1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * VFIO API definition 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #ifndef VFIO_H 13 #define VFIO_H 14 15 #include <linux/types.h> 16 #include <linux/ioctl.h> 17 18 #define VFIO_API_VERSION 0 19 20 21 /* Kernel & User level defines for VFIO IOCTLs. */ 22 23 /* Extensions */ 24 25 #define VFIO_TYPE1_IOMMU 1 26 #define VFIO_SPAPR_TCE_IOMMU 2 27 #define VFIO_TYPE1v2_IOMMU 3 28 /* 29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This 30 * capability is subject to change as groups are added or removed. 31 */ 32 #define VFIO_DMA_CC_IOMMU 4 33 34 /* Check if EEH is supported */ 35 #define VFIO_EEH 5 36 37 /* Two-stage IOMMU */ 38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ 39 40 #define VFIO_SPAPR_TCE_v2_IOMMU 7 41 42 /* 43 * The No-IOMMU IOMMU offers no translation or isolation for devices and 44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU 45 * code will taint the host kernel and should be used with extreme caution. 46 */ 47 #define VFIO_NOIOMMU_IOMMU 8 48 49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */ 50 #define VFIO_UNMAP_ALL 9 51 52 /* Supports the vaddr flag for DMA map and unmap */ 53 #define VFIO_UPDATE_VADDR 10 54 55 /* 56 * The IOCTL interface is designed for extensibility by embedding the 57 * structure length (argsz) and flags into structures passed between 58 * kernel and userspace. We therefore use the _IO() macro for these 59 * defines to avoid implicitly embedding a size into the ioctl request. 60 * As structure fields are added, argsz will increase to match and flag 61 * bits will be defined to indicate additional fields with valid data. 62 * It's *always* the caller's responsibility to indicate the size of 63 * the structure passed by setting argsz appropriately. 64 */ 65 66 #define VFIO_TYPE (';') 67 #define VFIO_BASE 100 68 69 /* 70 * For extension of INFO ioctls, VFIO makes use of a capability chain 71 * designed after PCI/e capabilities. A flag bit indicates whether 72 * this capability chain is supported and a field defined in the fixed 73 * structure defines the offset of the first capability in the chain. 74 * This field is only valid when the corresponding bit in the flags 75 * bitmap is set. This offset field is relative to the start of the 76 * INFO buffer, as is the next field within each capability header. 77 * The id within the header is a shared address space per INFO ioctl, 78 * while the version field is specific to the capability id. The 79 * contents following the header are specific to the capability id. 80 */ 81 struct vfio_info_cap_header { 82 __u16 id; /* Identifies capability */ 83 __u16 version; /* Version specific to the capability ID */ 84 __u32 next; /* Offset of next capability */ 85 }; 86 87 /* 88 * Callers of INFO ioctls passing insufficiently sized buffers will see 89 * the capability chain flag bit set, a zero value for the first capability 90 * offset (if available within the provided argsz), and argsz will be 91 * updated to report the necessary buffer size. For compatibility, the 92 * INFO ioctl will not report error in this case, but the capability chain 93 * will not be available. 94 */ 95 96 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ 97 98 /** 99 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) 100 * 101 * Report the version of the VFIO API. This allows us to bump the entire 102 * API version should we later need to add or change features in incompatible 103 * ways. 104 * Return: VFIO_API_VERSION 105 * Availability: Always 106 */ 107 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) 108 109 /** 110 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) 111 * 112 * Check whether an extension is supported. 113 * Return: 0 if not supported, 1 (or some other positive integer) if supported. 114 * Availability: Always 115 */ 116 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) 117 118 /** 119 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) 120 * 121 * Set the iommu to the given type. The type must be supported by an 122 * iommu driver as verified by calling CHECK_EXTENSION using the same 123 * type. A group must be set to this file descriptor before this 124 * ioctl is available. The IOMMU interfaces enabled by this call are 125 * specific to the value set. 126 * Return: 0 on success, -errno on failure 127 * Availability: When VFIO group attached 128 */ 129 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) 130 131 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ 132 133 /** 134 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, 135 * struct vfio_group_status) 136 * 137 * Retrieve information about the group. Fills in provided 138 * struct vfio_group_info. Caller sets argsz. 139 * Return: 0 on succes, -errno on failure. 140 * Availability: Always 141 */ 142 struct vfio_group_status { 143 __u32 argsz; 144 __u32 flags; 145 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) 146 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) 147 }; 148 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) 149 150 /** 151 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) 152 * 153 * Set the container for the VFIO group to the open VFIO file 154 * descriptor provided. Groups may only belong to a single 155 * container. Containers may, at their discretion, support multiple 156 * groups. Only when a container is set are all of the interfaces 157 * of the VFIO file descriptor and the VFIO group file descriptor 158 * available to the user. 159 * Return: 0 on success, -errno on failure. 160 * Availability: Always 161 */ 162 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) 163 164 /** 165 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) 166 * 167 * Remove the group from the attached container. This is the 168 * opposite of the SET_CONTAINER call and returns the group to 169 * an initial state. All device file descriptors must be released 170 * prior to calling this interface. When removing the last group 171 * from a container, the IOMMU will be disabled and all state lost, 172 * effectively also returning the VFIO file descriptor to an initial 173 * state. 174 * Return: 0 on success, -errno on failure. 175 * Availability: When attached to container 176 */ 177 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) 178 179 /** 180 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) 181 * 182 * Return a new file descriptor for the device object described by 183 * the provided string. The string should match a device listed in 184 * the devices subdirectory of the IOMMU group sysfs entry. The 185 * group containing the device must already be added to this context. 186 * Return: new file descriptor on success, -errno on failure. 187 * Availability: When attached to container 188 */ 189 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) 190 191 /* --------------- IOCTLs for DEVICE file descriptors --------------- */ 192 193 /** 194 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, 195 * struct vfio_device_info) 196 * 197 * Retrieve information about the device. Fills in provided 198 * struct vfio_device_info. Caller sets argsz. 199 * Return: 0 on success, -errno on failure. 200 */ 201 struct vfio_device_info { 202 __u32 argsz; 203 __u32 flags; 204 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ 205 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ 206 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ 207 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ 208 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ 209 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ 210 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */ 211 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ 212 __u32 num_regions; /* Max region index + 1 */ 213 __u32 num_irqs; /* Max IRQ index + 1 */ 214 __u32 cap_offset; /* Offset within info struct of first cap */ 215 }; 216 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) 217 218 /* 219 * Vendor driver using Mediated device framework should provide device_api 220 * attribute in supported type attribute groups. Device API string should be one 221 * of the following corresponding to device flags in vfio_device_info structure. 