1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "user-internals.h" 22 #include "signal-common.h" 23 #include "linux-user/trace.h" 24 #include "target/arm/cpu-features.h" 25 26 struct target_sigcontext { 27 uint64_t fault_address; 28 /* AArch64 registers */ 29 uint64_t regs[31]; 30 uint64_t sp; 31 uint64_t pc; 32 uint64_t pstate; 33 /* 4K reserved for FP/SIMD state and future expansion */ 34 char __reserved[4096] __attribute__((__aligned__(16))); 35 }; 36 37 struct target_ucontext { 38 abi_ulong tuc_flags; 39 abi_ulong tuc_link; 40 target_stack_t tuc_stack; 41 target_sigset_t tuc_sigmask; 42 /* glibc uses a 1024-bit sigset_t */ 43 char __unused[1024 / 8 - sizeof(target_sigset_t)]; 44 /* last for future expansion */ 45 struct target_sigcontext tuc_mcontext; 46 }; 47 48 /* 49 * Header to be used at the beginning of structures extending the user 50 * context. Such structures must be placed after the rt_sigframe on the stack 51 * and be 16-byte aligned. The last structure must be a dummy one with the 52 * magic and size set to 0. 53 */ 54 struct target_aarch64_ctx { 55 uint32_t magic; 56 uint32_t size; 57 }; 58 59 #define TARGET_FPSIMD_MAGIC 0x46508001 60 61 struct target_fpsimd_context { 62 struct target_aarch64_ctx head; 63 uint32_t fpsr; 64 uint32_t fpcr; 65 uint64_t vregs[32 * 2]; /* really uint128_t vregs[32] */ 66 }; 67 68 #define TARGET_EXTRA_MAGIC 0x45585401 69 70 struct target_extra_context { 71 struct target_aarch64_ctx head; 72 uint64_t datap; /* 16-byte aligned pointer to extra space cast to __u64 */ 73 uint32_t size; /* size in bytes of the extra space */ 74 uint32_t reserved[3]; 75 }; 76 77 #define TARGET_SVE_MAGIC 0x53564501 78 79 struct target_sve_context { 80 struct target_aarch64_ctx head; 81 uint16_t vl; 82 uint16_t flags; 83 uint16_t reserved[2]; 84 /* The actual SVE data immediately follows. It is laid out 85 * according to TARGET_SVE_SIG_{Z,P}REG_OFFSET, based off of 86 * the original struct pointer. 87 */ 88 }; 89 90 #define TARGET_SVE_VQ_BYTES 16 91 92 #define TARGET_SVE_SIG_ZREG_SIZE(VQ) ((VQ) * TARGET_SVE_VQ_BYTES) 93 #define TARGET_SVE_SIG_PREG_SIZE(VQ) ((VQ) * (TARGET_SVE_VQ_BYTES / 8)) 94 95 #define TARGET_SVE_SIG_REGS_OFFSET \ 96 QEMU_ALIGN_UP(sizeof(struct target_sve_context), TARGET_SVE_VQ_BYTES) 97 #define TARGET_SVE_SIG_ZREG_OFFSET(VQ, N) \ 98 (TARGET_SVE_SIG_REGS_OFFSET + TARGET_SVE_SIG_ZREG_SIZE(VQ) * (N)) 99 #define TARGET_SVE_SIG_PREG_OFFSET(VQ, N) \ 100 (TARGET_SVE_SIG_ZREG_OFFSET(VQ, 32) + TARGET_SVE_SIG_PREG_SIZE(VQ) * (N)) 101 #define TARGET_SVE_SIG_FFR_OFFSET(VQ) \ 102 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 16)) 103 #define TARGET_SVE_SIG_CONTEXT_SIZE(VQ) \ 104 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 17)) 105 106 #define TARGET_SVE_SIG_FLAG_SM 1 107 108 #define TARGET_ZA_MAGIC 0x54366345 109 110 struct target_za_context { 111 struct target_aarch64_ctx head; 112 uint16_t vl; 113 uint16_t reserved[3]; 114 /* The actual ZA data immediately follows. */ 115 }; 116 117 #define TARGET_ZA_SIG_REGS_OFFSET \ 118 QEMU_ALIGN_UP(sizeof(struct target_za_context), TARGET_SVE_VQ_BYTES) 119 #define TARGET_ZA_SIG_ZAV_OFFSET(VQ, N) \ 120 (TARGET_ZA_SIG_REGS_OFFSET + (VQ) * TARGET_SVE_VQ_BYTES * (N)) 121 #define TARGET_ZA_SIG_CONTEXT_SIZE(VQ) \ 122 TARGET_ZA_SIG_ZAV_OFFSET(VQ, VQ * TARGET_SVE_VQ_BYTES) 123 124 struct target_rt_sigframe { 125 struct target_siginfo info; 126 struct target_ucontext uc; 127 }; 128 129 struct target_rt_frame_record { 130 uint64_t fp; 131 uint64_t lr; 132 }; 133 134 static void target_setup_general_frame(struct target_rt_sigframe *sf, 135 CPUARMState *env, target_sigset_t *set) 136 { 137 int i; 138 139 __put_user(0, &sf->uc.tuc_flags); 140 __put_user(0, &sf->uc.tuc_link); 141 142 target_save_altstack(&sf->uc.tuc_stack, env); 143 144 for (i = 0; i < 31; i++) { 145 __put_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); 146 } 147 __put_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); 148 __put_user(env->pc, &sf->uc.tuc_mcontext.pc); 149 __put_user(pstate_read(env), &sf->uc.tuc_mcontext.pstate); 150 151 __put_user(env->exception.vaddress, &sf->uc.tuc_mcontext.fault_address); 152 153 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 154 __put_user(set->sig[i], &sf->uc.tuc_sigmask.sig[i]); 155 } 156 } 157 158 static void target_setup_fpsimd_record(struct target_fpsimd_context *fpsimd, 159 CPUARMState *env) 160 { 161 int i; 162 163 __put_user(TARGET_FPSIMD_MAGIC, &fpsimd->head.magic); 164 __put_user(sizeof(struct target_fpsimd_context), &fpsimd->head.size); 165 __put_user(vfp_get_fpsr(env), &fpsimd->fpsr); 166 __put_user(vfp_get_fpcr(env), &fpsimd->fpcr); 167 168 for (i = 0; i < 32; i++) { 169 uint64_t *q = aa64_vfp_qreg(env, i); 170 #if TARGET_BIG_ENDIAN 171 __put_user(q[0], &fpsimd->vregs[i * 2 + 1]); 172 __put_user(q[1], &fpsimd->vregs[i * 2]); 173 #else 174 __put_user(q[0], &fpsimd->vregs[i * 2]); 175 __put_user(q[1], &fpsimd->vregs[i * 2 + 1]); 176 #endif 177 } 178 } 179 180 static void target_setup_extra_record(struct target_extra_context *extra, 181 uint64_t datap, uint32_t extra_size) 182 { 183 __put_user(TARGET_EXTRA_MAGIC, &extra->head.magic); 184 __put_user(sizeof(struct target_extra_context), &extra->head.size); 185 __put_user(datap, &extra->datap); 186 __put_user(extra_size, &extra->size); 187 } 188 189 static void target_setup_end_record(struct target_aarch64_ctx *end) 190 { 191 __put_user(0, &end->magic); 192 __put_user(0, &end->size); 193 } 194 195 static void target_setup_sve_record(struct target_sve_context *sve, 196 CPUARMState *env, int size) 197 { 198 int i, j, vq = sve_vq(env); 199 200 memset(sve, 0, sizeof(*sve)); 201 __put_user(TARGET_SVE_MAGIC, &sve->head.magic); 202 __put_user(size, &sve->head.size); 203 __put_user(vq * TARGET_SVE_VQ_BYTES, &sve->vl); 204 if (FIELD_EX64(env->svcr, SVCR, SM)) { 205 __put_user(TARGET_SVE_SIG_FLAG_SM, &sve->flags); 206 } 207 208 /* Note that SVE regs are stored as a byte stream, with each byte element 209 * at a subsequent address. This corresponds to a little-endian store 210 * of our 64-bit hunks. 