xref: /openbmc/qemu/linux-headers/linux/vfio.h (revision f0830823d017af1a4e7dad228e5870cad7eb764b)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * VFIO API definition
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef VFIO_H
13 #define VFIO_H
14 
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17 
18 #define VFIO_API_VERSION	0
19 
20 
21 /* Kernel & User level defines for VFIO IOCTLs. */
22 
23 /* Extensions */
24 
25 #define VFIO_TYPE1_IOMMU		1
26 #define VFIO_SPAPR_TCE_IOMMU		2
27 #define VFIO_TYPE1v2_IOMMU		3
28 /*
29  * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
30  * capability is subject to change as groups are added or removed.
31  */
32 #define VFIO_DMA_CC_IOMMU		4
33 
34 /* Check if EEH is supported */
35 #define VFIO_EEH			5
36 
37 /* Two-stage IOMMU */
38 #define VFIO_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
39 
40 #define VFIO_SPAPR_TCE_v2_IOMMU		7
41 
42 /*
43  * The No-IOMMU IOMMU offers no translation or isolation for devices and
44  * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
45  * code will taint the host kernel and should be used with extreme caution.
46  */
47 #define VFIO_NOIOMMU_IOMMU		8
48 
49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50 #define VFIO_UNMAP_ALL			9
51 
52 /* Supports the vaddr flag for DMA map and unmap */
53 #define VFIO_UPDATE_VADDR		10
54 
55 /*
56  * The IOCTL interface is designed for extensibility by embedding the
57  * structure length (argsz) and flags into structures passed between
58  * kernel and userspace.  We therefore use the _IO() macro for these
59  * defines to avoid implicitly embedding a size into the ioctl request.
60  * As structure fields are added, argsz will increase to match and flag
61  * bits will be defined to indicate additional fields with valid data.
62  * It's *always* the caller's responsibility to indicate the size of
63  * the structure passed by setting argsz appropriately.
64  */
65 
66 #define VFIO_TYPE	(';')
67 #define VFIO_BASE	100
68 
69 /*
70  * For extension of INFO ioctls, VFIO makes use of a capability chain
71  * designed after PCI/e capabilities.  A flag bit indicates whether
72  * this capability chain is supported and a field defined in the fixed
73  * structure defines the offset of the first capability in the chain.
74  * This field is only valid when the corresponding bit in the flags
75  * bitmap is set.  This offset field is relative to the start of the
76  * INFO buffer, as is the next field within each capability header.
77  * The id within the header is a shared address space per INFO ioctl,
78  * while the version field is specific to the capability id.  The
79  * contents following the header are specific to the capability id.
80  */
81 struct vfio_info_cap_header {
82 	__u16	id;		/* Identifies capability */
83 	__u16	version;	/* Version specific to the capability ID */
84 	__u32	next;		/* Offset of next capability */
85 };
86 
87 /*
88  * Callers of INFO ioctls passing insufficiently sized buffers will see
89  * the capability chain flag bit set, a zero value for the first capability
90  * offset (if available within the provided argsz), and argsz will be
91  * updated to report the necessary buffer size.  For compatibility, the
92  * INFO ioctl will not report error in this case, but the capability chain
93  * will not be available.
94  */
95 
96 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
97 
98 /**
99  * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
100  *
101  * Report the version of the VFIO API.  This allows us to bump the entire
102  * API version should we later need to add or change features in incompatible
103  * ways.
104  * Return: VFIO_API_VERSION
105  * Availability: Always
106  */
107 #define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
108 
109 /**
110  * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
111  *
112  * Check whether an extension is supported.
113  * Return: 0 if not supported, 1 (or some other positive integer) if supported.
114  * Availability: Always
115  */
116 #define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
117 
118 /**
119  * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
120  *
121  * Set the iommu to the given type.  The type must be supported by an
122  * iommu driver as verified by calling CHECK_EXTENSION using the same
123  * type.  A group must be set to this file descriptor before this
124  * ioctl is available.  The IOMMU interfaces enabled by this call are
125  * specific to the value set.
126  * Return: 0 on success, -errno on failure
127  * Availability: When VFIO group attached
128  */
129 #define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
130 
131 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
132 
133 /**
134  * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
135  *						struct vfio_group_status)
136  *
137  * Retrieve information about the group.  Fills in provided
138  * struct vfio_group_info.  Caller sets argsz.
139  * Return: 0 on succes, -errno on failure.
140  * Availability: Always
141  */
142 struct vfio_group_status {
143 	__u32	argsz;
144 	__u32	flags;
145 #define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
146 #define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
147 };
148 #define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
149 
150 /**
151  * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
152  *
153  * Set the container for the VFIO group to the open VFIO file
154  * descriptor provided.  Groups may only belong to a single
155  * container.  Containers may, at their discretion, support multiple
156  * groups.  Only when a container is set are all of the interfaces
157  * of the VFIO file descriptor and the VFIO group file descriptor
158  * available to the user.
159  * Return: 0 on success, -errno on failure.
160  * Availability: Always
161  */
162 #define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
163 
164 /**
165  * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
166  *
167  * Remove the group from the attached container.  This is the
168  * opposite of the SET_CONTAINER call and returns the group to
169  * an initial state.  All device file descriptors must be released
170  * prior to calling this interface.  When removing the last group
171  * from a container, the IOMMU will be disabled and all state lost,
172  * effectively also returning the VFIO file descriptor to an initial
173  * state.
174  * Return: 0 on success, -errno on failure.
175  * Availability: When attached to container
176  */
177 #define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
178 
179 /**
180  * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
181  *
182  * Return a new file descriptor for the device object described by
183  * the provided string.  The string should match a device listed in
184  * the devices subdirectory of the IOMMU group sysfs entry.  The
185  * group containing the device must already be added to this context.
186  * Return: new file descriptor on success, -errno on failure.
187  * Availability: When attached to container
188  */
189 #define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
190 
191 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
192 
193 /**
194  * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
195  *						struct vfio_device_info)
196  *
197  * Retrieve information about the device.  Fills in provided
198  * struct vfio_device_info.  Caller sets argsz.
199  * Return: 0 on success, -errno on failure.
200  */
201 struct vfio_device_info {
202 	__u32	argsz;
203 	__u32	flags;
204 #define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
205 #define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
206 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
207 #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
208 #define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
209 #define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
210 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
211 #define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
212 	__u32	num_regions;	/* Max region index + 1 */
213 	__u32	num_irqs;	/* Max IRQ index + 1 */
214 	__u32   cap_offset;	/* Offset within info struct of first cap */
215 };
216 #define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
217 
218 /*
219  * Vendor driver using Mediated device framework should provide device_api
220  * attribute in supported type attribute groups. Device API string should be one
221  * of the following corresponding to device flags in vfio_device_info structure.
