1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * VFIO API definition 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #ifndef VFIO_H 13 #define VFIO_H 14 15 #include <linux/types.h> 16 #include <linux/ioctl.h> 17 18 #define VFIO_API_VERSION 0 19 20 21 /* Kernel & User level defines for VFIO IOCTLs. */ 22 23 /* Extensions */ 24 25 #define VFIO_TYPE1_IOMMU 1 26 #define VFIO_SPAPR_TCE_IOMMU 2 27 #define VFIO_TYPE1v2_IOMMU 3 28 /* 29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This 30 * capability is subject to change as groups are added or removed. 31 */ 32 #define VFIO_DMA_CC_IOMMU 4 33 34 /* Check if EEH is supported */ 35 #define VFIO_EEH 5 36 37 /* Two-stage IOMMU */ 38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ 39 40 #define VFIO_SPAPR_TCE_v2_IOMMU 7 41 42 /* 43 * The No-IOMMU IOMMU offers no translation or isolation for devices and 44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU 45 * code will taint the host kernel and should be used with extreme caution. 46 */ 47 #define VFIO_NOIOMMU_IOMMU 8 48 49 /* 50 * The IOCTL interface is designed for extensibility by embedding the 51 * structure length (argsz) and flags into structures passed between 52 * kernel and userspace. We therefore use the _IO() macro for these 53 * defines to avoid implicitly embedding a size into the ioctl request. 54 * As structure fields are added, argsz will increase to match and flag 55 * bits will be defined to indicate additional fields with valid data. 56 * It's *always* the caller's responsibility to indicate the size of 57 * the structure passed by setting argsz appropriately. 58 */ 59 60 #define VFIO_TYPE (';') 61 #define VFIO_BASE 100 62 63 /* 64 * For extension of INFO ioctls, VFIO makes use of a capability chain 65 * designed after PCI/e capabilities. A flag bit indicates whether 66 * this capability chain is supported and a field defined in the fixed 67 * structure defines the offset of the first capability in the chain. 68 * This field is only valid when the corresponding bit in the flags 69 * bitmap is set. This offset field is relative to the start of the 70 * INFO buffer, as is the next field within each capability header. 71 * The id within the header is a shared address space per INFO ioctl, 72 * while the version field is specific to the capability id. The 73 * contents following the header are specific to the capability id. 74 */ 75 struct vfio_info_cap_header { 76 __u16 id; /* Identifies capability */ 77 __u16 version; /* Version specific to the capability ID */ 78 __u32 next; /* Offset of next capability */ 79 }; 80 81 /* 82 * Callers of INFO ioctls passing insufficiently sized buffers will see 83 * the capability chain flag bit set, a zero value for the first capability 84 * offset (if available within the provided argsz), and argsz will be 85 * updated to report the necessary buffer size. For compatibility, the 86 * INFO ioctl will not report error in this case, but the capability chain 87 * will not be available. 88 */ 89 90 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ 91 92 /** 93 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) 94 * 95 * Report the version of the VFIO API. This allows us to bump the entire 96 * API version should we later need to add or change features in incompatible 97 * ways. 98 * Return: VFIO_API_VERSION 99 * Availability: Always 100 */ 101 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) 102 103 /** 104 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) 105 * 106 * Check whether an extension is supported. 107 * Return: 0 if not supported, 1 (or some other positive integer) if supported. 108 * Availability: Always 109 */ 110 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) 111 112 /** 113 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) 114 * 115 * Set the iommu to the given type. The type must be supported by an 116 * iommu driver as verified by calling CHECK_EXTENSION using the same 117 * type. A group must be set to this file descriptor before this 118 * ioctl is available. The IOMMU interfaces enabled by this call are 119 * specific to the value set. 120 * Return: 0 on success, -errno on failure 121 * Availability: When VFIO group attached 122 */ 123 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) 124 125 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ 126 127 /** 128 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, 129 * struct vfio_group_status) 130 * 131 * Retrieve information about the group. Fills in provided 132 * struct vfio_group_info. Caller sets argsz. 133 * Return: 0 on succes, -errno on failure. 134 * Availability: Always 135 */ 136 struct vfio_group_status { 137 __u32 argsz; 138 __u32 flags; 139 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) 140 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) 141 }; 142 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) 143 144 /** 145 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) 146 * 147 * Set the container for the VFIO group to the open VFIO file 148 * descriptor provided. Groups may only belong to a single 149 * container. Containers may, at their discretion, support multiple 150 * groups. Only when a container is set are all of the interfaces 151 * of the VFIO file descriptor and the VFIO group file descriptor 152 * available to the user. 153 * Return: 0 on success, -errno on failure. 