211 */ 212 for (i = 0; i < 32; ++i) { 213 uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i); 214 for (j = 0; j < vq * 2; ++j) { 215 __put_user_e(env->vfp.zregs[i].d[j], z + j, le); 216 } 217 } 218 for (i = 0; i <= 16; ++i) { 219 uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i); 220 for (j = 0; j < vq; ++j) { 221 uint64_t r = env->vfp.pregs[i].p[j >> 2]; 222 __put_user_e(r >> ((j & 3) * 16), p + j, le); 223 } 224 } 225 } 226 227 static void target_setup_za_record(struct target_za_context *za, 228 CPUARMState *env, int size) 229 { 230 int vq = sme_vq(env); 231 int vl = vq * TARGET_SVE_VQ_BYTES; 232 int i, j; 233 234 memset(za, 0, sizeof(*za)); 235 __put_user(TARGET_ZA_MAGIC, &za->head.magic); 236 __put_user(size, &za->head.size); 237 __put_user(vl, &za->vl); 238 239 if (size == TARGET_ZA_SIG_CONTEXT_SIZE(0)) { 240 return; 241 } 242 assert(size == TARGET_ZA_SIG_CONTEXT_SIZE(vq)); 243 244 /* 245 * Note that ZA vectors are stored as a byte stream, 246 * with each byte element at a subsequent address. 247 */ 248 for (i = 0; i < vl; ++i) { 249 uint64_t *z = (void *)za + TARGET_ZA_SIG_ZAV_OFFSET(vq, i); 250 for (j = 0; j < vq * 2; ++j) { 251 __put_user_e(env->zarray[i].d[j], z + j, le); 252 } 253 } 254 } 255 256 static void target_restore_general_frame(CPUARMState *env, 257 struct target_rt_sigframe *sf) 258 { 259 sigset_t set; 260 uint64_t pstate; 261 int i; 262 263 target_to_host_sigset(&set, &sf->uc.tuc_sigmask); 264 set_sigmask(&set); 265 266 for (i = 0; i < 31; i++) { 267 __get_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); 268 } 269 270 __get_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); 271 __get_user(env->pc, &sf->uc.tuc_mcontext.pc); 272 __get_user(pstate, &sf->uc.tuc_mcontext.pstate); 273 pstate_write(env, pstate); 274 } 275 276 static void target_restore_fpsimd_record(CPUARMState *env, 277 struct target_fpsimd_context *fpsimd) 278 { 279 uint32_t fpsr, fpcr; 280 int i; 281 282 __get_user(fpsr, &fpsimd->fpsr); 283 vfp_set_fpsr(env, fpsr); 284 __get_user(fpcr, &fpsimd->fpcr); 285 vfp_set_fpcr(env, fpcr); 286 287 for (i = 0; i < 32; i++) { 288 uint64_t *q = aa64_vfp_qreg(env, i); 289 #if TARGET_BIG_ENDIAN 290 __get_user(q[0], &fpsimd->vregs[i * 2 + 1]); 291 __get_user(q[1], &fpsimd->vregs[i * 2]); 292 #else 293 __get_user(q[0], &fpsimd->vregs[i * 2]); 294 __get_user(q[1], &fpsimd->vregs[i * 2 + 1]); 295 #endif 296 } 297 } 298 299 static bool target_restore_sve_record(CPUARMState *env, 300 struct target_sve_context *sve, 301 int size, int *svcr) 302 { 303 int i, j, vl, vq, flags; 304 bool sm; 305 306 __get_user(vl, &sve->vl); 307 __get_user(flags, &sve->flags); 308 309 sm = flags & TARGET_SVE_SIG_FLAG_SM; 310 311 /* The cpu must support Streaming or Non-streaming SVE. */ 312 if (sm 313 ? !cpu_isar_feature(aa64_sme, env_archcpu(env)) 314 : !cpu_isar_feature(aa64_sve, env_archcpu(env))) { 315 return false; 316 } 317 318 /* 319 * Note that we cannot use sve_vq() because that depends on the 320 * current setting of PSTATE.SM, not the state to be restored. 