 301 if (used_extra) { 302 ctx = NULL; 303 } else { 304 ctx = extra; 305 used_extra = true; 306 } 307 continue; 308 309 case TARGET_FPSIMD_MAGIC: 310 if (fpsimd || size != sizeof(struct target_fpsimd_context)) { 311 err = true; 312 goto exit; 313 } 314 fpsimd = (struct target_fpsimd_context *)ctx; 315 break; 316 317 case TARGET_SVE_MAGIC: 318 if (arm_feature(env, ARM_FEATURE_SVE)) { 319 vq = (env->vfp.zcr_el[1] & 0xf) + 1; 320 sve_size = QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(vq), 16); 321 if (!sve && size == sve_size) { 322 sve = (struct target_sve_context *)ctx; 323 break; 324 } 325 } 326 err = true; 327 goto exit; 328 329 case TARGET_EXTRA_MAGIC: 330 if (extra || size != sizeof(struct target_extra_context)) { 331 err = true; 332 goto exit; 333 } 334 __get_user(extra_datap, 335 &((struct target_extra_context *)ctx)->datap); 336 __get_user(extra_size, 337 &((struct target_extra_context *)ctx)->size); 338 extra = lock_user(VERIFY_READ, extra_datap, extra_size, 0); 339 break; 340 341 default: 342 /* Unknown record -- we certainly didn't generate it. 343 * Did we in fact get out of sync? 344 */ 345 err = true; 346 goto exit; 347 } 348 ctx = (void *)ctx + size; 349 } 350 351 /* Require FPSIMD always. */ 352 if (fpsimd) { 353 target_restore_fpsimd_record(env, fpsimd); 354 } else { 355 err = true; 356 } 357 358 /* SVE data, if present, overwrites FPSIMD data. */ 359 if (sve) { 360 target_restore_sve_record(env, sve, vq); 361 } 362 363 exit: 364 unlock_user(extra, extra_datap, 0); 365 return err; 366 } 367 368 static abi_ulong get_sigframe(struct target_sigaction *ka, 369 CPUARMState *env, int size) 370 { 371 abi_ulong sp; 372 373 sp = target_sigsp(get_sp_from_cpustate(env), ka); 374 375 sp = (sp - size) & ~15; 376 377 return sp; 378 } 379 380 typedef struct { 381 int total_size; 382 int extra_base; 383 int extra_size; 384 int std_end_ofs; 385 int extra_ofs; 386 int extra_end_ofs; 387 } target_sigframe_layout; 388 389 static int alloc_sigframe_space(int this_size, target_sigframe_layout *l) 390 { 391 /* Make sure there will always be space for the end marker. */ 392 const int std_size = sizeof(struct target_rt_sigframe) 393 - sizeof(struct target_aarch64_ctx); 394 int this_loc = l->total_size; 395 396 if (l->extra_base) { 397 /* Once we have begun an extra space, all allocations go there. */ 398 l->extra_size += this_size; 399 } else if (this_size + this_loc > std_size) { 400 /* This allocation does not fit in the standard space. */ 401 /* Allocate the extra record. */ 402 l->extra_ofs = this_loc; 403 l->total_size += sizeof(struct target_extra_context); 404 405 /* Allocate the standard end record. */ 406 l->std_end_ofs = l->total_size; 407 l->total_size += sizeof(struct target_aarch64_ctx); 408 409 /* Allocate the requested record. */ 410 l->extra_base = this_loc = l->total_size; 411 l->extra_size = this_size; 412 } 413 l->total_size += this_size; 414 415 return this_loc; 416 } 417 418 static void target_setup_frame(int usig, struct target_sigaction *ka, 419 target_siginfo_t *info, target_sigset_t *set, 420 CPUARMState *env) 421 { 422 target_sigframe_layout layout = { 423 /* Begin with the size pointing to the reserved space. */ 424 .total_size = offsetof(struct target_rt_sigframe, 425 uc.tuc_mcontext.__reserved), 426 }; 427 int fpsimd_ofs, fr_ofs, sve_ofs = 0, vq = 0, sve_size = 0; 428 struct target_rt_sigframe *frame; 429 struct target_rt_frame_record *fr; 430 abi_ulong frame_addr, return_addr; 431 432 /* FPSIMD record is always in the standard space. */ 433 fpsimd_ofs = alloc_sigframe_space(sizeof(struct target_fpsimd_context), 434 &layout); 435 436 /* SVE state needs saving only if it exists. */ 437 if (arm_feature(env, ARM_FEATURE_SVE)) { 438 vq = (env->vfp.zcr_el[1] & 0xf) + 1; 439 sve_size = QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(vq), 16); 440 sve_ofs = alloc_sigframe_space(sve_size, &layout); 441 } 442 443 if (layout.extra_ofs) { 444 /* Reserve space for the extra end marker. The standard end marker 445 * will have been allocated when we allocated the extra record. 