222 */ 223 224 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" 225 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" 226 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" 227 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" 228 #define VFIO_DEVICE_API_AP_STRING "vfio-ap" 229 230 /* 231 * The following capabilities are unique to s390 zPCI devices. Their contents 232 * are further-defined in vfio_zdev.h 233 */ 234 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 235 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 236 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 237 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 238 239 /** 240 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, 241 * struct vfio_region_info) 242 * 243 * Retrieve information about a device region. Caller provides 244 * struct vfio_region_info with index value set. Caller sets argsz. 245 * Implementation of region mapping is bus driver specific. This is 246 * intended to describe MMIO, I/O port, as well as bus specific 247 * regions (ex. PCI config space). Zero sized regions may be used 248 * to describe unimplemented regions (ex. unimplemented PCI BARs). 249 * Return: 0 on success, -errno on failure. 250 */ 251 struct vfio_region_info { 252 __u32 argsz; 253 __u32 flags; 254 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ 255 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ 256 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ 257 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ 258 __u32 index; /* Region index */ 259 __u32 cap_offset; /* Offset within info struct of first cap */ 260 __u64 size; /* Region size (bytes) */ 261 __u64 offset; /* Region offset from start of device fd */ 262 }; 263 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) 264 265 /* 266 * The sparse mmap capability allows finer granularity of specifying areas 267 * within a region with mmap support. When specified, the user should only 268 * mmap the offset ranges specified by the areas array. mmaps outside of the 269 * areas specified may fail (such as the range covering a PCI MSI-X table) or 270 * may result in improper device behavior. 271 * 272 * The structures below define version 1 of this capability. 273 */ 274 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 275 276 struct vfio_region_sparse_mmap_area { 277 __u64 offset; /* Offset of mmap'able area within region */ 278 __u64 size; /* Size of mmap'able area */ 279 }; 280 281 struct vfio_region_info_cap_sparse_mmap { 282 struct vfio_info_cap_header header; 283 __u32 nr_areas; 284 __u32 reserved; 285 struct vfio_region_sparse_mmap_area areas[]; 286 }; 287 288 /* 289 * The device specific type capability allows regions unique to a specific 290 * device or class of devices to be exposed. This helps solve the problem for 291 * vfio bus drivers of defining which region indexes correspond to which region 292 * on the device, without needing to resort to static indexes, as done by 293 * vfio-pci. For instance, if we were to go back in time, we might remove 294 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes 295 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd 296 * make a "VGA" device specific type to describe the VGA access space. This 297 * means that non-VGA devices wouldn't need to waste this index, and thus the 298 * address space associated with it due to implementation of device file 299 * descriptor offsets in vfio-pci. 300 * 301 * The current implementation is now part of the user ABI, so we can't use this 302 * for VGA, but there are other upcoming use cases, such as opregions for Intel 303 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll 304 * use this for future additions. 305 * 306 * The structure below defines version 1 of this capability. 307 */ 308 #define VFIO_REGION_INFO_CAP_TYPE 2 309 310 struct vfio_region_info_cap_type { 311 struct vfio_info_cap_header header; 312 __u32 type; /* global per bus driver */ 313 __u32 subtype; /* type specific */ 314 }; 315 316 /* 317 * List of region types, global per bus driver. 318 * If you introduce a new type, please add it here. 319 */ 320 321 /* PCI region type containing a PCI vendor part */ 322 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) 323 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) 324 #define VFIO_REGION_TYPE_GFX (1) 325 #define VFIO_REGION_TYPE_CCW (2) 326 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3) 327 328 /* sub-types for VFIO_REGION_TYPE_PCI_* */ 329 330 /* 8086 vendor PCI sub-types */ 331 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) 332 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) 333 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) 334 335 /* 10de vendor PCI sub-types */ 336 /* 337 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. 338 * 339 * Deprecated, region no longer provided 340 */ 341 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) 342 343 /* 1014 vendor PCI sub-types */ 344 /* 345 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU 346 * to do TLB invalidation on a GPU. 347 * 348 * Deprecated, region no longer provided 349 */ 350 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) 351 352 /* sub-types for VFIO_REGION_TYPE_GFX */ 353 #define VFIO_REGION_SUBTYPE_GFX_EDID (1) 354 355 /** 356 * struct vfio_region_gfx_edid - EDID region layout. 357 * 358 * Set display link state and EDID blob. 359 * 360 * The EDID blob has monitor information such as brand, name, serial 361 * number, physical size, supported video modes and more. 362 * 363 * This special region allows userspace (typically qemu) set a virtual 364 * EDID for the virtual monitor, which allows a flexible display 365 * configuration. 366 * 367 * For the edid blob spec look here: 368 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data 369 * 370 * On linux systems you can find the EDID blob in sysfs: 371 * /sys/class/drm/${card}/${connector}/edid 372 * 373 * You can use the edid-decode ulility (comes with xorg-x11-utils) to 374 * decode the EDID blob. 375 * 376 * @edid_offset: location of the edid blob, relative to the 377 * start of the region (readonly). 378 * @edid_max_size: max size of the edid blob (readonly). 379 * @edid_size: actual edid size (read/write). 380 * @link_state: display link state (read/write). 381 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. 382 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. 383 * @max_xres: max display width (0 == no limitation, readonly). 384 * @max_yres: max display height (0 == no limitation, readonly). 385 * 386 * EDID update protocol: 387 * (1) set link-state to down. 388 * (2) update edid blob and size. 389 * (3) set link-state to up. 390 */ 391 struct vfio_region_gfx_edid { 392 __u32 edid_offset; 393 __u32 edid_max_size; 394 __u32 edid_size; 395 __u32 max_xres; 396 __u32 max_yres; 397 __u32 link_state; 398 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 399 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 400 }; 401 402 /* sub-types for VFIO_REGION_TYPE_CCW */ 403 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) 404 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) 405 #define VFIO_REGION_SUBTYPE_CCW_CRW (3) 406 407 /* sub-types for VFIO_REGION_TYPE_MIGRATION */ 408 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1) 409 410 struct vfio_device_migration_info { 411 __u32 device_state; /* VFIO device state */ 412 #define VFIO_DEVICE_STATE_V1_STOP (0) 413 #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0) 414 #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1) 415 #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2) 416 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \ 417 VFIO_DEVICE_STATE_V1_SAVING | \ 418 VFIO_DEVICE_STATE_V1_RESUMING) 419 420 #define VFIO_DEVICE_STATE_VALID(state) \ 421 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \ 422 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1) 423 424 #define VFIO_DEVICE_STATE_IS_ERROR(state) \ 425 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \ 426 VFIO_DEVICE_STATE_V1_RESUMING)) 427 428 #define VFIO_DEVICE_STATE_SET_ERROR(state) \ 429 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \ 430 VFIO_DEVICE_STATE_V1_RESUMING) 431 432 __u32 reserved; 433 __u64 pending_bytes; 434 __u64 data_offset; 435 __u64 data_size; 436 }; 437 438 /* 439 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped 440 * which allows direct access to non-MSIX registers which happened to be within 441 * the same system page. 442 * 443 * Even though the userspace gets direct access to the MSIX data, the existing 444 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. 