222  */
223 
224 #define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
225 #define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
226 #define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
227 #define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
228 #define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
229 
230 /*
231  * The following capabilities are unique to s390 zPCI devices.  Their contents
232  * are further-defined in vfio_zdev.h
233  */
234 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
235 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
236 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
237 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
238 
239 /**
240  * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
241  *				       struct vfio_region_info)
242  *
243  * Retrieve information about a device region.  Caller provides
244  * struct vfio_region_info with index value set.  Caller sets argsz.
245  * Implementation of region mapping is bus driver specific.  This is
246  * intended to describe MMIO, I/O port, as well as bus specific
247  * regions (ex. PCI config space).  Zero sized regions may be used
248  * to describe unimplemented regions (ex. unimplemented PCI BARs).
249  * Return: 0 on success, -errno on failure.
250  */
251 struct vfio_region_info {
252 	__u32	argsz;
253 	__u32	flags;
254 #define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
255 #define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
256 #define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
257 #define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
258 	__u32	index;		/* Region index */
259 	__u32	cap_offset;	/* Offset within info struct of first cap */
260 	__u64	size;		/* Region size (bytes) */
261 	__u64	offset;		/* Region offset from start of device fd */
262 };
263 #define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
264 
265 /*
266  * The sparse mmap capability allows finer granularity of specifying areas
267  * within a region with mmap support.  When specified, the user should only
268  * mmap the offset ranges specified by the areas array.  mmaps outside of the
269  * areas specified may fail (such as the range covering a PCI MSI-X table) or
270  * may result in improper device behavior.
271  *
272  * The structures below define version 1 of this capability.
273  */
274 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
275 
276 struct vfio_region_sparse_mmap_area {
277 	__u64	offset;	/* Offset of mmap'able area within region */
278 	__u64	size;	/* Size of mmap'able area */
279 };
280 
281 struct vfio_region_info_cap_sparse_mmap {
282 	struct vfio_info_cap_header header;
283 	__u32	nr_areas;
284 	__u32	reserved;
285 	struct vfio_region_sparse_mmap_area areas[];
286 };
287 
288 /*
289  * The device specific type capability allows regions unique to a specific
290  * device or class of devices to be exposed.  This helps solve the problem for
291  * vfio bus drivers of defining which region indexes correspond to which region
292  * on the device, without needing to resort to static indexes, as done by
293  * vfio-pci.  For instance, if we were to go back in time, we might remove
294  * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
295  * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
296  * make a "VGA" device specific type to describe the VGA access space.  This
297  * means that non-VGA devices wouldn't need to waste this index, and thus the
298  * address space associated with it due to implementation of device file
299  * descriptor offsets in vfio-pci.
300  *
301  * The current implementation is now part of the user ABI, so we can't use this
302  * for VGA, but there are other upcoming use cases, such as opregions for Intel
303  * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
304  * use this for future additions.
305  *
306  * The structure below defines version 1 of this capability.
307  */
308 #define VFIO_REGION_INFO_CAP_TYPE	2
309 
310 struct vfio_region_info_cap_type {
311 	struct vfio_info_cap_header header;
312 	__u32 type;	/* global per bus driver */
313 	__u32 subtype;	/* type specific */
314 };
315 
316 /*
317  * List of region types, global per bus driver.
318  * If you introduce a new type, please add it here.
319  */
320 
321 /* PCI region type containing a PCI vendor part */
322 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
323 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
324 #define VFIO_REGION_TYPE_GFX                    (1)
325 #define VFIO_REGION_TYPE_CCW			(2)
326 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
327 
328 /* sub-types for VFIO_REGION_TYPE_PCI_* */
329 
330 /* 8086 vendor PCI sub-types */
331 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
332 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
333 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
334 
335 /* 10de vendor PCI sub-types */
336 /*
337  * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
338  *
339  * Deprecated, region no longer provided
340  */
341 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM	(1)
342 
343 /* 1014 vendor PCI sub-types */
344 /*
345  * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
346  * to do TLB invalidation on a GPU.
347  *
348  * Deprecated, region no longer provided
349  */
350 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD	(1)
351 
352 /* sub-types for VFIO_REGION_TYPE_GFX */
353 #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
354 
355 /**
356  * struct vfio_region_gfx_edid - EDID region layout.
357  *
358  * Set display link state and EDID blob.
359  *
360  * The EDID blob has monitor information such as brand, name, serial
361  * number, physical size, supported video modes and more.
362  *
363  * This special region allows userspace (typically qemu) set a virtual
364  * EDID for the virtual monitor, which allows a flexible display
365  * configuration.
366  *
367  * For the edid blob spec look here:
368  *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
369  *
370  * On linux systems you can find the EDID blob in sysfs:
371  *    /sys/class/drm/${card}/${connector}/edid
372  *
373  * You can use the edid-decode ulility (comes with xorg-x11-utils) to
374  * decode the EDID blob.
375  *
376  * @edid_offset: location of the edid blob, relative to the
377  *               start of the region (readonly).
378  * @edid_max_size: max size of the edid blob (readonly).
379  * @edid_size: actual edid size (read/write).
380  * @link_state: display link state (read/write).
381  * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
382  * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
383  * @max_xres: max display width (0 == no limitation, readonly).
384  * @max_yres: max display height (0 == no limitation, readonly).
385  *
386  * EDID update protocol:
387  *   (1) set link-state to down.
388  *   (2) update edid blob and size.
389  *   (3) set link-state to up.
390  */
391 struct vfio_region_gfx_edid {
392 	__u32 edid_offset;
393 	__u32 edid_max_size;
394 	__u32 edid_size;
395 	__u32 max_xres;
396 	__u32 max_yres;
397 	__u32 link_state;
398 #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
399 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
400 };
401 
402 /* sub-types for VFIO_REGION_TYPE_CCW */
403 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
404 #define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
405 #define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
406 
407 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
408 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
409 
410 struct vfio_device_migration_info {
411 	__u32 device_state;         /* VFIO device state */
412 #define VFIO_DEVICE_STATE_V1_STOP      (0)
413 #define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
414 #define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
415 #define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
416 #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
417 				     VFIO_DEVICE_STATE_V1_SAVING |  \
418 				     VFIO_DEVICE_STATE_V1_RESUMING)
419 
420 #define VFIO_DEVICE_STATE_VALID(state) \
421 	(state & VFIO_DEVICE_STATE_V1_RESUMING ? \
422 	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
423 
424 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
425 	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
426 					      VFIO_DEVICE_STATE_V1_RESUMING))
427 
428 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
429 	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
430 					     VFIO_DEVICE_STATE_V1_RESUMING)
431 
432 	__u32 reserved;
433 	__u64 pending_bytes;
434 	__u64 data_offset;
435 	__u64 data_size;
436 };
437 
438 /*
439  * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
440  * which allows direct access to non-MSIX registers which happened to be within
441  * the same system page.