321 */ 322 vq = sve_vqm1_for_el_sm(env, 0, sm) + 1; 323 324 /* Reject mismatched VL. */ 325 if (vl != vq * TARGET_SVE_VQ_BYTES) { 326 return false; 327 } 328 329 /* Accept empty record -- used to clear PSTATE.SM. */ 330 if (size <= sizeof(*sve)) { 331 return true; 332 } 333 334 /* Reject non-empty but incomplete record. */ 335 if (size < TARGET_SVE_SIG_CONTEXT_SIZE(vq)) { 336 return false; 337 } 338 339 *svcr = FIELD_DP64(*svcr, SVCR, SM, sm); 340 341 /* 342 * Note that SVE regs are stored as a byte stream, with each byte element 343 * at a subsequent address. This corresponds to a little-endian load 344 * of our 64-bit hunks. 345 */ 346 for (i = 0; i < 32; ++i) { 347 uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i); 348 for (j = 0; j < vq * 2; ++j) { 349 __get_user_e(env->vfp.zregs[i].d[j], z + j, le); 350 } 351 } 352 for (i = 0; i <= 16; ++i) { 353 uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i); 354 for (j = 0; j < vq; ++j) { 355 uint16_t r; 356 __get_user_e(r, p + j, le); 357 if (j & 3) { 358 env->vfp.pregs[i].p[j >> 2] |= (uint64_t)r << ((j & 3) * 16); 359 } else { 360 env->vfp.pregs[i].p[j >> 2] = r; 361 } 362 } 363 } 364 return true; 365 } 366 367 static bool target_restore_za_record(CPUARMState *env, 368 struct target_za_context *za, 369 int size, int *svcr) 370 { 371 int i, j, vl, vq; 372 373 if (!cpu_isar_feature(aa64_sme, env_archcpu(env))) { 374 return false; 375 } 376 377 __get_user(vl, &za->vl); 378 vq = sme_vq(env); 379 380 /* Reject mismatched VL. */ 381 if (vl != vq * TARGET_SVE_VQ_BYTES) { 382 return false; 383 } 384 385 /* Accept empty record -- used to clear PSTATE.ZA. */ 386 if (size <= TARGET_ZA_SIG_CONTEXT_SIZE(0)) { 387 return true; 388 } 389 390 /* Reject non-empty but incomplete record. */ 391 if (size < TARGET_ZA_SIG_CONTEXT_SIZE(vq)) { 392 return false; 393 } 394 395 *svcr = FIELD_DP64(*svcr, SVCR, ZA, 1); 396 397 for (i = 0; i < vl; ++i) { 398 uint64_t *z = (void *)za + TARGET_ZA_SIG_ZAV_OFFSET(vq, i); 399 for (j = 0; j < vq * 2; ++j) { 400 __get_user_e(env->zarray[i].d[j], z + j, le); 401 } 402 } 403 return true; 404 } 405 406 static int target_restore_sigframe(CPUARMState *env, 407 struct target_rt_sigframe *sf) 408 { 409 struct target_aarch64_ctx *ctx, *extra = NULL; 410 struct target_fpsimd_context *fpsimd = NULL; 411 struct target_sve_context *sve = NULL; 412 struct target_za_context *za = NULL; 413 uint64_t extra_datap = 0; 414 bool used_extra = false; 415 int sve_size = 0; 416 int za_size = 0; 417 int svcr = 0; 418 419 target_restore_general_frame(env, sf); 420 421 ctx = (struct target_aarch64_ctx *)sf->uc.tuc_mcontext.