445 */ 446 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 447 448 /* 449 * Capability with compressed real address (aka SSA - small system address) 450 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing 451 * and by the userspace to associate a NVLink bridge with a GPU. 452 * 453 * Deprecated, capability no longer provided 454 */ 455 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 456 457 struct vfio_region_info_cap_nvlink2_ssatgt { 458 struct vfio_info_cap_header header; 459 __u64 tgt; 460 }; 461 462 /* 463 * Capability with an NVLink link speed. The value is read by 464 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" 465 * property in the device tree. The value is fixed in the hardware 466 * and failing to provide the correct value results in the link 467 * not working with no indication from the driver why. 468 * 469 * Deprecated, capability no longer provided 470 */ 471 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 472 473 struct vfio_region_info_cap_nvlink2_lnkspd { 474 struct vfio_info_cap_header header; 475 __u32 link_speed; 476 __u32 __pad; 477 }; 478 479 /** 480 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, 481 * struct vfio_irq_info) 482 * 483 * Retrieve information about a device IRQ. Caller provides 484 * struct vfio_irq_info with index value set. Caller sets argsz. 485 * Implementation of IRQ mapping is bus driver specific. Indexes 486 * using multiple IRQs are primarily intended to support MSI-like 487 * interrupt blocks. Zero count irq blocks may be used to describe 488 * unimplemented interrupt types. 489 * 490 * The EVENTFD flag indicates the interrupt index supports eventfd based 491 * signaling. 492 * 493 * The MASKABLE flags indicates the index supports MASK and UNMASK 494 * actions described below. 495 * 496 * AUTOMASKED indicates that after signaling, the interrupt line is 497 * automatically masked by VFIO and the user needs to unmask the line 498 * to receive new interrupts. This is primarily intended to distinguish 499 * level triggered interrupts. 500 * 501 * The NORESIZE flag indicates that the interrupt lines within the index 502 * are setup as a set and new subindexes cannot be enabled without first 503 * disabling the entire index. This is used for interrupts like PCI MSI 504 * and MSI-X where the driver may only use a subset of the available 505 * indexes, but VFIO needs to enable a specific number of vectors 506 * upfront. In the case of MSI-X, where the user can enable MSI-X and 507 * then add and unmask vectors, it's up to userspace to make the decision 508 * whether to allocate the maximum supported number of vectors or tear 509 * down setup and incrementally increase the vectors as each is enabled. 510 */ 511 struct vfio_irq_info { 512 __u32 argsz; 513 __u32 flags; 514 #define VFIO_IRQ_INFO_EVENTFD (1 << 0) 515 #define VFIO_IRQ_INFO_MASKABLE (1 << 1) 516 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) 517 #define VFIO_IRQ_INFO_NORESIZE (1 << 3) 518 __u32 index; /* IRQ index */ 519 __u32 count; /* Number of IRQs within this index */ 520 }; 521 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) 522 523 /** 524 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) 525 * 526 * Set signaling, masking, and unmasking of interrupts. Caller provides 527 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate 528 * the range of subindexes being specified. 529 * 530 * The DATA flags specify the type of data provided. If DATA_NONE, the 531 * operation performs the specified action immediately on the specified 532 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: 533 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. 534 * 535 * DATA_BOOL allows sparse support for the same on arrays of interrupts. 536 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): 537 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, 538 * data = {1,0,1} 539 * 540 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. 541 * A value of -1 can be used to either de-assign interrupts if already 542 * assigned or skip un-assigned interrupts. For example, to set an eventfd 543 * to be trigger for interrupts [0,0] and [0,2]: 544 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, 545 * data = {fd1, -1, fd2} 546 * If index [0,1] is previously set, two count = 1 ioctls calls would be 547 * required to set [0,0] and [0,2] without changing [0,1]. 548 * 549 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used 550 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing 551 * from userspace (ie. simulate hardware triggering). 552 * 553 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER 554 * enables the interrupt index for the device. Individual subindex interrupts 555 * can be disabled using the -1 value for DATA_EVENTFD or the index can be 556 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. 557 * 558 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while 559 * ACTION_TRIGGER specifies kernel->user signaling. 560 */ 561 struct vfio_irq_set { 562 __u32 argsz; 563 __u32 flags; 564 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ 565 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ 566 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ 567 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ 568 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ 569 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ 570 __u32 index; 571 __u32 start; 572 __u32 count; 573 __u8 data[]; 574 }; 575 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) 576 577 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ 578 VFIO_IRQ_SET_DATA_BOOL | \ 579 VFIO_IRQ_SET_DATA_EVENTFD) 580 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ 581 VFIO_IRQ_SET_ACTION_UNMASK | \ 582 VFIO_IRQ_SET_ACTION_TRIGGER) 583 /** 584 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) 585 * 586 * Reset a device. 587 */ 588 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) 589 590 /* 591 * The VFIO-PCI bus driver makes use of the following fixed region and 592 * IRQ index mapping. Unimplemented regions return a size of zero. 593 * Unimplemented IRQ types return a count of zero. 594 */ 595 596 enum { 597 VFIO_PCI_BAR0_REGION_INDEX, 598 VFIO_PCI_BAR1_REGION_INDEX, 599 VFIO_PCI_BAR2_REGION_INDEX, 600 VFIO_PCI_BAR3_REGION_INDEX, 601 VFIO_PCI_BAR4_REGION_INDEX, 602 VFIO_PCI_BAR5_REGION_INDEX, 603 VFIO_PCI_ROM_REGION_INDEX, 604 VFIO_PCI_CONFIG_REGION_INDEX, 605 /* 606 * Expose VGA regions defined for PCI base class 03, subclass 00. 607 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df 608 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented 609 * range is found at it's identity mapped offset from the region 610 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas 611 * between described ranges are unimplemented. 612 */ 613 VFIO_PCI_VGA_REGION_INDEX, 614 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ 615 /* device specific cap to define content. */ 616 }; 617 618 enum { 619 VFIO_PCI_INTX_IRQ_INDEX, 620 VFIO_PCI_MSI_IRQ_INDEX, 621 VFIO_PCI_MSIX_IRQ_INDEX, 622 VFIO_PCI_ERR_IRQ_INDEX, 623 VFIO_PCI_REQ_IRQ_INDEX, 624 VFIO_PCI_NUM_IRQS 625 }; 626 627 /* 628 * The vfio-ccw bus driver makes use of the following fixed region and 629 * IRQ index mapping. Unimplemented regions return a size of zero. 630 * Unimplemented IRQ types return a count of zero. 631 */ 632 633 enum { 634 VFIO_CCW_CONFIG_REGION_INDEX, 635 VFIO_CCW_NUM_REGIONS 636 }; 637 638 enum { 639 VFIO_CCW_IO_IRQ_INDEX, 640 VFIO_CCW_CRW_IRQ_INDEX, 641 VFIO_CCW_REQ_IRQ_INDEX, 642 VFIO_CCW_NUM_IRQS 643 }; 644 645 /** 646 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12, 647 * struct vfio_pci_hot_reset_info) 648 * 649 * Return: 0 on success, -errno on failure: 650 * -enospc = insufficient buffer, -enodev = unsupported for device. 