442  *
443  * Even though the userspace gets direct access to the MSIX data, the existing
444  * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
445  */
446 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
447 
448 /*
449  * Capability with compressed real address (aka SSA - small system address)
450  * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
451  * and by the userspace to associate a NVLink bridge with a GPU.
452  *
453  * Deprecated, capability no longer provided
454  */
455 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT	4
456 
457 struct vfio_region_info_cap_nvlink2_ssatgt {
458 	struct vfio_info_cap_header header;
459 	__u64 tgt;
460 };
461 
462 /*
463  * Capability with an NVLink link speed. The value is read by
464  * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
465  * property in the device tree. The value is fixed in the hardware
466  * and failing to provide the correct value results in the link
467  * not working with no indication from the driver why.
468  *
469  * Deprecated, capability no longer provided
470  */
471 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD	5
472 
473 struct vfio_region_info_cap_nvlink2_lnkspd {
474 	struct vfio_info_cap_header header;
475 	__u32 link_speed;
476 	__u32 __pad;
477 };
478 
479 /**
480  * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
481  *				    struct vfio_irq_info)
482  *
483  * Retrieve information about a device IRQ.  Caller provides
484  * struct vfio_irq_info with index value set.  Caller sets argsz.
485  * Implementation of IRQ mapping is bus driver specific.  Indexes
486  * using multiple IRQs are primarily intended to support MSI-like
487  * interrupt blocks.  Zero count irq blocks may be used to describe
488  * unimplemented interrupt types.
489  *
490  * The EVENTFD flag indicates the interrupt index supports eventfd based
491  * signaling.
492  *
493  * The MASKABLE flags indicates the index supports MASK and UNMASK
494  * actions described below.
495  *
496  * AUTOMASKED indicates that after signaling, the interrupt line is
497  * automatically masked by VFIO and the user needs to unmask the line
498  * to receive new interrupts.  This is primarily intended to distinguish
499  * level triggered interrupts.
500  *
501  * The NORESIZE flag indicates that the interrupt lines within the index
502  * are setup as a set and new subindexes cannot be enabled without first
503  * disabling the entire index.  This is used for interrupts like PCI MSI
504  * and MSI-X where the driver may only use a subset of the available
505  * indexes, but VFIO needs to enable a specific number of vectors
506  * upfront.  In the case of MSI-X, where the user can enable MSI-X and
507  * then add and unmask vectors, it's up to userspace to make the decision
508  * whether to allocate the maximum supported number of vectors or tear
509  * down setup and incrementally increase the vectors as each is enabled.
510  */
511 struct vfio_irq_info {
512 	__u32	argsz;
513 	__u32	flags;
514 #define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
515 #define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
516 #define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
517 #define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
518 	__u32	index;		/* IRQ index */
519 	__u32	count;		/* Number of IRQs within this index */
520 };
521 #define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
522 
523 /**
524  * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
525  *
526  * Set signaling, masking, and unmasking of interrupts.  Caller provides
527  * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
528  * the range of subindexes being specified.
529  *
530  * The DATA flags specify the type of data provided.  If DATA_NONE, the
531  * operation performs the specified action immediately on the specified
532  * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
533  * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
534  *
535  * DATA_BOOL allows sparse support for the same on arrays of interrupts.
536  * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
537  * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
538  * data = {1,0,1}
539  *
540  * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
541  * A value of -1 can be used to either de-assign interrupts if already
542  * assigned or skip un-assigned interrupts.  For example, to set an eventfd
543  * to be trigger for interrupts [0,0] and [0,2]:
544  * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
545  * data = {fd1, -1, fd2}
546  * If index [0,1] is previously set, two count = 1 ioctls calls would be
547  * required to set [0,0] and [0,2] without changing [0,1].
548  *
549  * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
550  * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
551  * from userspace (ie. simulate hardware triggering).
552  *
553  * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
554  * enables the interrupt index for the device.  Individual subindex interrupts
555  * can be disabled using the -1 value for DATA_EVENTFD or the index can be
556  * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
557  *
558  * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
559  * ACTION_TRIGGER specifies kernel->user signaling.
560  */
561 struct vfio_irq_set {
562 	__u32	argsz;
563 	__u32	flags;
564 #define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
565 #define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
566 #define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
567 #define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
568 #define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
569 #define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
570 	__u32	index;
571 	__u32	start;
572 	__u32	count;
573 	__u8	data[];
574 };
575 #define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
576 
577 #define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
578 					 VFIO_IRQ_SET_DATA_BOOL | \
579 					 VFIO_IRQ_SET_DATA_EVENTFD)
580 #define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
581 					 VFIO_IRQ_SET_ACTION_UNMASK | \
582 					 VFIO_IRQ_SET_ACTION_TRIGGER)
583 /**
584  * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
585  *
586  * Reset a device.
587  */
588 #define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
589 
590 /*
591  * The VFIO-PCI bus driver makes use of the following fixed region and
592  * IRQ index mapping.  Unimplemented regions return a size of zero.
593  * Unimplemented IRQ types return a count of zero.
594  */
595 
596 enum {
597 	VFIO_PCI_BAR0_REGION_INDEX,
598 	VFIO_PCI_BAR1_REGION_INDEX,
599 	VFIO_PCI_BAR2_REGION_INDEX,
600 	VFIO_PCI_BAR3_REGION_INDEX,
601 	VFIO_PCI_BAR4_REGION_INDEX,
602 	VFIO_PCI_BAR5_REGION_INDEX,
603 	VFIO_PCI_ROM_REGION_INDEX,
604 	VFIO_PCI_CONFIG_REGION_INDEX,
605 	/*
606 	 * Expose VGA regions defined for PCI base class 03, subclass 00.
607 	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
608 	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
609 	 * range is found at it's identity mapped offset from the region
610 	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
611 	 * between described ranges are unimplemented.
612 	 */
613 	VFIO_PCI_VGA_REGION_INDEX,
614 	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
615 				 /* device specific cap to define content. */
616 };
617 
618 enum {
619 	VFIO_PCI_INTX_IRQ_INDEX,
620 	VFIO_PCI_MSI_IRQ_INDEX,
621 	VFIO_PCI_MSIX_IRQ_INDEX,
622 	VFIO_PCI_ERR_IRQ_INDEX,
623 	VFIO_PCI_REQ_IRQ_INDEX,
624 	VFIO_PCI_NUM_IRQS
625 };
626 
627 /*
628  * The vfio-ccw bus driver makes use of the following fixed region and
629  * IRQ index mapping. Unimplemented regions return a size of zero.
630  * Unimplemented IRQ types return a count of zero.
631  */
632 
633 enum {
634 	VFIO_CCW_CONFIG_REGION_INDEX,
635 	VFIO_CCW_NUM_REGIONS
636 };
637 
638 enum {
639 	VFIO_CCW_IO_IRQ_INDEX,
640 	VFIO_CCW_CRW_IRQ_INDEX,
641 	VFIO_CCW_REQ_IRQ_INDEX,
642 	VFIO_CCW_NUM_IRQS
643 };
644 
645 /**
646  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
647  *					      struct vfio_pci_hot_reset_info)
648  *
649  * Return: 0 on success, -errno on failure:
650  *	-enospc = insufficient buffer, -enodev = unsupported for device.