__reserved; 422 while (ctx) { 423 uint32_t magic, size, extra_size; 424 425 __get_user(magic, &ctx->magic); 426 __get_user(size, &ctx->size); 427 switch (magic) { 428 case 0: 429 if (size != 0) { 430 goto err; 431 } 432 if (used_extra) { 433 ctx = NULL; 434 } else { 435 ctx = extra; 436 used_extra = true; 437 } 438 continue; 439 440 case TARGET_FPSIMD_MAGIC: 441 if (fpsimd || size != sizeof(struct target_fpsimd_context)) { 442 goto err; 443 } 444 fpsimd = (struct target_fpsimd_context *)ctx; 445 break; 446 447 case TARGET_SVE_MAGIC: 448 if (sve || size < sizeof(struct target_sve_context)) { 449 goto err; 450 } 451 sve = (struct target_sve_context *)ctx; 452 sve_size = size; 453 break; 454 455 case TARGET_ZA_MAGIC: 456 if (za || size < sizeof(struct target_za_context)) { 457 goto err; 458 } 459 za = (struct target_za_context *)ctx; 460 za_size = size; 461 break; 462 463 case TARGET_EXTRA_MAGIC: 464 if (extra || size != sizeof(struct target_extra_context)) { 465 goto err; 466 } 467 __get_user(extra_datap, 468 &((struct target_extra_context *)ctx)->datap); 469 __get_user(extra_size, 470 &((struct target_extra_context *)ctx)->size); 471 extra = lock_user(VERIFY_READ, extra_datap, extra_size, 0); 472 if (!extra) { 473 return 1; 474 } 475 break; 476 477 default: 478 /* Unknown record -- we certainly didn't generate it. 479 * Did we in fact get out of sync? 480 */ 481 goto err; 482 } 483 ctx = (void *)ctx + size; 484 } 485 486 /* Require FPSIMD always. */ 487 if (fpsimd) { 488 target_restore_fpsimd_record(env, fpsimd); 489 } else { 490 goto err; 491 } 492 493 /* SVE data, if present, overwrites FPSIMD data. */ 494 if (sve && !target_restore_sve_record(env, sve, sve_size, &svcr)) { 495 goto err; 496 } 497 if (za && !target_restore_za_record(env, za, za_size, &svcr)) { 498 goto err; 499 } 500 if (env->svcr != svcr) { 501 env->svcr = svcr; 502 arm_rebuild_hflags(env); 503 } 504 unlock_user(extra, extra_datap, 0); 505 return 0; 506 507 err: 508 unlock_user(extra, extra_datap, 0); 509 return 1; 510 } 511 512 static abi_ulong get_sigframe(struct target_sigaction *ka, 513 CPUARMState *env, int size) 514 { 515 abi_ulong sp; 516 517 sp = target_sigsp(get_sp_from_cpustate(env), ka); 518 519 sp = (sp - size) & ~15; 520 521 return sp; 522 } 523 524 typedef struct { 525 int total_size; 526 int extra_base; 527 int extra_size; 528 int std_end_ofs; 529 int extra_ofs; 530 int extra_end_ofs; 531 } target_sigframe_layout; 532 533 static int alloc_sigframe_space(int this_size, target_sigframe_layout *l) 534 { 535 /* Make sure there will always be space for the end marker. */ 536 const int std_size = sizeof(struct target_rt_sigframe) 537 - sizeof(struct target_aarch64_ctx); 538 int this_loc = l->total_size; 539 540 if (l->extra_base) { 541 /* Once we have begun an extra space, all allocations go there. */ 542 l->extra_size += this_size; 543 } else if (this_size + this_loc > std_size) { 544 /* This allocation does not fit in the standard space. */ 545 /* Allocate the extra record. */ 546 l->extra_ofs = this_loc; 547 l->total_size += sizeof(struct target_extra_context); 548 549 /* Allocate the standard end record. */ 550 l->std_end_ofs = l->total_size; 551 l->total_size += sizeof(struct target_aarch64_ctx); 552 553 /* Allocate the requested record. */ 554 l->extra_base = this_loc = l->total_size; 555 l->extra_size = this_size; 556 } 557 l->total_size += this_size; 558 559 return this_loc; 560 } 561 562 static void target_setup_frame(int usig, struct target_sigaction *ka, 563 target_siginfo_t *info, target_sigset_t *set, 564 CPUARMState *env) 565 { 566 target_sigframe_layout layout = { 567 /* Begin with the size pointing to the reserved space. */ 568 .total_size = offsetof(struct target_rt_sigframe, 569 uc.tuc_mcontext.