154 * Availability: Always 155 */ 156 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) 157 158 /** 159 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) 160 * 161 * Remove the group from the attached container. This is the 162 * opposite of the SET_CONTAINER call and returns the group to 163 * an initial state. All device file descriptors must be released 164 * prior to calling this interface. When removing the last group 165 * from a container, the IOMMU will be disabled and all state lost, 166 * effectively also returning the VFIO file descriptor to an initial 167 * state. 168 * Return: 0 on success, -errno on failure. 169 * Availability: When attached to container 170 */ 171 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) 172 173 /** 174 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) 175 * 176 * Return a new file descriptor for the device object described by 177 * the provided string. The string should match a device listed in 178 * the devices subdirectory of the IOMMU group sysfs entry. The 179 * group containing the device must already be added to this context. 180 * Return: new file descriptor on success, -errno on failure. 181 * Availability: When attached to container 182 */ 183 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) 184 185 /* --------------- IOCTLs for DEVICE file descriptors --------------- */ 186 187 /** 188 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, 189 * struct vfio_device_info) 190 * 191 * Retrieve information about the device. Fills in provided 192 * struct vfio_device_info. Caller sets argsz. 193 * Return: 0 on success, -errno on failure. 194 */ 195 struct vfio_device_info { 196 __u32 argsz; 197 __u32 flags; 198 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ 199 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ 200 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ 201 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ 202 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ 203 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ 204 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */ 205 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ 206 __u32 num_regions; /* Max region index + 1 */ 207 __u32 num_irqs; /* Max IRQ index + 1 */ 208 __u32 cap_offset; /* Offset within info struct of first cap */ 209 }; 210 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) 211 212 /* 213 * Vendor driver using Mediated device framework should provide device_api 214 * attribute in supported type attribute groups. Device API string should be one 215 * of the following corresponding to device flags in vfio_device_info structure. 216 */ 217 218 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" 219 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" 220 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" 221 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" 222 #define VFIO_DEVICE_API_AP_STRING "vfio-ap" 223 224 /* 225 * The following capabilities are unique to s390 zPCI devices. Their contents 226 * are further-defined in vfio_zdev.h 227 */ 228 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 229 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 230 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 231 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 232 233 /** 234 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, 235 * struct vfio_region_info) 236 * 237 * Retrieve information about a device region. Caller provides 238 * struct vfio_region_info with index value set. Caller sets argsz. 239 * Implementation of region mapping is bus driver specific. This is 240 * intended to describe MMIO, I/O port, as well as bus specific 241 * regions (ex. PCI config space). Zero sized regions may be used 242 * to describe unimplemented regions (ex. unimplemented PCI BARs). 243 * Return: 0 on success, -errno on failure. 244 */ 245 struct vfio_region_info { 246 __u32 argsz; 247 __u32 flags; 248 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ 249 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ 250 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ 251 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ 252 __u32 index; /* Region index */ 253 __u32 cap_offset; /* Offset within info struct of first cap */ 254 __u64 size; /* Region size (bytes) */ 255 __u64 offset; /* Region offset from start of device fd */ 256 }; 257 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) 258 259 /* 260 * The sparse mmap capability allows finer granularity of specifying areas 261 * within a region with mmap support. When specified, the user should only 262 * mmap the offset ranges specified by the areas array. mmaps outside of the 263 * areas specified may fail (such as the range covering a PCI MSI-X table) or 264 * may result in improper device behavior. 265 * 266 * The structures below define version 1 of this capability. 