651  */
652 struct vfio_pci_dependent_device {
653 	__u32	group_id;
654 	__u16	segment;
655 	__u8	bus;
656 	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
657 };
658 
659 struct vfio_pci_hot_reset_info {
660 	__u32	argsz;
661 	__u32	flags;
662 	__u32	count;
663 	struct vfio_pci_dependent_device	devices[];
664 };
665 
666 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
667 
668 /**
669  * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
670  *				    struct vfio_pci_hot_reset)
671  *
672  * Return: 0 on success, -errno on failure.
673  */
674 struct vfio_pci_hot_reset {
675 	__u32	argsz;
676 	__u32	flags;
677 	__u32	count;
678 	__s32	group_fds[];
679 };
680 
681 #define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
682 
683 /**
684  * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
685  *                                    struct vfio_device_query_gfx_plane)
686  *
687  * Set the drm_plane_type and flags, then retrieve the gfx plane info.
688  *
689  * flags supported:
690  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
691  *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
692  *   support for dma-buf.
693  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
694  *   to ask if the mdev supports region. 0 on support, -EINVAL on no
695  *   support for region.
696  * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
697  *   with each call to query the plane info.
698  * - Others are invalid and return -EINVAL.
699  *
700  * Note:
701  * 1. Plane could be disabled by guest. In that case, success will be
702  *    returned with zero-initialized drm_format, size, width and height
703  *    fields.
704  * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
705  *
706  * Return: 0 on success, -errno on other failure.
707  */
708 struct vfio_device_gfx_plane_info {
709 	__u32 argsz;
710 	__u32 flags;
711 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
712 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
713 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
714 	/* in */
715 	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
716 	/* out */
717 	__u32 drm_format;	/* drm format of plane */
718 	__u64 drm_format_mod;   /* tiled mode */
719 	__u32 width;	/* width of plane */
720 	__u32 height;	/* height of plane */
721 	__u32 stride;	/* stride of plane */
722 	__u32 size;	/* size of plane in bytes, align on page*/
723 	__u32 x_pos;	/* horizontal position of cursor plane */
724 	__u32 y_pos;	/* vertical position of cursor plane*/
725 	__u32 x_hot;    /* horizontal position of cursor hotspot */
726 	__u32 y_hot;    /* vertical position of cursor hotspot */
727 	union {
728 		__u32 region_index;	/* region index */
729 		__u32 dmabuf_id;	/* dma-buf id */
730 	};
731 };
732 
733 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
734 
735 /**
736  * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
737  *
738  * Return a new dma-buf file descriptor for an exposed guest framebuffer
739  * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
740  * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
741  */
742 
743 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
744 
745 /**
746  * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
747  *                              struct vfio_device_ioeventfd)
748  *
749  * Perform a write to the device at the specified device fd offset, with
750  * the specified data and width when the provided eventfd is triggered.
751  * vfio bus drivers may not support this for all regions, for all widths,
752  * or at all.  vfio-pci currently only enables support for BAR regions,
753  * excluding the MSI-X vector table.
754  *
755  * Return: 0 on success, -errno on failure.
756  */
757 struct vfio_device_ioeventfd {
758 	__u32	argsz;
759 	__u32	flags;
760 #define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
761 #define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
762 #define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
763 #define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
764 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
765 	__u64	offset;			/* device fd offset of write */
766 	__u64	data;			/* data to be written */
767 	__s32	fd;			/* -1 for de-assignment */
768 };
769 
770 #define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
771 
772 /**
773  * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
774  *			       struct vfio_device_feature)
775  *
776  * Get, set, or probe feature data of the device.  The feature is selected
777  * using the FEATURE_MASK portion of the flags field.  Support for a feature
778  * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
779  * may optionally include the GET and/or SET bits to determine read vs write
780  * access of the feature respectively.  Probing a feature will return success
781  * if the feature is supported and all of the optionally indicated GET/SET
782  * methods are supported.  The format of the data portion of the structure is
783  * specific to the given feature.  The data portion is not required for
784  * probing.  GET and SET are mutually exclusive, except for use with PROBE.
785  *
786  * Return 0 on success, -errno on failure.
787  */
788 struct vfio_device_feature {
789 	__u32	argsz;
790 	__u32	flags;
791 #define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
792 #define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
793 #define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
794 #define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
795 	__u8	data[];
796 };
797 
798 #define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
799 
800 /*
801  * Provide support for setting a PCI VF Token, which is used as a shared
802  * secret between PF and VF drivers.  This feature may only be set on a
803  * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
804  * open VFs.  Data provided when setting this feature is a 16-byte array
805  * (__u8 b[16]), representing a UUID.
806  */
807 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
808 
809 /*
810  * Indicates the device can support the migration API through
811  * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
812  * ERROR states are always supported. Support for additional states is
813  * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
814  * set.
815  *
816  * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
817  * RESUMING are supported.
818  *
819  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
820  * is supported in addition to the STOP_COPY states.
821  *
822  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
823  * PRE_COPY is supported in addition to the STOP_COPY states.
824  *
825  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
826  * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
827  * in addition to the STOP_COPY states.
828  *
829  * Other combinations of flags have behavior to be defined in the future.
830  */
831 struct vfio_device_feature_migration {
832 	__aligned_u64 flags;
833 #define VFIO_MIGRATION_STOP_COPY	(1 << 0)
834 #define VFIO_MIGRATION_P2P		(1 << 1)
835 #define VFIO_MIGRATION_PRE_COPY		(1 << 2)
836 };
837 #define VFIO_DEVICE_FEATURE_MIGRATION 1
838 
839 /*
840  * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
841  * device. The new state is supplied in device_state, see enum
842  * vfio_device_mig_state for details
843  *
844  * The kernel migration driver must fully transition the device to the new state
845  * value before the operation returns to the user.
846  *
847  * The kernel migration driver must not generate asynchronous device state
848  * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
849  * ioctl as described above.
850  *
851  * If this function fails then current device_state may be the original
852  * operating state or some other state along the combination transition path.
853  * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
854  * to return to the original state, or attempt to return to some other state
855  * such as RUNNING or STOP.
856  *
857  * If the new_state starts a new data transfer session then the FD associated
858  * with that session is returned in data_fd. The user is responsible to close
859  * this FD when it is finished. The user must consider the migration data stream
860  * carried over the FD to be opaque and must preserve the byte order of the
861  * stream. The user is not required to preserve buffer segmentation when writing
862  * the data stream during the RESUMING operation.
863  *
864  * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
865  * device, data_fd will be -1.