__reserved), 570 }; 571 int fpsimd_ofs, fr_ofs, sve_ofs = 0, za_ofs = 0; 572 int sve_size = 0, za_size = 0; 573 struct target_rt_sigframe *frame; 574 struct target_rt_frame_record *fr; 575 abi_ulong frame_addr, return_addr; 576 577 /* FPSIMD record is always in the standard space. */ 578 fpsimd_ofs = alloc_sigframe_space(sizeof(struct target_fpsimd_context), 579 &layout); 580 581 /* SVE state needs saving only if it exists. */ 582 if (cpu_isar_feature(aa64_sve, env_archcpu(env)) || 583 cpu_isar_feature(aa64_sme, env_archcpu(env))) { 584 sve_size = QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(sve_vq(env)), 16); 585 sve_ofs = alloc_sigframe_space(sve_size, &layout); 586 } 587 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 588 /* ZA state needs saving only if it is enabled. */ 589 if (FIELD_EX64(env->svcr, SVCR, ZA)) { 590 za_size = TARGET_ZA_SIG_CONTEXT_SIZE(sme_vq(env)); 591 } else { 592 za_size = TARGET_ZA_SIG_CONTEXT_SIZE(0); 593 } 594 za_ofs = alloc_sigframe_space(za_size, &layout); 595 } 596 597 if (layout.extra_ofs) { 598 /* Reserve space for the extra end marker. The standard end marker 599 * will have been allocated when we allocated the extra record. 600 */ 601 layout.extra_end_ofs 602 = alloc_sigframe_space(sizeof(struct target_aarch64_ctx), &layout); 603 } else { 604 /* Reserve space for the standard end marker. 605 * Do not use alloc_sigframe_space because we cheat 606 * std_size therein to reserve space for this. 607 */ 608 layout.std_end_ofs = layout.total_size; 609 layout.total_size += sizeof(struct target_aarch64_ctx); 610 } 611 612 /* We must always provide at least the standard 4K reserved space, 613 * even if we don't use all of it (this is part of the ABI) 614 */ 615 layout.total_size = MAX(layout.total_size, 616 sizeof(struct target_rt_sigframe)); 617 618 /* 619 * Reserve space for the standard frame unwind pair: fp, lr. 620 * Despite the name this is not a "real" record within the frame. 621 */ 622 fr_ofs = layout.total_size; 623 layout.total_size += sizeof(struct target_rt_frame_record); 624 625 frame_addr = get_sigframe(ka, env, layout.total_size); 626 trace_user_setup_frame(env, frame_addr); 627 frame = lock_user(VERIFY_WRITE, frame_addr, layout.total_size, 0); 628 if (!frame) { 629 goto give_sigsegv; 630 } 631 632 target_setup_general_frame(frame, env, set); 633 target_setup_fpsimd_record((void *)frame + fpsimd_ofs, env); 634 target_setup_end_record((void *)frame + layout.std_end_ofs); 635 if (layout.extra_ofs) { 636 target_setup_extra_record((void *)frame + layout.extra_ofs, 637 frame_addr + layout.extra_base, 638 layout.extra_size); 639 target_setup_end_record((void *)frame + layout.extra_end_ofs); 640 } 641 if (sve_ofs) { 642 target_setup_sve_record((void *)frame + sve_ofs, env, sve_size); 643 } 644 if (za_ofs) { 645 target_setup_za_record((void *)frame + za_ofs, env, za_size); 646 } 647 648 /* Set up the stack frame for unwinding. */ 649 fr = (void *)frame + fr_ofs; 650 __put_user(env->xregs[29], &fr->fp); 651 __put_user(env->xregs[30], &fr->lr); 652 653 if (ka->sa_flags & TARGET_SA_RESTORER) { 654 return_addr = ka->sa_restorer; 655 } else { 656 return_addr = default_rt_sigreturn; 657 } 658 env->xregs[0] = usig; 659 env->xregs[29] = frame_addr + fr_ofs; 660 env->xregs[30] = return_addr; 661 env->xregs[31] = frame_addr; 662 env->pc = ka->_sa_handler; 663 664 /* Invoke the signal handler as if by indirect call. */ 665 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 666 env->btype = 2; 667 } 668 669 /* Invoke the signal handler with both SM and ZA disabled. */ 670 aarch64_set_svcr(env, 0, R_SVCR_SM_MASK | R_SVCR_ZA_MASK); 671 672 if (info) { 673 frame->info = *info; 674 env->xregs[1] = frame_addr + offsetof(struct target_rt_sigframe, info); 675 env->xregs[2] = frame_addr + offsetof(struct target_rt_sigframe, uc); 676 } 677 678 unlock_user(frame, frame_addr, layout.total_size); 679 return; 680 681 give_sigsegv: 682 unlock_user(frame, frame_addr, layout.total_size); 683 force_sigsegv(usig); 684 } 685 686 void setup_rt_frame(int sig, struct target_sigaction *ka, 687 target_siginfo_t *info, target_sigset_t *set, 688 CPUARMState *env) 689 { 690 target_setup_frame(sig, ka, info, set, env); 691 } 692 693 void setup_frame(int sig, struct target_sigaction *ka, 694 target_sigset_t *set, CPUARMState *env) 695 { 696 target_setup_frame(sig, ka, 0, set, env); 697 } 698 699 long do_rt_sigreturn(CPUARMState *env) 700 { 701 struct target_rt_sigframe *frame = NULL; 702 abi_ulong frame_addr = env->xregs[31]; 703 704 trace_user_do_rt_sigreturn(env, frame_addr); 705 if (frame_addr & 15) { 706 goto badframe; 707 } 708 709 if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { 710 goto badframe; 711 } 712 713 if (target_restore_sigframe(env, frame)) { 714 goto badframe; 715 } 716 717 target_restore_altstack(&frame->uc.tuc_stack, env); 718 719 unlock_user_struct(frame, frame_addr, 0); 720 return -QEMU_ESIGRETURN; 721 722 badframe: 723 unlock_user_struct(frame, frame_addr, 0); 724 force_sig(TARGET_SIGSEGV); 725 return -QEMU_ESIGRETURN; 726 } 727 728 long do_sigreturn(CPUARMState *env) 729 { 730 return do_rt_sigreturn(env); 731 } 732 733 void setup_sigtramp(abi_ulong sigtramp_page) 734 { 735 uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 8, 0); 736 assert(tramp != NULL); 737 738 /* 739 * mov x8,#__NR_rt_sigreturn; svc #0 740 * Since these are instructions they need to be put as little-endian 741 * regardless of target default or current CPU endianness. 742 */ 743 __put_user_e(0xd2801168, &tramp[0], le); 744 __put_user_e(0xd4000001, &tramp[1], le); 745 746 default_rt_sigreturn = sigtramp_page; 747 unlock_user(tramp, sigtramp_page, 8); 748 } 749