267 */ 268 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 269 270 struct vfio_region_sparse_mmap_area { 271 __u64 offset; /* Offset of mmap'able area within region */ 272 __u64 size; /* Size of mmap'able area */ 273 }; 274 275 struct vfio_region_info_cap_sparse_mmap { 276 struct vfio_info_cap_header header; 277 __u32 nr_areas; 278 __u32 reserved; 279 struct vfio_region_sparse_mmap_area areas[]; 280 }; 281 282 /* 283 * The device specific type capability allows regions unique to a specific 284 * device or class of devices to be exposed. This helps solve the problem for 285 * vfio bus drivers of defining which region indexes correspond to which region 286 * on the device, without needing to resort to static indexes, as done by 287 * vfio-pci. For instance, if we were to go back in time, we might remove 288 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes 289 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd 290 * make a "VGA" device specific type to describe the VGA access space. This 291 * means that non-VGA devices wouldn't need to waste this index, and thus the 292 * address space associated with it due to implementation of device file 293 * descriptor offsets in vfio-pci. 294 * 295 * The current implementation is now part of the user ABI, so we can't use this 296 * for VGA, but there are other upcoming use cases, such as opregions for Intel 297 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll 298 * use this for future additions. 299 * 300 * The structure below defines version 1 of this capability. 301 */ 302 #define VFIO_REGION_INFO_CAP_TYPE 2 303 304 struct vfio_region_info_cap_type { 305 struct vfio_info_cap_header header; 306 __u32 type; /* global per bus driver */ 307 __u32 subtype; /* type specific */ 308 }; 309 310 /* 311 * List of region types, global per bus driver. 312 * If you introduce a new type, please add it here. 313 */ 314 315 /* PCI region type containing a PCI vendor part */ 316 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) 317 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) 318 #define VFIO_REGION_TYPE_GFX (1) 319 #define VFIO_REGION_TYPE_CCW (2) 320 #define VFIO_REGION_TYPE_MIGRATION (3) 321 322 /* sub-types for VFIO_REGION_TYPE_PCI_* */ 323 324 /* 8086 vendor PCI sub-types */ 325 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) 326 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) 327 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) 328 329 /* 10de vendor PCI sub-types */ 330 /* 331 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. 332 */ 333 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) 334 335 /* 1014 vendor PCI sub-types */ 336 /* 337 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU 338 * to do TLB invalidation on a GPU. 339 */ 340 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) 341 342 /* sub-types for VFIO_REGION_TYPE_GFX */ 343 #define VFIO_REGION_SUBTYPE_GFX_EDID (1) 344 345 /** 346 * struct vfio_region_gfx_edid - EDID region layout. 347 * 348 * Set display link state and EDID blob. 349 * 350 * The EDID blob has monitor information such as brand, name, serial 351 * number, physical size, supported video modes and more. 352 * 353 * This special region allows userspace (typically qemu) set a virtual 354 * EDID for the virtual monitor, which allows a flexible display 355 * configuration. 356 * 357 * For the edid blob spec look here: 358 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data 359 * 360 * On linux systems you can find the EDID blob in sysfs: 361 * /sys/class/drm/${card}/${connector}/edid 362 * 363 * You can use the edid-decode ulility (comes with xorg-x11-utils) to 364 * decode the EDID blob. 365 * 366 * @edid_offset: location of the edid blob, relative to the 367 * start of the region (readonly). 368 * @edid_max_size: max size of the edid blob (readonly). 369 * @edid_size: actual edid size (read/write). 370 * @link_state: display link state (read/write). 371 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. 372 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. 373 * @max_xres: max display width (0 == no limitation, readonly). 374 * @max_yres: max display height (0 == no limitation, readonly). 375 * 376 * EDID update protocol: 377 * (1) set link-state to down. 378 * (2) update edid blob and size. 379 * (3) set link-state to up. 380 */ 381 struct vfio_region_gfx_edid { 382 __u32 edid_offset; 383 __u32 edid_max_size; 384 __u32 edid_size; 385 __u32 max_xres; 386 __u32 max_yres; 387 __u32 link_state; 388 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 389 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 390 }; 391 392 /* sub-types for VFIO_REGION_TYPE_CCW */ 393 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) 394 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) 395 #define VFIO_REGION_SUBTYPE_CCW_CRW (3) 396 397 /* sub-types for VFIO_REGION_TYPE_MIGRATION */ 398 #define VFIO_REGION_SUBTYPE_MIGRATION (1) 399 400 /* 401 * The structure vfio_device_migration_info is placed at the 0th offset of 402 * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related 403 * migration information. Field accesses from this structure are only supported 404 * at their native width and alignment. Otherwise, the result is undefined and 405 * vendor drivers should return an error. 406 * 407 * device_state: (read/write) 408 * - The user application writes to this field to inform the vendor driver 409 * about the device state to be transitioned to. 410 * - The vendor driver should take the necessary actions to change the 411 * device state. After successful transition to a given state, the 412 * vendor driver should return success on write(device_state, state) 413 * system call. If the device state transition fails, the vendor driver 414 * should return an appropriate -errno for the fault condition. 