866  */
867 struct vfio_device_feature_mig_state {
868 	__u32 device_state; /* From enum vfio_device_mig_state */
869 	__s32 data_fd;
870 };
871 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
872 
873 /*
874  * The device migration Finite State Machine is described by the enum
875  * vfio_device_mig_state. Some of the FSM arcs will create a migration data
876  * transfer session by returning a FD, in this case the migration data will
877  * flow over the FD using read() and write() as discussed below.
878  *
879  * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
880  *  RUNNING - The device is running normally
881  *  STOP - The device does not change the internal or external state
882  *  STOP_COPY - The device internal state can be read out
883  *  RESUMING - The device is stopped and is loading a new internal state
884  *  ERROR - The device has failed and must be reset
885  *
886  * And optional states to support VFIO_MIGRATION_P2P:
887  *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
888  * And VFIO_MIGRATION_PRE_COPY:
889  *  PRE_COPY - The device is running normally but tracking internal state
890  *             changes
891  * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
892  *  PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
893  *
894  * The FSM takes actions on the arcs between FSM states. The driver implements
895  * the following behavior for the FSM arcs:
896  *
897  * RUNNING_P2P -> STOP
898  * STOP_COPY -> STOP
899  *   While in STOP the device must stop the operation of the device. The device
900  *   must not generate interrupts, DMA, or any other change to external state.
901  *   It must not change its internal state. When stopped the device and kernel
902  *   migration driver must accept and respond to interaction to support external
903  *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
904  *   Failure by the user to restrict device access while in STOP must not result
905  *   in error conditions outside the user context (ex. host system faults).
906  *
907  *   The STOP_COPY arc will terminate a data transfer session.
908  *
909  * RESUMING -> STOP
910  *   Leaving RESUMING terminates a data transfer session and indicates the
911  *   device should complete processing of the data delivered by write(). The
912  *   kernel migration driver should complete the incorporation of data written
913  *   to the data transfer FD into the device internal state and perform
914  *   final validity and consistency checking of the new device state. If the
915  *   user provided data is found to be incomplete, inconsistent, or otherwise
916  *   invalid, the migration driver must fail the SET_STATE ioctl and
917  *   optionally go to the ERROR state as described below.
918  *
919  *   While in STOP the device has the same behavior as other STOP states
920  *   described above.
921  *
922  *   To abort a RESUMING session the device must be reset.
923  *
924  * PRE_COPY -> RUNNING
925  * RUNNING_P2P -> RUNNING
926  *   While in RUNNING the device is fully operational, the device may generate
927  *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
928  *   and the device may advance its internal state.
929  *
930  *   The PRE_COPY arc will terminate a data transfer session.
931  *
932  * PRE_COPY_P2P -> RUNNING_P2P
933  * RUNNING -> RUNNING_P2P
934  * STOP -> RUNNING_P2P
935  *   While in RUNNING_P2P the device is partially running in the P2P quiescent
936  *   state defined below.
937  *
938  *   The PRE_COPY_P2P arc will terminate a data transfer session.
939  *
940  * RUNNING -> PRE_COPY
941  * RUNNING_P2P -> PRE_COPY_P2P
942  * STOP -> STOP_COPY
943  *   PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
944  *   which share a data transfer session. Moving between these states alters
945  *   what is streamed in session, but does not terminate or otherwise affect
946  *   the associated fd.
947  *
948  *   These arcs begin the process of saving the device state and will return a
949  *   new data_fd. The migration driver may perform actions such as enabling
950  *   dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
951  *
952  *   Each arc does not change the device operation, the device remains
953  *   RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
954  *   in PRE_COPY_P2P -> STOP_COPY.
955  *
956  * PRE_COPY -> PRE_COPY_P2P
957  *   Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
958  *   However, while in the PRE_COPY_P2P state, the device is partially running
959  *   in the P2P quiescent state defined below, like RUNNING_P2P.
960  *
961  * PRE_COPY_P2P -> PRE_COPY
962  *   This arc allows returning the device to a full RUNNING behavior while
963  *   continuing all the behaviors of PRE_COPY.
964  *
965  * PRE_COPY_P2P -> STOP_COPY
966  *   While in the STOP_COPY state the device has the same behavior as STOP
967  *   with the addition that the data transfers session continues to stream the
968  *   migration state. End of stream on the FD indicates the entire device
969  *   state has been transferred.
970  *
971  *   The user should take steps to restrict access to vfio device regions while
972  *   the device is in STOP_COPY or risk corruption of the device migration data
973  *   stream.
974  *
975  * STOP -> RESUMING
976  *   Entering the RESUMING state starts a process of restoring the device state
977  *   and will return a new data_fd. The data stream fed into the data_fd should
978  *   be taken from the data transfer output of a single FD during saving from
979  *   a compatible device. The migration driver may alter/reset the internal
980  *   device state for this arc if required to prepare the device to receive the
981  *   migration data.
982  *
983  * STOP_COPY -> PRE_COPY
984  * STOP_COPY -> PRE_COPY_P2P
985  *   These arcs are not permitted and return error if requested. Future
986  *   revisions of this API may define behaviors for these arcs, in this case
987  *   support will be discoverable by a new flag in
988  *   VFIO_DEVICE_FEATURE_MIGRATION.
989  *
990  * any -> ERROR
991  *   ERROR cannot be specified as a device state, however any transition request
992  *   can be failed with an errno return and may then move the device_state into
993  *   ERROR. In this case the device was unable to execute the requested arc and
994  *   was also unable to restore the device to any valid device_state.
995  *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
996  *   device_state back to RUNNING.
997  *
998  * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
999  * state for the device for the purposes of managing multiple devices within a
1000  * user context where peer-to-peer DMA between devices may be active. The
1001  * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
1002  * any new P2P DMA transactions. If the device can identify P2P transactions
1003  * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
1004  * driver must complete any such outstanding operations prior to completing the
1005  * FSM arc into a P2P state. For the purpose of specification the states
1006  * behave as though the device was fully running if not supported. Like while in
1007  * STOP or STOP_COPY the user must not touch the device, otherwise the state
1008  * can be exited.
1009  *
1010  * The remaining possible transitions are interpreted as combinations of the
1011  * above FSM arcs. As there are multiple paths through the FSM arcs the path
1012  * should be selected based on the following rules:
1013  *   - Select the shortest path.
1014  *   - The path cannot have saving group states as interior arcs, only
1015  *     starting/end states.
1016  * Refer to vfio_mig_get_next_state() for the result of the algorithm.
1017  *
1018  * The automatic transit through the FSM arcs that make up the combination
1019  * transition is invisible to the user. When working with combination arcs the
1020  * user may see any step along the path in the device_state if SET_STATE
1021  * fails. When handling these types of errors users should anticipate future
1022  * revisions of this protocol using new states and those states becoming
1023  * visible in this case.
1024  *
1025  * The optional states cannot be used with SET_STATE if the device does not
1026  * support them. The user can discover if these states are supported by using
1027  * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
1028  * avoid knowing about these optional states if the kernel driver supports them.