651 */ 652 struct vfio_pci_dependent_device { 653 __u32 group_id; 654 __u16 segment; 655 __u8 bus; 656 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ 657 }; 658 659 struct vfio_pci_hot_reset_info { 660 __u32 argsz; 661 __u32 flags; 662 __u32 count; 663 struct vfio_pci_dependent_device devices[]; 664 }; 665 666 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 667 668 /** 669 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, 670 * struct vfio_pci_hot_reset) 671 * 672 * Return: 0 on success, -errno on failure. 673 */ 674 struct vfio_pci_hot_reset { 675 __u32 argsz; 676 __u32 flags; 677 __u32 count; 678 __s32 group_fds[]; 679 }; 680 681 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) 682 683 /** 684 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, 685 * struct vfio_device_query_gfx_plane) 686 * 687 * Set the drm_plane_type and flags, then retrieve the gfx plane info. 688 * 689 * flags supported: 690 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set 691 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no 692 * support for dma-buf. 693 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set 694 * to ask if the mdev supports region. 0 on support, -EINVAL on no 695 * support for region. 696 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set 697 * with each call to query the plane info. 698 * - Others are invalid and return -EINVAL. 699 * 700 * Note: 701 * 1. Plane could be disabled by guest. In that case, success will be 702 * returned with zero-initialized drm_format, size, width and height 703 * fields. 704 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available 705 * 706 * Return: 0 on success, -errno on other failure. 707 */ 708 struct vfio_device_gfx_plane_info { 709 __u32 argsz; 710 __u32 flags; 711 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) 712 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) 713 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) 714 /* in */ 715 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ 716 /* out */ 717 __u32 drm_format; /* drm format of plane */ 718 __u64 drm_format_mod; /* tiled mode */ 719 __u32 width; /* width of plane */ 720 __u32 height; /* height of plane */ 721 __u32 stride; /* stride of plane */ 722 __u32 size; /* size of plane in bytes, align on page*/ 723 __u32 x_pos; /* horizontal position of cursor plane */ 724 __u32 y_pos; /* vertical position of cursor plane*/ 725 __u32 x_hot; /* horizontal position of cursor hotspot */ 726 __u32 y_hot; /* vertical position of cursor hotspot */ 727 union { 728 __u32 region_index; /* region index */ 729 __u32 dmabuf_id; /* dma-buf id */ 730 }; 731 }; 732 733 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) 734 735 /** 736 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) 737 * 738 * Return a new dma-buf file descriptor for an exposed guest framebuffer 739 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ 740 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. 741 */ 742 743 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) 744 745 /** 746 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, 747 * struct vfio_device_ioeventfd) 748 * 749 * Perform a write to the device at the specified device fd offset, with 750 * the specified data and width when the provided eventfd is triggered. 751 * vfio bus drivers may not support this for all regions, for all widths, 752 * or at all. vfio-pci currently only enables support for BAR regions, 753 * excluding the MSI-X vector table. 754 * 755 * Return: 0 on success, -errno on failure. 756 */ 757 struct vfio_device_ioeventfd { 758 __u32 argsz; 759 __u32 flags; 760 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ 761 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ 762 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ 763 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ 764 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) 765 __u64 offset; /* device fd offset of write */ 766 __u64 data; /* data to be written */ 767 __s32 fd; /* -1 for de-assignment */ 768 }; 769 770 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) 771 772 /** 773 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 774 * struct vfio_device_feature) 775 * 776 * Get, set, or probe feature data of the device. The feature is selected 777 * using the FEATURE_MASK portion of the flags field. Support for a feature 778 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe 779 * may optionally include the GET and/or SET bits to determine read vs write 780 * access of the feature respectively. Probing a feature will return success 781 * if the feature is supported and all of the optionally indicated GET/SET 782 * methods are supported. The format of the data portion of the structure is 783 * specific to the given feature. The data portion is not required for 784 * probing. GET and SET are mutually exclusive, except for use with PROBE. 785 * 786 * Return 0 on success, -errno on failure. 787 */ 788 struct vfio_device_feature { 789 __u32 argsz; 790 __u32 flags; 791 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ 792 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ 793 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ 794 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ 795 __u8 data[]; 796 }; 797 798 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) 799 800 /* 801 * Provide support for setting a PCI VF Token, which is used as a shared 802 * secret between PF and VF drivers. This feature may only be set on a 803 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing 804 * open VFs. Data provided when setting this feature is a 16-byte array 805 * (__u8 b[16]), representing a UUID. 806 */ 807 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) 808 809 /* 810 * Indicates the device can support the migration API through 811 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and 812 * ERROR states are always supported. Support for additional states is 813 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be 814 * set. 815 * 816 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and 817 * RESUMING are supported. 818 * 819 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P 820 * is supported in addition to the STOP_COPY states. 821 * 822 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that 823 * PRE_COPY is supported in addition to the STOP_COPY states. 824 * 825 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY 826 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported 827 * in addition to the STOP_COPY states. 828 * 829 * Other combinations of flags have behavior to be defined in the future. 830 */ 831 struct vfio_device_feature_migration { 832 __aligned_u64 flags; 833 #define VFIO_MIGRATION_STOP_COPY (1 << 0) 834 #define VFIO_MIGRATION_P2P (1 << 1) 835 #define VFIO_MIGRATION_PRE_COPY (1 << 2) 836 }; 837 #define VFIO_DEVICE_FEATURE_MIGRATION 1 838 839 /* 840 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO 841 * device. The new state is supplied in device_state, see enum 842 * vfio_device_mig_state for details 843 * 844 * The kernel migration driver must fully transition the device to the new state 845 * value before the operation returns to the user. 846 * 847 * The kernel migration driver must not generate asynchronous device state 848 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET 849 * ioctl as described above. 850 * 851 * If this function fails then current device_state may be the original 852 * operating state or some other state along the combination transition path. 853 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt 854 * to return to the original state, or attempt to return to some other state 855 * such as RUNNING or STOP. 856 * 857 * If the new_state starts a new data transfer session then the FD associated 858 * with that session is returned in data_fd. The user is responsible to close 859 * this FD when it is finished. The user must consider the migration data stream 860 * carried over the FD to be opaque and must preserve the byte order of the 861 * stream. The user is not required to preserve buffer segmentation when writing 862 * the data stream during the RESUMING operation. 