415 * - On the user application side, if the device state transition fails, 416 * that is, if write(device_state, state) returns an error, read 417 * device_state again to determine the current state of the device from 418 * the vendor driver. 419 * - The vendor driver should return previous state of the device unless 420 * the vendor driver has encountered an internal error, in which case 421 * the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR. 422 * - The user application must use the device reset ioctl to recover the 423 * device from VFIO_DEVICE_STATE_ERROR state. If the device is 424 * indicated to be in a valid device state by reading device_state, the 425 * user application may attempt to transition the device to any valid 426 * state reachable from the current state or terminate itself. 427 * 428 * device_state consists of 3 bits: 429 * - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear, 430 * it indicates the _STOP state. When the device state is changed to 431 * _STOP, driver should stop the device before write() returns. 432 * - If bit 1 is set, it indicates the _SAVING state, which means that the 433 * driver should start gathering device state information that will be 434 * provided to the VFIO user application to save the device's state. 435 * - If bit 2 is set, it indicates the _RESUMING state, which means that 436 * the driver should prepare to resume the device. Data provided through 437 * the migration region should be used to resume the device. 438 * Bits 3 - 31 are reserved for future use. To preserve them, the user 439 * application should perform a read-modify-write operation on this 440 * field when modifying the specified bits. 441 * 442 * +------- _RESUMING 443 * |+------ _SAVING 444 * ||+----- _RUNNING 445 * ||| 446 * 000b => Device Stopped, not saving or resuming 447 * 001b => Device running, which is the default state 448 * 010b => Stop the device & save the device state, stop-and-copy state 449 * 011b => Device running and save the device state, pre-copy state 450 * 100b => Device stopped and the device state is resuming 451 * 101b => Invalid state 452 * 110b => Error state 453 * 111b => Invalid state 454 * 455 * State transitions: 456 * 457 * _RESUMING _RUNNING Pre-copy Stop-and-copy _STOP 458 * (100b) (001b) (011b) (010b) (000b) 459 * 0. Running or default state 460 * | 461 * 462 * 1. Normal Shutdown (optional) 463 * |------------------------------------->| 464 * 465 * 2. Save the state or suspend 466 * |------------------------->|---------->| 467 * 468 * 3. Save the state during live migration 469 * |----------->|------------>|---------->| 470 * 471 * 4. Resuming 472 * |<---------| 473 * 474 * 5. Resumed 475 * |--------->| 476 * 477 * 0. Default state of VFIO device is _RUNNING when the user application starts. 478 * 1. During normal shutdown of the user application, the user application may 479 * optionally change the VFIO device state from _RUNNING to _STOP. This 480 * transition is optional. The vendor driver must support this transition but 481 * must not require it. 482 * 2. When the user application saves state or suspends the application, the 483 * device state transitions from _RUNNING to stop-and-copy and then to _STOP. 484 * On state transition from _RUNNING to stop-and-copy, driver must stop the 485 * device, save the device state and send it to the application through the 486 * migration region. The sequence to be followed for such transition is given 487 * below. 488 * 3. In live migration of user application, the state transitions from _RUNNING 489 * to pre-copy, to stop-and-copy, and to _STOP. 490 * On state transition from _RUNNING to pre-copy, the driver should start 491 * gathering the device state while the application is still running and send 492 * the device state data to application through the migration region. 493 * On state transition from pre-copy to stop-and-copy, the driver must stop 494 * the device, save the device state and send it to the user application 495 * through the migration region. 496 * Vendor drivers must support the pre-copy state even for implementations 497 * where no data is provided to the user before the stop-and-copy state. The 498 * user must not be required to consume all migration data before the device 499 * transitions to a new state, including the stop-and-copy state. 500 * The sequence to be followed for above two transitions is given below. 501 * 4. To start the resuming phase, the device state should be transitioned from 502 * the _RUNNING to the _RESUMING state. 503 * In the _RESUMING state, the driver should use the device state data 504 * received through the migration region to resume the device. 505 * 5. After providing saved device data to the driver, the application should 506 * change the state from _RESUMING to _RUNNING. 507 * 508 * reserved: 509 * Reads on this field return zero and writes are ignored. 510 * 511 * pending_bytes: (read only) 512 * The number of pending bytes still to be migrated from the vendor driver. 