1029  *
1030  * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
1031  * is not present.
1032  */
1033 enum vfio_device_mig_state {
1034 	VFIO_DEVICE_STATE_ERROR = 0,
1035 	VFIO_DEVICE_STATE_STOP = 1,
1036 	VFIO_DEVICE_STATE_RUNNING = 2,
1037 	VFIO_DEVICE_STATE_STOP_COPY = 3,
1038 	VFIO_DEVICE_STATE_RESUMING = 4,
1039 	VFIO_DEVICE_STATE_RUNNING_P2P = 5,
1040 	VFIO_DEVICE_STATE_PRE_COPY = 6,
1041 	VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
1042 };
1043 
1044 /**
1045  * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
1046  *
1047  * This ioctl is used on the migration data FD in the precopy phase of the
1048  * migration data transfer. It returns an estimate of the current data sizes
1049  * remaining to be transferred. It allows the user to judge when it is
1050  * appropriate to leave PRE_COPY for STOP_COPY.
1051  *
1052  * This ioctl is valid only in PRE_COPY states and kernel driver should
1053  * return -EINVAL from any other migration state.
1054  *
1055  * The vfio_precopy_info data structure returned by this ioctl provides
1056  * estimates of data available from the device during the PRE_COPY states.
1057  * This estimate is split into two categories, initial_bytes and
1058  * dirty_bytes.
1059  *
1060  * The initial_bytes field indicates the amount of initial precopy
1061  * data available from the device. This field should have a non-zero initial
1062  * value and decrease as migration data is read from the device.
1063  * It is recommended to leave PRE_COPY for STOP_COPY only after this field
1064  * reaches zero. Leaving PRE_COPY earlier might make things slower.
1065  *
1066  * The dirty_bytes field tracks device state changes relative to data
1067  * previously retrieved.  This field starts at zero and may increase as
1068  * the internal device state is modified or decrease as that modified
1069  * state is read from the device.
1070  *
1071  * Userspace may use the combination of these fields to estimate the
1072  * potential data size available during the PRE_COPY phases, as well as
1073  * trends relative to the rate the device is dirtying its internal
1074  * state, but these fields are not required to have any bearing relative
1075  * to the data size available during the STOP_COPY phase.
1076  *
1077  * Drivers have a lot of flexibility in when and what they transfer during the
1078  * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
1079  *
1080  * During pre-copy the migration data FD has a temporary "end of stream" that is
1081  * reached when both initial_bytes and dirty_byte are zero. For instance, this
1082  * may indicate that the device is idle and not currently dirtying any internal
1083  * state. When read() is done on this temporary end of stream the kernel driver
1084  * should return ENOMSG from read(). Userspace can wait for more data (which may
1085  * never come) by using poll.
1086  *
1087  * Once in STOP_COPY the migration data FD has a permanent end of stream
1088  * signaled in the usual way by read() always returning 0 and poll always
1089  * returning readable. ENOMSG may not be returned in STOP_COPY.
1090  * Support for this ioctl is mandatory if a driver claims to support
1091  * VFIO_MIGRATION_PRE_COPY.
1092  *
1093  * Return: 0 on success, -1 and errno set on failure.
1094  */
1095 struct vfio_precopy_info {
1096 	__u32 argsz;
1097 	__u32 flags;
1098 	__aligned_u64 initial_bytes;
1099 	__aligned_u64 dirty_bytes;
1100 };
1101 
1102 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
1103 
1104 /*
1105  * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
1106  * state with the platform-based power management.  Device use of lower power
1107  * states depends on factors managed by the runtime power management core,
1108  * including system level support and coordinating support among dependent
1109  * devices.  Enabling device low power entry does not guarantee lower power
1110  * usage by the device, nor is a mechanism provided through this feature to
1111  * know the current power state of the device.  If any device access happens
1112  * (either from the host or through the vfio uAPI) when the device is in the
1113  * low power state, then the host will move the device out of the low power
1114  * state as necessary prior to the access.  Once the access is completed, the
1115  * device may re-enter the low power state.  For single shot low power support
1116  * with wake-up notification, see
1117  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below.  Access to mmap'd
1118  * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
1119  * calling LOW_POWER_EXIT.
1120  */
1121 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
1122 
1123 /*
1124  * This device feature has the same behavior as
1125  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
1126  * provides an eventfd for wake-up notification.  When the device moves out of
1127  * the low power state for the wake-up, the host will not allow the device to
1128  * re-enter a low power state without a subsequent user call to one of the low
1129  * power entry device feature IOCTLs.  Access to mmap'd device regions is
1130  * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
1131  * low power exit.  The low power exit can happen either through LOW_POWER_EXIT
1132  * or through any other access (where the wake-up notification has been
1133  * generated).  The access to mmap'd device regions will not trigger low power
1134  * exit.
1135  *
1136  * The notification through the provided eventfd will be generated only when
1137  * the device has entered and is resumed from a low power state after
1138  * calling this device feature IOCTL.  A device that has not entered low power
1139  * state, as managed through the runtime power management core, will not
1140  * generate a notification through the provided eventfd on access.  Calling the
1141  * LOW_POWER_EXIT feature is optional in the case where notification has been
1142  * signaled on the provided eventfd that a resume from low power has occurred.
1143  */
1144 struct vfio_device_low_power_entry_with_wakeup {
1145 	__s32 wakeup_eventfd;
1146 	__u32 reserved;
1147 };
1148 
1149 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
1150 
1151 /*
1152  * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
1153  * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
1154  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
1155  * This device feature IOCTL may itself generate a wakeup eventfd notification
1156  * in the latter case if the device had previously entered a low power state.
1157  */
1158 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
1159 
1160 /*
1161  * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
1162  * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
1163  * DMA logging.
1164  *
1165  * DMA logging allows a device to internally record what DMAs the device is
1166  * initiating and report them back to userspace. It is part of the VFIO
1167  * migration infrastructure that allows implementing dirty page tracking
1168  * during the pre copy phase of live migration. Only DMA WRITEs are logged,
1169  * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
1170  *
1171  * When DMA logging is started a range of IOVAs to monitor is provided and the
1172  * device can optimize its logging to cover only the IOVA range given. Each
1173  * DMA that the device initiates inside the range will be logged by the device
1174  * for later retrieval.
1175  *
1176  * page_size is an input that hints what tracking granularity the device
1177  * should try to achieve. If the device cannot do the hinted page size then
1178  * it's the driver choice which page size to pick based on its support.
1179  * On output the device will return the page size it selected.
1180  *
1181  * ranges is a pointer to an array of
1182  * struct vfio_device_feature_dma_logging_range.
1183  *
1184  * The core kernel code guarantees to support by minimum num_ranges that fit
1185  * into a single kernel page. User space can try higher values but should give
1186  * up if the above can't be achieved as of some driver limitations.