863 * 864 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO 865 * device, data_fd will be -1. 866 */ 867 struct vfio_device_feature_mig_state { 868 __u32 device_state; /* From enum vfio_device_mig_state */ 869 __s32 data_fd; 870 }; 871 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2 872 873 /* 874 * The device migration Finite State Machine is described by the enum 875 * vfio_device_mig_state. Some of the FSM arcs will create a migration data 876 * transfer session by returning a FD, in this case the migration data will 877 * flow over the FD using read() and write() as discussed below. 878 * 879 * There are 5 states to support VFIO_MIGRATION_STOP_COPY: 880 * RUNNING - The device is running normally 881 * STOP - The device does not change the internal or external state 882 * STOP_COPY - The device internal state can be read out 883 * RESUMING - The device is stopped and is loading a new internal state 884 * ERROR - The device has failed and must be reset 885 * 886 * And optional states to support VFIO_MIGRATION_P2P: 887 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA 888 * And VFIO_MIGRATION_PRE_COPY: 889 * PRE_COPY - The device is running normally but tracking internal state 890 * changes 891 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY: 892 * PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA 893 * 894 * The FSM takes actions on the arcs between FSM states. The driver implements 895 * the following behavior for the FSM arcs: 896 * 897 * RUNNING_P2P -> STOP 898 * STOP_COPY -> STOP 899 * While in STOP the device must stop the operation of the device. The device 900 * must not generate interrupts, DMA, or any other change to external state. 901 * It must not change its internal state. When stopped the device and kernel 902 * migration driver must accept and respond to interaction to support external 903 * subsystems in the STOP state, for example PCI MSI-X and PCI config space. 904 * Failure by the user to restrict device access while in STOP must not result 905 * in error conditions outside the user context (ex. host system faults). 906 * 907 * The STOP_COPY arc will terminate a data transfer session. 908 * 909 * RESUMING -> STOP 910 * Leaving RESUMING terminates a data transfer session and indicates the 911 * device should complete processing of the data delivered by write(). The 912 * kernel migration driver should complete the incorporation of data written 913 * to the data transfer FD into the device internal state and perform 914 * final validity and consistency checking of the new device state. If the 915 * user provided data is found to be incomplete, inconsistent, or otherwise 916 * invalid, the migration driver must fail the SET_STATE ioctl and 917 * optionally go to the ERROR state as described below. 918 * 919 * While in STOP the device has the same behavior as other STOP states 920 * described above. 921 * 922 * To abort a RESUMING session the device must be reset. 923 * 924 * PRE_COPY -> RUNNING 925 * RUNNING_P2P -> RUNNING 926 * While in RUNNING the device is fully operational, the device may generate 927 * interrupts, DMA, respond to MMIO, all vfio device regions are functional, 928 * and the device may advance its internal state. 929 * 930 * The PRE_COPY arc will terminate a data transfer session. 931 * 932 * PRE_COPY_P2P -> RUNNING_P2P 933 * RUNNING -> RUNNING_P2P 934 * STOP -> RUNNING_P2P 935 * While in RUNNING_P2P the device is partially running in the P2P quiescent 936 * state defined below. 937 * 938 * The PRE_COPY_P2P arc will terminate a data transfer session. 939 * 940 * RUNNING -> PRE_COPY 941 * RUNNING_P2P -> PRE_COPY_P2P 942 * STOP -> STOP_COPY 943 * PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states 944 * which share a data transfer session. Moving between these states alters 945 * what is streamed in session, but does not terminate or otherwise affect 946 * the associated fd. 947 * 948 * These arcs begin the process of saving the device state and will return a 949 * new data_fd. The migration driver may perform actions such as enabling 950 * dirty logging of device state when entering PRE_COPY or PER_COPY_P2P. 951 * 952 * Each arc does not change the device operation, the device remains 953 * RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below 954 * in PRE_COPY_P2P -> STOP_COPY. 955 * 956 * PRE_COPY -> PRE_COPY_P2P 957 * Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above. 958 * However, while in the PRE_COPY_P2P state, the device is partially running 959 * in the P2P quiescent state defined below, like RUNNING_P2P. 960 * 961 * PRE_COPY_P2P -> PRE_COPY 962 * This arc allows returning the device to a full RUNNING behavior while 963 * continuing all the behaviors of PRE_COPY. 964 * 965 * PRE_COPY_P2P -> STOP_COPY 966 * While in the STOP_COPY state the device has the same behavior as STOP 967 * with the addition that the data transfers session continues to stream the 968 * migration state. End of stream on the FD indicates the entire device 969 * state has been transferred. 970 * 971 * The user should take steps to restrict access to vfio device regions while 972 * the device is in STOP_COPY or risk corruption of the device migration data 973 * stream. 974 * 975 * STOP -> RESUMING 976 * Entering the RESUMING state starts a process of restoring the device state 977 * and will return a new data_fd. The data stream fed into the data_fd should 978 * be taken from the data transfer output of a single FD during saving from 979 * a compatible device. The migration driver may alter/reset the internal 980 * device state for this arc if required to prepare the device to receive the 981 * migration data. 982 * 983 * STOP_COPY -> PRE_COPY 984 * STOP_COPY -> PRE_COPY_P2P 985 * These arcs are not permitted and return error if requested. Future 986 * revisions of this API may define behaviors for these arcs, in this case 987 * support will be discoverable by a new flag in 988 * VFIO_DEVICE_FEATURE_MIGRATION. 989 * 990 * any -> ERROR 991 * ERROR cannot be specified as a device state, however any transition request 992 * can be failed with an errno return and may then move the device_state into 993 * ERROR. In this case the device was unable to execute the requested arc and 994 * was also unable to restore the device to any valid device_state. 995 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the 996 * device_state back to RUNNING. 997 * 998 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent 999 * state for the device for the purposes of managing multiple devices within a 1000 * user context where peer-to-peer DMA between devices may be active. The 1001 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating 1002 * any new P2P DMA transactions. If the device can identify P2P transactions 1003 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration 1004 * driver must complete any such outstanding operations prior to completing the 1005 * FSM arc into a P2P state. For the purpose of specification the states 1006 * behave as though the device was fully running if not supported. Like while in 1007 * STOP or STOP_COPY the user must not touch the device, otherwise the state 1008 * can be exited. 1009 * 1010 * The remaining possible transitions are interpreted as combinations of the 1011 * above FSM arcs. As there are multiple paths through the FSM arcs the path 1012 * should be selected based on the following rules: 1013 * - Select the shortest path. 1014 * - The path cannot have saving group states as interior arcs, only 1015 * starting/end states. 1016 * Refer to vfio_mig_get_next_state() for the result of the algorithm. 1017 * 1018 * The automatic transit through the FSM arcs that make up the combination 1019 * transition is invisible to the user. When working with combination arcs the 1020 * user may see any step along the path in the device_state if SET_STATE 1021 * fails. When handling these types of errors users should anticipate future 1022 * revisions of this protocol using new states and those states becoming 1023 * visible in this case. 1024 * 1025 * The optional states cannot be used with SET_STATE if the device does not 1026 * support them. The user can discover if these states are supported by using 1027 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can 1028 * avoid knowing about these optional states if the kernel driver supports them. 1029 * 1030 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY 1031 * is not present. 