446 */ 447 layout.extra_end_ofs 448 = alloc_sigframe_space(sizeof(struct target_aarch64_ctx), &layout); 449 } else { 450 /* Reserve space for the standard end marker. 451 * Do not use alloc_sigframe_space because we cheat 452 * std_size therein to reserve space for this. 453 */ 454 layout.std_end_ofs = layout.total_size; 455 layout.total_size += sizeof(struct target_aarch64_ctx); 456 } 457 458 /* We must always provide at least the standard 4K reserved space, 459 * even if we don't use all of it (this is part of the ABI) 460 */ 461 layout.total_size = MAX(layout.total_size, 462 sizeof(struct target_rt_sigframe)); 463 464 /* Reserve space for the return code. On a real system this would 465 * be within the VDSO. So, despite the name this is not a "real" 466 * record within the frame. 467 */ 468 fr_ofs = layout.total_size; 469 layout.total_size += sizeof(struct target_rt_frame_record); 470 471 frame_addr = get_sigframe(ka, env, layout.total_size); 472 trace_user_setup_frame(env, frame_addr); 473 frame = lock_user(VERIFY_WRITE, frame_addr, layout.total_size, 0); 474 if (!frame) { 475 goto give_sigsegv; 476 } 477 478 target_setup_general_frame(frame, env, set); 479 target_setup_fpsimd_record((void *)frame + fpsimd_ofs, env); 480 target_setup_end_record((void *)frame + layout.std_end_ofs); 481 if (layout.extra_ofs) { 482 target_setup_extra_record((void *)frame + layout.extra_ofs, 483 frame_addr + layout.extra_base, 484 layout.extra_size); 485 target_setup_end_record((void *)frame + layout.extra_end_ofs); 486 } 487 if (sve_ofs) { 488 target_setup_sve_record((void *)frame + sve_ofs, env, vq, sve_size); 489 } 490 491 /* Set up the stack frame for unwinding. */ 492 fr = (void *)frame + fr_ofs; 493 __put_user(env->xregs[29], &fr->fp); 494 __put_user(env->xregs[30], &fr->lr); 495 496 if (ka->sa_flags & TARGET_SA_RESTORER) { 497 return_addr = ka->sa_restorer; 498 } else { 499 /* 500 * mov x8,#__NR_rt_sigreturn; svc #0 501 * Since these are instructions they need to be put as little-endian 502 * regardless of target default or current CPU endianness. 503 */ 504 __put_user_e(0xd2801168, &fr->tramp[0], le); 505 __put_user_e(0xd4000001, &fr->tramp[1], le); 506 return_addr = frame_addr + fr_ofs 507 + offsetof(struct target_rt_frame_record, tramp); 508 } 509 env->xregs[0] = usig; 510 env->xregs[31] = frame_addr; 511 env->xregs[29] = frame_addr + fr_ofs; 512 env->pc = ka->_sa_handler; 513 env->xregs[30] = return_addr; 514 if (info) { 515 tswap_siginfo(&frame->info, info); 516 env->xregs[1] = frame_addr + offsetof(struct target_rt_sigframe, info); 517 env->xregs[2] = frame_addr + offsetof(struct target_rt_sigframe, uc); 518 } 519 520 unlock_user(frame, frame_addr, layout.total_size); 521 return; 522 523 give_sigsegv: 524 unlock_user(frame, frame_addr, layout.total_size); 525 force_sigsegv(usig); 526 } 527 528 void setup_rt_frame(int sig, struct target_sigaction *ka, 529 target_siginfo_t *info, target_sigset_t *set, 530 CPUARMState *env) 531 { 532 target_setup_frame(sig, ka, info, set, env); 533 } 534 535 void setup_frame(int sig, struct target_sigaction *ka, 536 target_sigset_t *set, CPUARMState *env) 537 { 538 target_setup_frame(sig, ka, 0, set, env); 539 } 540 541 long do_rt_sigreturn(CPUARMState *env) 542 { 543 struct target_rt_sigframe *frame = NULL; 544 abi_ulong frame_addr = env->xregs[31]; 545 546 trace_user_do_rt_sigreturn(env, frame_addr); 547 if (frame_addr & 15) { 548 goto badframe; 549 } 550 551 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 552 goto badframe; 553 } 554 555 if (target_restore_sigframe(env, frame)) { 556 goto badframe; 557 } 558 559 if (do_sigaltstack(frame_addr + 560 offsetof(struct target_rt_sigframe, uc.tuc_stack), 561 0, get_sp_from_cpustate(env)) == -EFAULT) { 562 goto badframe; 563 } 564 565 unlock_user_struct(frame, frame_addr, 0); 566 return -TARGET_QEMU_ESIGRETURN; 567 568 badframe: 569 unlock_user_struct(frame, frame_addr, 0); 570 force_sig(TARGET_SIGSEGV); 571 return -TARGET_QEMU_ESIGRETURN; 572 } 573 574 long do_sigreturn(CPUARMState *env) 575 { 576 return do_rt_sigreturn(env); 577 } 578