1187  *
1188  * A single call to start device DMA logging can be issued and a matching stop
1189  * should follow at the end. Another start is not allowed in the meantime.
1190  */
1191 struct vfio_device_feature_dma_logging_control {
1192 	__aligned_u64 page_size;
1193 	__u32 num_ranges;
1194 	__u32 __reserved;
1195 	__aligned_u64 ranges;
1196 };
1197 
1198 struct vfio_device_feature_dma_logging_range {
1199 	__aligned_u64 iova;
1200 	__aligned_u64 length;
1201 };
1202 
1203 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
1204 
1205 /*
1206  * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
1207  * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
1208  */
1209 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
1210 
1211 /*
1212  * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
1213  *
1214  * Query the device's DMA log for written pages within the given IOVA range.
1215  * During querying the log is cleared for the IOVA range.
1216  *
1217  * bitmap is a pointer to an array of u64s that will hold the output bitmap
1218  * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
1219  * is given by:
1220  *  bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
1221  *
1222  * The input page_size can be any power of two value and does not have to
1223  * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
1224  * will format its internal logging to match the reporting page size, possibly
1225  * by replicating bits if the internal page size is lower than requested.
1226  *
1227  * The LOGGING_REPORT will only set bits in the bitmap and never clear or
1228  * perform any initialization of the user provided bitmap.
1229  *
1230  * If any error is returned userspace should assume that the dirty log is
1231  * corrupted. Error recovery is to consider all memory dirty and try to
1232  * restart the dirty tracking, or to abort/restart the whole migration.
1233  *
1234  * If DMA logging is not enabled, an error will be returned.
1235  *
1236  */
1237 struct vfio_device_feature_dma_logging_report {
1238 	__aligned_u64 iova;
1239 	__aligned_u64 length;
1240 	__aligned_u64 page_size;
1241 	__aligned_u64 bitmap;
1242 };
1243 
1244 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
1245 
1246 /*
1247  * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
1248  * be required to complete stop copy.
1249  *
1250  * Note: Can be called on each device state.
1251  */
1252 
1253 struct vfio_device_feature_mig_data_size {
1254 	__aligned_u64 stop_copy_length;
1255 };
1256 
1257 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
1258 
1259 /* -------- API for Type1 VFIO IOMMU -------- */
1260 
1261 /**
1262  * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1263  *
1264  * Retrieve information about the IOMMU object. Fills in provided
1265  * struct vfio_iommu_info. Caller sets argsz.
1266  *
1267  * XXX Should we do these by CHECK_EXTENSION too?
1268  */
1269 struct vfio_iommu_type1_info {
1270 	__u32	argsz;
1271 	__u32	flags;
1272 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
1273 #define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
1274 	__u64	iova_pgsizes;	/* Bitmap of supported page sizes */
1275 	__u32   cap_offset;	/* Offset within info struct of first cap */
1276 };
1277 
1278 /*
1279  * The IOVA capability allows to report the valid IOVA range(s)
1280  * excluding any non-relaxable reserved regions exposed by
1281  * devices attached to the container. Any DMA map attempt
1282  * outside the valid iova range will return error.
1283  *
1284  * The structures below define version 1 of this capability.
1285  */
1286 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1287 
1288 struct vfio_iova_range {
1289 	__u64	start;
1290 	__u64	end;
1291 };
1292 
1293 struct vfio_iommu_type1_info_cap_iova_range {
1294 	struct	vfio_info_cap_header header;
1295 	__u32	nr_iovas;
1296 	__u32	reserved;
1297 	struct	vfio_iova_range iova_ranges[];
1298 };
1299 
1300 /*
1301  * The migration capability allows to report supported features for migration.
1302  *
1303  * The structures below define version 1 of this capability.
1304  *
1305  * The existence of this capability indicates that IOMMU kernel driver supports
1306  * dirty page logging.
1307  *
1308  * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1309  * page logging.
1310  * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1311  * size in bytes that can be used by user applications when getting the dirty
1312  * bitmap.
1313  */
1314 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1315 
1316 struct vfio_iommu_type1_info_cap_migration {
1317 	struct	vfio_info_cap_header header;
1318 	__u32	flags;
1319 	__u64	pgsize_bitmap;
1320 	__u64	max_dirty_bitmap_size;		/* in bytes */
1321 };
1322 
1323 /*
1324  * The DMA available capability allows to report the current number of
1325  * simultaneously outstanding DMA mappings that are allowed.
1326  *
1327  * The structure below defines version 1 of this capability.
1328  *
1329  * avail: specifies the current number of outstanding DMA mappings allowed.
1330  */
1331 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1332 
1333 struct vfio_iommu_type1_info_dma_avail {
1334 	struct	vfio_info_cap_header header;
1335 	__u32	avail;
1336 };
1337 
1338 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1339 
1340 /**
1341  * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1342  *
1343  * Map process virtual addresses to IO virtual addresses using the
1344  * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1345  *
1346  * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and
1347  * unblock translation of host virtual addresses in the iova range.  The vaddr
1348  * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1349  * maintain memory consistency within the user application, the updated vaddr
1350  * must address the same memory object as originally mapped.  Failure to do so
1351  * will result in user memory corruption and/or device misbehavior.  iova and
1352  * size must match those in the original MAP_DMA call.  Protection is not
1353  * changed, and the READ & WRITE flags must be 0.
1354  */
1355 struct vfio_iommu_type1_dma_map {
1356 	__u32	argsz;
1357 	__u32	flags;
1358 #define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
1359 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
1360 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1361 	__u64	vaddr;				/* Process virtual address */
1362 	__u64	iova;				/* IO virtual address */
1363 	__u64	size;				/* Size of mapping (bytes) */
1364 };
1365 
1366 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1367 
1368 struct vfio_bitmap {
1369 	__u64        pgsize;	/* page size for bitmap in bytes */
1370 	__u64        size;	/* in bytes */
1371 	__u64 *data;	/* one bit per page */
1372 };
1373 
1374 /**
1375  * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1376  *							struct vfio_dma_unmap)
1377  *
1378  * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1379  * Caller sets argsz.  The actual unmapped size is returned in the size
1380  * field.  No guarantee is made to the user that arbitrary unmaps of iova
1381  * or size different from those used in the original mapping call will
1382  * succeed.
1383  *
1384  * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1385  * before unmapping IO virtual addresses. When this flag is set, the user must
1386  * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1387  * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1388  * A bit in the bitmap represents one page, of user provided page size in
1389  * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1390  * indicates that the page at that offset from iova is dirty. A Bitmap of the
1391  * pages in the range of unmapped size is returned in the user-provided
1392  * vfio_bitmap.data.
1393  *
1394  * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1395  * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1396  *
1397  * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1398  * virtual addresses in the iova range.  Tasks that attempt to translate an
1399  * iova's vaddr will block.  DMA to already-mapped pages continues.  This
1400  * cannot be combined with the get-dirty-bitmap flag.