1032 */ 1033 enum vfio_device_mig_state { 1034 VFIO_DEVICE_STATE_ERROR = 0, 1035 VFIO_DEVICE_STATE_STOP = 1, 1036 VFIO_DEVICE_STATE_RUNNING = 2, 1037 VFIO_DEVICE_STATE_STOP_COPY = 3, 1038 VFIO_DEVICE_STATE_RESUMING = 4, 1039 VFIO_DEVICE_STATE_RUNNING_P2P = 5, 1040 VFIO_DEVICE_STATE_PRE_COPY = 6, 1041 VFIO_DEVICE_STATE_PRE_COPY_P2P = 7, 1042 }; 1043 1044 /** 1045 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21) 1046 * 1047 * This ioctl is used on the migration data FD in the precopy phase of the 1048 * migration data transfer. It returns an estimate of the current data sizes 1049 * remaining to be transferred. It allows the user to judge when it is 1050 * appropriate to leave PRE_COPY for STOP_COPY. 1051 * 1052 * This ioctl is valid only in PRE_COPY states and kernel driver should 1053 * return -EINVAL from any other migration state. 1054 * 1055 * The vfio_precopy_info data structure returned by this ioctl provides 1056 * estimates of data available from the device during the PRE_COPY states. 1057 * This estimate is split into two categories, initial_bytes and 1058 * dirty_bytes. 1059 * 1060 * The initial_bytes field indicates the amount of initial precopy 1061 * data available from the device. This field should have a non-zero initial 1062 * value and decrease as migration data is read from the device. 1063 * It is recommended to leave PRE_COPY for STOP_COPY only after this field 1064 * reaches zero. Leaving PRE_COPY earlier might make things slower. 1065 * 1066 * The dirty_bytes field tracks device state changes relative to data 1067 * previously retrieved. This field starts at zero and may increase as 1068 * the internal device state is modified or decrease as that modified 1069 * state is read from the device. 1070 * 1071 * Userspace may use the combination of these fields to estimate the 1072 * potential data size available during the PRE_COPY phases, as well as 1073 * trends relative to the rate the device is dirtying its internal 1074 * state, but these fields are not required to have any bearing relative 1075 * to the data size available during the STOP_COPY phase. 1076 * 1077 * Drivers have a lot of flexibility in when and what they transfer during the 1078 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO. 1079 * 1080 * During pre-copy the migration data FD has a temporary "end of stream" that is 1081 * reached when both initial_bytes and dirty_byte are zero. For instance, this 1082 * may indicate that the device is idle and not currently dirtying any internal 1083 * state. When read() is done on this temporary end of stream the kernel driver 1084 * should return ENOMSG from read(). Userspace can wait for more data (which may 1085 * never come) by using poll. 1086 * 1087 * Once in STOP_COPY the migration data FD has a permanent end of stream 1088 * signaled in the usual way by read() always returning 0 and poll always 1089 * returning readable. ENOMSG may not be returned in STOP_COPY. 1090 * Support for this ioctl is mandatory if a driver claims to support 1091 * VFIO_MIGRATION_PRE_COPY. 1092 * 1093 * Return: 0 on success, -1 and errno set on failure. 1094 */ 1095 struct vfio_precopy_info { 1096 __u32 argsz; 1097 __u32 flags; 1098 __aligned_u64 initial_bytes; 1099 __aligned_u64 dirty_bytes; 1100 }; 1101 1102 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21) 1103 1104 /* 1105 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power 1106 * state with the platform-based power management. Device use of lower power 1107 * states depends on factors managed by the runtime power management core, 1108 * including system level support and coordinating support among dependent 1109 * devices. Enabling device low power entry does not guarantee lower power 1110 * usage by the device, nor is a mechanism provided through this feature to 1111 * know the current power state of the device. If any device access happens 1112 * (either from the host or through the vfio uAPI) when the device is in the 1113 * low power state, then the host will move the device out of the low power 1114 * state as necessary prior to the access. Once the access is completed, the 1115 * device may re-enter the low power state. For single shot low power support 1116 * with wake-up notification, see 1117 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd 1118 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after 1119 * calling LOW_POWER_EXIT. 1120 */ 1121 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3 1122 1123 /* 1124 * This device feature has the same behavior as 1125 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user 1126 * provides an eventfd for wake-up notification. When the device moves out of 1127 * the low power state for the wake-up, the host will not allow the device to 1128 * re-enter a low power state without a subsequent user call to one of the low 1129 * power entry device feature IOCTLs. Access to mmap'd device regions is 1130 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the 1131 * low power exit. The low power exit can happen either through LOW_POWER_EXIT 1132 * or through any other access (where the wake-up notification has been 1133 * generated). The access to mmap'd device regions will not trigger low power 1134 * exit. 1135 * 1136 * The notification through the provided eventfd will be generated only when 1137 * the device has entered and is resumed from a low power state after 1138 * calling this device feature IOCTL. A device that has not entered low power 1139 * state, as managed through the runtime power management core, will not 1140 * generate a notification through the provided eventfd on access. Calling the 1141 * LOW_POWER_EXIT feature is optional in the case where notification has been 1142 * signaled on the provided eventfd that a resume from low power has occurred. 1143 */ 1144 struct vfio_device_low_power_entry_with_wakeup { 1145 __s32 wakeup_eventfd; 1146 __u32 reserved; 1147 }; 1148 1149 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4 1150 1151 /* 1152 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as 1153 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or 1154 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features. 1155 * This device feature IOCTL may itself generate a wakeup eventfd notification 1156 * in the latter case if the device had previously entered a low power state. 1157 */ 1158 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5 1159 1160 /* 1161 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging. 1162 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports 1163 * DMA logging. 1164 * 1165 * DMA logging allows a device to internally record what DMAs the device is 1166 * initiating and report them back to userspace. It is part of the VFIO 1167 * migration infrastructure that allows implementing dirty page tracking 1168 * during the pre copy phase of live migration. Only DMA WRITEs are logged, 1169 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. 1170 * 1171 * When DMA logging is started a range of IOVAs to monitor is provided and the 1172 * device can optimize its logging to cover only the IOVA range given. Each 1173 * DMA that the device initiates inside the range will be logged by the device 1174 * for later retrieval. 1175 * 1176 * page_size is an input that hints what tracking granularity the device 1177 * should try to achieve. If the device cannot do the hinted page size then 1178 * it's the driver choice which page size to pick based on its support. 1179 * On output the device will return the page size it selected. 1180 * 1181 * ranges is a pointer to an array of 1182 * struct vfio_device_feature_dma_logging_range. 1183 * 1184 * The core kernel code guarantees to support by minimum num_ranges that fit 1185 * into a single kernel page. User space can try higher values but should give 1186 * up if the above can't be achieved as of some driver limitations. 1187 * 1188 * A single call to start device DMA logging can be issued and a matching stop 1189 * should follow at the end. Another start is not allowed in the meantime. 