1401  */
1402 struct vfio_iommu_type1_dma_unmap {
1403 	__u32	argsz;
1404 	__u32	flags;
1405 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1406 #define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
1407 #define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
1408 	__u64	iova;				/* IO virtual address */
1409 	__u64	size;				/* Size of mapping (bytes) */
1410 	__u8    data[];
1411 };
1412 
1413 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1414 
1415 /*
1416  * IOCTLs to enable/disable IOMMU container usage.
1417  * No parameters are supported.
1418  */
1419 #define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
1420 #define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
1421 
1422 /**
1423  * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1424  *                                     struct vfio_iommu_type1_dirty_bitmap)
1425  * IOCTL is used for dirty pages logging.
1426  * Caller should set flag depending on which operation to perform, details as
1427  * below:
1428  *
1429  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1430  * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1431  * the device; designed to be used when a migration is in progress. Dirty pages
1432  * are logged until logging is disabled by user application by calling the IOCTL
1433  * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1434  *
1435  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1436  * the IOMMU driver to stop logging dirtied pages.
1437  *
1438  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1439  * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1440  * The user must specify the IOVA range and the pgsize through the structure
1441  * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1442  * supports getting a bitmap of the smallest supported pgsize only and can be
1443  * modified in future to get a bitmap of any specified supported pgsize. The
1444  * user must provide a zeroed memory area for the bitmap memory and specify its
1445  * size in bitmap.size. One bit is used to represent one page consecutively
1446  * starting from iova offset. The user should provide page size in bitmap.pgsize
1447  * field. A bit set in the bitmap indicates that the page at that offset from
1448  * iova is dirty. The caller must set argsz to a value including the size of
1449  * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1450  * actual bitmap. If dirty pages logging is not enabled, an error will be
1451  * returned.
1452  *
1453  * Only one of the flags _START, _STOP and _GET may be specified at a time.
1454  *
1455  */
1456 struct vfio_iommu_type1_dirty_bitmap {
1457 	__u32        argsz;
1458 	__u32        flags;
1459 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
1460 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
1461 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
1462 	__u8         data[];
1463 };
1464 
1465 struct vfio_iommu_type1_dirty_bitmap_get {
1466 	__u64              iova;	/* IO virtual address */
1467 	__u64              size;	/* Size of iova range */
1468 	struct vfio_bitmap bitmap;
1469 };
1470 
1471 #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1472 
1473 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1474 
1475 /*
1476  * The SPAPR TCE DDW info struct provides the information about
1477  * the details of Dynamic DMA window capability.
1478  *
1479  * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1480  * @max_dynamic_windows_supported tells the maximum number of windows
1481  * which the platform can create.
1482  * @levels tells the maximum number of levels in multi-level IOMMU tables;
1483  * this allows splitting a table into smaller chunks which reduces
1484  * the amount of physically contiguous memory required for the table.
1485  */
1486 struct vfio_iommu_spapr_tce_ddw_info {
1487 	__u64 pgsizes;			/* Bitmap of supported page sizes */
1488 	__u32 max_dynamic_windows_supported;
1489 	__u32 levels;
1490 };
1491 
1492 /*
1493  * The SPAPR TCE info struct provides the information about the PCI bus
1494  * address ranges available for DMA, these values are programmed into
1495  * the hardware so the guest has to know that information.
1496  *
1497  * The DMA 32 bit window start is an absolute PCI bus address.
1498  * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1499  * addresses too so the window works as a filter rather than an offset
1500  * for IOVA addresses.
1501  *
1502  * Flags supported:
1503  * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1504  *   (DDW) support is present. @ddw is only supported when DDW is present.
1505  */
1506 struct vfio_iommu_spapr_tce_info {
1507 	__u32 argsz;
1508 	__u32 flags;
1509 #define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
1510 	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
1511 	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
1512 	struct vfio_iommu_spapr_tce_ddw_info ddw;
1513 };
1514 
1515 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
1516 
1517 /*
1518  * EEH PE operation struct provides ways to:
1519  * - enable/disable EEH functionality;
1520  * - unfreeze IO/DMA for frozen PE;
1521  * - read PE state;
1522  * - reset PE;
1523  * - configure PE;
1524  * - inject EEH error.
1525  */
1526 struct vfio_eeh_pe_err {
1527 	__u32 type;
1528 	__u32 func;
1529 	__u64 addr;
1530 	__u64 mask;
1531 };
1532 
1533 struct vfio_eeh_pe_op {
1534 	__u32 argsz;
1535 	__u32 flags;
1536 	__u32 op;
1537 	union {
1538 		struct vfio_eeh_pe_err err;
1539 	};
1540 };
1541 
1542 #define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
1543 #define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
1544 #define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
1545 #define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
1546 #define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
1547 #define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
1548 #define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
1549 #define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
1550 #define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
1551 #define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
1552 #define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
1553 #define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
1554 #define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
1555 #define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
1556 #define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
1557 
1558 #define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
1559 
1560 /**
1561  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1562  *
1563  * Registers user space memory where DMA is allowed. It pins
1564  * user pages and does the locked memory accounting so
1565  * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1566  * get faster.
1567  */
1568 struct vfio_iommu_spapr_register_memory {
1569 	__u32	argsz;
1570 	__u32	flags;
1571 	__u64	vaddr;				/* Process virtual address */
1572 	__u64	size;				/* Size of mapping (bytes) */
1573 };
1574 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
1575 
1576 /**
1577  * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1578  *
1579  * Unregisters user space memory registered with
1580  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1581  * Uses vfio_iommu_spapr_register_memory for parameters.
1582  */
1583 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
1584 
1585 /**
1586  * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1587  *
1588  * Creates an additional TCE table and programs it (sets a new DMA window)
1589  * to every IOMMU group in the container. It receives page shift, window
1590  * size and number of levels in the TCE table being created.
1591  *
1592  * It allocates and returns an offset on a PCI bus of the new DMA window.
1593  */
1594 struct vfio_iommu_spapr_tce_create {
1595 	__u32 argsz;
1596 	__u32 flags;
1597 	/* in */
1598 	__u32 page_shift;
1599 	__u32 __resv1;
1600 	__u64 window_size;
1601 	__u32 levels;
1602 	__u32 __resv2;
1603 	/* out */
1604 	__u64 start_addr;
1605 };
1606 #define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
1607 
1608 /**
1609  * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1610  *
1611  * Unprograms a TCE table from all groups in the container and destroys it.
1612  * It receives a PCI bus offset as a window id.
1613  */
1614 struct vfio_iommu_spapr_tce_remove {
1615 	__u32 argsz;
1616 	__u32 flags;
1617 	/* in */
1618 	__u64 start_addr;
1619 };
1620 #define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
1621 
1622 /* ***************************************************************** */
1623 
1624 #endif /* VFIO_H */
1625