1190 */ 1191 struct vfio_device_feature_dma_logging_control { 1192 __aligned_u64 page_size; 1193 __u32 num_ranges; 1194 __u32 __reserved; 1195 __aligned_u64 ranges; 1196 }; 1197 1198 struct vfio_device_feature_dma_logging_range { 1199 __aligned_u64 iova; 1200 __aligned_u64 length; 1201 }; 1202 1203 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6 1204 1205 /* 1206 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started 1207 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START 1208 */ 1209 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7 1210 1211 /* 1212 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log 1213 * 1214 * Query the device's DMA log for written pages within the given IOVA range. 1215 * During querying the log is cleared for the IOVA range. 1216 * 1217 * bitmap is a pointer to an array of u64s that will hold the output bitmap 1218 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits 1219 * is given by: 1220 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64)) 1221 * 1222 * The input page_size can be any power of two value and does not have to 1223 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver 1224 * will format its internal logging to match the reporting page size, possibly 1225 * by replicating bits if the internal page size is lower than requested. 1226 * 1227 * The LOGGING_REPORT will only set bits in the bitmap and never clear or 1228 * perform any initialization of the user provided bitmap. 1229 * 1230 * If any error is returned userspace should assume that the dirty log is 1231 * corrupted. Error recovery is to consider all memory dirty and try to 1232 * restart the dirty tracking, or to abort/restart the whole migration. 1233 * 1234 * If DMA logging is not enabled, an error will be returned. 1235 * 1236 */ 1237 struct vfio_device_feature_dma_logging_report { 1238 __aligned_u64 iova; 1239 __aligned_u64 length; 1240 __aligned_u64 page_size; 1241 __aligned_u64 bitmap; 1242 }; 1243 1244 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8 1245 1246 /* 1247 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will 1248 * be required to complete stop copy. 1249 * 1250 * Note: Can be called on each device state. 1251 */ 1252 1253 struct vfio_device_feature_mig_data_size { 1254 __aligned_u64 stop_copy_length; 1255 }; 1256 1257 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9 1258 1259 /* -------- API for Type1 VFIO IOMMU -------- */ 1260 1261 /** 1262 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) 1263 * 1264 * Retrieve information about the IOMMU object. Fills in provided 1265 * struct vfio_iommu_info. Caller sets argsz. 1266 * 1267 * XXX Should we do these by CHECK_EXTENSION too? 1268 */ 1269 struct vfio_iommu_type1_info { 1270 __u32 argsz; 1271 __u32 flags; 1272 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ 1273 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ 1274 __u64 iova_pgsizes; /* Bitmap of supported page sizes */ 1275 __u32 cap_offset; /* Offset within info struct of first cap */ 1276 }; 1277 1278 /* 1279 * The IOVA capability allows to report the valid IOVA range(s) 1280 * excluding any non-relaxable reserved regions exposed by 1281 * devices attached to the container. Any DMA map attempt 1282 * outside the valid iova range will return error. 1283 * 1284 * The structures below define version 1 of this capability. 1285 */ 1286 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 1287 1288 struct vfio_iova_range { 1289 __u64 start; 1290 __u64 end; 1291 }; 1292 1293 struct vfio_iommu_type1_info_cap_iova_range { 1294 struct vfio_info_cap_header header; 1295 __u32 nr_iovas; 1296 __u32 reserved; 1297 struct vfio_iova_range iova_ranges[]; 1298 }; 1299 1300 /* 1301 * The migration capability allows to report supported features for migration. 1302 * 1303 * The structures below define version 1 of this capability. 1304 * 1305 * The existence of this capability indicates that IOMMU kernel driver supports 1306 * dirty page logging. 1307 * 1308 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty 1309 * page logging. 1310 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap 1311 * size in bytes that can be used by user applications when getting the dirty 1312 * bitmap. 1313 */ 1314 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 1315 1316 struct vfio_iommu_type1_info_cap_migration { 1317 struct vfio_info_cap_header header; 1318 __u32 flags; 1319 __u64 pgsize_bitmap; 1320 __u64 max_dirty_bitmap_size; /* in bytes */ 1321 }; 1322 1323 /* 1324 * The DMA available capability allows to report the current number of 1325 * simultaneously outstanding DMA mappings that are allowed. 1326 * 1327 * The structure below defines version 1 of this capability. 1328 * 1329 * avail: specifies the current number of outstanding DMA mappings allowed. 1330 */ 1331 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 1332 1333 struct vfio_iommu_type1_info_dma_avail { 1334 struct vfio_info_cap_header header; 1335 __u32 avail; 1336 }; 1337 1338 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1339 1340 /** 1341 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) 1342 * 1343 * Map process virtual addresses to IO virtual addresses using the 1344 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. 1345 * 1346 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and 1347 * unblock translation of host virtual addresses in the iova range. The vaddr 1348 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To 1349 * maintain memory consistency within the user application, the updated vaddr 1350 * must address the same memory object as originally mapped. Failure to do so 1351 * will result in user memory corruption and/or device misbehavior. iova and 1352 * size must match those in the original MAP_DMA call. Protection is not 1353 * changed, and the READ & WRITE flags must be 0. 1354 */ 1355 struct vfio_iommu_type1_dma_map { 1356 __u32 argsz; 1357 __u32 flags; 1358 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ 1359 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ 1360 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2) 1361 __u64 vaddr; /* Process virtual address */ 1362 __u64 iova; /* IO virtual address */ 1363 __u64 size; /* Size of mapping (bytes) */ 1364 }; 1365 1366 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) 1367 1368 struct vfio_bitmap { 1369 __u64 pgsize; /* page size for bitmap in bytes */ 1370 __u64 size; /* in bytes */ 1371 __u64 *data; /* one bit per page */ 1372 }; 1373 1374 /** 1375 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, 1376 * struct vfio_dma_unmap) 1377 * 1378 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. 1379 * Caller sets argsz. The actual unmapped size is returned in the size 1380 * field. No guarantee is made to the user that arbitrary unmaps of iova 1381 * or size different from those used in the original mapping call will 1382 * succeed. 1383 * 1384 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap 1385 * before unmapping IO virtual addresses. When this flag is set, the user must 1386 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated 1387 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. 1388 * A bit in the bitmap represents one page, of user provided page size in 1389 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set 1390 * indicates that the page at that offset from iova is dirty. A Bitmap of the 1391 * pages in the range of unmapped size is returned in the user-provided 1392 * vfio_bitmap.data. 1393 * 1394 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size 1395 * must be 0. This cannot be combined with the get-dirty-bitmap flag. 1396 * 1397 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host 1398 * virtual addresses in the iova range. Tasks that attempt to translate an 1399 * iova's vaddr will block. DMA to already-mapped pages continues. This 1400 * cannot be combined with the get-dirty-bitmap flag. 1401 */ 1402 struct vfio_iommu_type1_dma_unmap { 1403 __u32 argsz; 1404 __u32 flags; 1405 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) 1406 #define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1) 1407 #define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2) 1408 __u64 iova; /* IO virtual address */ 1409 __u64 size; /* Size of mapping (bytes) */ 1410 __u8 data[]; 1411 }; 1412 1413 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) 1414 1415 /* 1416 * IOCTLs to enable/disable IOMMU container usage. 1417 * No parameters are supported. 1418 */ 1419 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) 1420 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) 1421 1422 /** 1423 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 1424 * struct vfio_iommu_type1_dirty_bitmap) 1425 * IOCTL is used for dirty pages logging. 1426 * Caller should set flag depending on which operation to perform, details as 1427 * below: 1428 * 1429 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs 1430 * the IOMMU driver to log pages that are dirtied or potentially dirtied by 1431 * the device; designed to be used when a migration is in progress. Dirty pages 1432 * are logged until logging is disabled by user application by calling the IOCTL 1433 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. 1434 * 1435 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs 1436 * the IOMMU driver to stop logging dirtied pages. 1437 * 1438 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set 1439 * returns the dirty pages bitmap for IOMMU container for a given IOVA range. 1440 * The user must specify the IOVA range and the pgsize through the structure 1441 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface 1442 * supports getting a bitmap of the smallest supported pgsize only and can be 1443 * modified in future to get a bitmap of any specified supported pgsize. The 1444 * user must provide a zeroed memory area for the bitmap memory and specify its 1445 * size in bitmap.size. One bit is used to represent one page consecutively 1446 * starting from iova offset. The user should provide page size in bitmap.pgsize 1447 * field. A bit set in the bitmap indicates that the page at that offset from 1448 * iova is dirty. The caller must set argsz to a value including the size of 1449 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the 1450 * actual bitmap. If dirty pages logging is not enabled, an error will be 1451 * returned. 1452 * 1453 * Only one of the flags _START, _STOP and _GET may be specified at a time. 1454 * 1455 */ 1456 struct vfio_iommu_type1_dirty_bitmap { 1457 __u32 argsz; 1458 __u32 flags; 1459 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) 1460 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) 1461 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) 1462 __u8 data[]; 1463 }; 1464 1465 struct vfio_iommu_type1_dirty_bitmap_get { 1466 __u64 iova; /* IO virtual address */ 1467 __u64 size; /* Size of iova range */ 1468 struct vfio_bitmap bitmap; 1469 }; 1470 1471 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) 1472 1473 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ 1474 1475 /* 1476 * The SPAPR TCE DDW info struct provides the information about 1477 * the details of Dynamic DMA window capability. 1478 * 1479 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. 1480 * @max_dynamic_windows_supported tells the maximum number of windows 1481 * which the platform can create. 1482 * @levels tells the maximum number of levels in multi-level IOMMU tables; 1483 * this allows splitting a table into smaller chunks which reduces 1484 * the amount of physically contiguous memory required for the table. 1485 */ 1486 struct vfio_iommu_spapr_tce_ddw_info { 1487 __u64 pgsizes; /* Bitmap of supported page sizes */ 1488 __u32 max_dynamic_windows_supported; 1489 __u32 levels; 1490 }; 1491 1492 /* 1493 * The SPAPR TCE info struct provides the information about the PCI bus 1494 * address ranges available for DMA, these values are programmed into 1495 * the hardware so the guest has to know that information. 1496 * 1497 * The DMA 32 bit window start is an absolute PCI bus address. 1498 * The IOVA address passed via map/unmap ioctls are absolute PCI bus 1499 * addresses too so the window works as a filter rather than an offset 1500 * for IOVA addresses. 1501 * 1502 * Flags supported: 1503 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows 1504 * (DDW) support is present. @ddw is only supported when DDW is present. 1505 */ 1506 struct vfio_iommu_spapr_tce_info { 1507 __u32 argsz; 1508 __u32 flags; 1509 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ 1510 __u32 dma32_window_start; /* 32 bit window start (bytes) */ 1511 __u32 dma32_window_size; /* 32 bit window size (bytes) */ 1512 struct vfio_iommu_spapr_tce_ddw_info ddw; 1513 }; 1514 1515 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1516 1517 /* 1518 * EEH PE operation struct provides ways to: 1519 * - enable/disable EEH functionality; 1520 * - unfreeze IO/DMA for frozen PE; 1521 * - read PE state; 1522 * - reset PE; 1523 * - configure PE; 1524 * - inject EEH error. 1525 */ 1526 struct vfio_eeh_pe_err { 1527 __u32 type; 1528 __u32 func; 1529 __u64 addr; 1530 __u64 mask; 1531 }; 1532 1533 struct vfio_eeh_pe_op { 1534 __u32 argsz; 1535 __u32 flags; 1536 __u32 op; 1537 union { 1538 struct vfio_eeh_pe_err err; 1539 }; 1540 }; 1541 1542 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ 1543 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ 1544 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ 1545 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ 1546 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ 1547 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ 1548 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ 1549 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ 1550 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ 1551 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ 1552 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ 1553 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ 1554 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ 1555 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ 1556 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ 1557 1558 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) 1559 1560 /** 1561 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) 1562 * 1563 * Registers user space memory where DMA is allowed. It pins 1564 * user pages and does the locked memory accounting so 1565 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls 1566 * get faster. 1567 */ 1568 struct vfio_iommu_spapr_register_memory { 1569 __u32 argsz; 1570 __u32 flags; 1571 __u64 vaddr; /* Process virtual address */ 1572 __u64 size; /* Size of mapping (bytes) */ 1573 }; 1574 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) 1575 1576 /** 1577 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) 1578 * 1579 * Unregisters user space memory registered with 1580 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. 1581 * Uses vfio_iommu_spapr_register_memory for parameters. 1582 */ 1583 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) 1584 1585 /** 1586 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) 1587 * 1588 * Creates an additional TCE table and programs it (sets a new DMA window) 1589 * to every IOMMU group in the container. It receives page shift, window 1590 * size and number of levels in the TCE table being created. 1591 * 1592 * It allocates and returns an offset on a PCI bus of the new DMA window. 1593 */ 1594 struct vfio_iommu_spapr_tce_create { 1595 __u32 argsz; 1596 __u32 flags; 1597 /* in */ 1598 __u32 page_shift; 1599 __u32 __resv1; 1600 __u64 window_size; 1601 __u32 levels; 1602 __u32 __resv2; 1603 /* out */ 1604 __u64 start_addr; 1605 }; 1606 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) 1607 1608 /** 1609 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) 1610 * 1611 * Unprograms a TCE table from all groups in the container and destroys it. 1612 * It receives a PCI bus offset as a window id. 1613 */ 1614 struct vfio_iommu_spapr_tce_remove { 1615 __u32 argsz; 1616 __u32 flags; 1617 /* in */ 1618 __u64 start_addr; 1619 }; 1620 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) 1621 1622 /* ***************************************************************** */ 1623 1624 #endif /* VFIO_H */ 1625