513 * 514 * data_offset: (read only) 515 * The user application should read data_offset field from the migration 516 * region. The user application should read the device data from this 517 * offset within the migration region during the _SAVING state or write 518 * the device data during the _RESUMING state. See below for details of 519 * sequence to be followed. 520 * 521 * data_size: (read/write) 522 * The user application should read data_size to get the size in bytes of 523 * the data copied in the migration region during the _SAVING state and 524 * write the size in bytes of the data copied in the migration region 525 * during the _RESUMING state. 526 * 527 * The format of the migration region is as follows: 528 * ------------------------------------------------------------------ 529 * |vfio_device_migration_info| data section | 530 * | | /////////////////////////////// | 531 * ------------------------------------------------------------------ 532 * ^ ^ 533 * offset 0-trapped part data_offset 534 * 535 * The structure vfio_device_migration_info is always followed by the data 536 * section in the region, so data_offset will always be nonzero. The offset 537 * from where the data is copied is decided by the kernel driver. The data 538 * section can be trapped, mmapped, or partitioned, depending on how the kernel 539 * driver defines the data section. The data section partition can be defined 540 * as mapped by the sparse mmap capability. If mmapped, data_offset must be 541 * page aligned, whereas initial section which contains the 542 * vfio_device_migration_info structure, might not end at the offset, which is 543 * page aligned. The user is not required to access through mmap regardless 544 * of the capabilities of the region mmap. 545 * The vendor driver should determine whether and how to partition the data 546 * section. The vendor driver should return data_offset accordingly. 547 * 548 * The sequence to be followed while in pre-copy state and stop-and-copy state 549 * is as follows: 550 * a. Read pending_bytes, indicating the start of a new iteration to get device 551 * data. Repeated read on pending_bytes at this stage should have no side 552 * effects. 553 * If pending_bytes == 0, the user application should not iterate to get data 554 * for that device. 555 * If pending_bytes > 0, perform the following steps. 556 * b. Read data_offset, indicating that the vendor driver should make data 557 * available through the data section. The vendor driver should return this 558 * read operation only after data is available from (region + data_offset) 559 * to (region + data_offset + data_size). 560 * c. Read data_size, which is the amount of data in bytes available through 561 * the migration region. 562 * Read on data_offset and data_size should return the offset and size of 563 * the current buffer if the user application reads data_offset and 564 * data_size more than once here. 565 * d. Read data_size bytes of data from (region + data_offset) from the 566 * migration region. 567 * e. Process the data. 568 * f. Read pending_bytes, which indicates that the data from the previous 569 * iteration has been read. If pending_bytes > 0, go to step b. 570 * 571 * The user application can transition from the _SAVING|_RUNNING 572 * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the 573 * number of pending bytes. The user application should iterate in _SAVING 574 * (stop-and-copy) until pending_bytes is 0. 575 * 576 * The sequence to be followed while _RESUMING device state is as follows: 577 * While data for this device is available, repeat the following steps: 578 * a. Read data_offset from where the user application should write data. 579 * b. Write migration data starting at the migration region + data_offset for 580 * the length determined by data_size from the migration source. 581 * c. Write data_size, which indicates to the vendor driver that data is 582 * written in the migration region. Vendor driver must return this write 583 * operations on consuming data. Vendor driver should apply the 584 * user-provided migration region data to the device resume state. 585 * 586 * If an error occurs during the above sequences, the vendor driver can return 587 * an error code for next read() or write() operation, which will terminate the 588 * loop. The user application should then take the next necessary action, for 589 * example, failing migration or terminating the user application. 590 * 591 * For the user application, data is opaque. The user application should write 592 * data in the same order as the data is received and the data should be of 593 * same transaction size at the source. 594 */ 595 596 struct vfio_device_migration_info { 597 __u32 device_state; /* VFIO device state */ 598 #define VFIO_DEVICE_STATE_STOP (0) 599 #define VFIO_DEVICE_STATE_RUNNING (1 << 0) 600 #define VFIO_DEVICE_STATE_SAVING (1 << 1) 601 #define VFIO_DEVICE_STATE_RESUMING (1 << 2) 602 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_RUNNING | \ 603 VFIO_DEVICE_STATE_SAVING | \ 604 VFIO_DEVICE_STATE_RESUMING) 605 606 #define VFIO_DEVICE_STATE_VALID(state) \ 607 (state & VFIO_DEVICE_STATE_RESUMING ? \ 608 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1) 609 610 #define VFIO_DEVICE_STATE_IS_ERROR(state) \ 611 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \ 612 VFIO_DEVICE_STATE_RESUMING)) 613 614 #define VFIO_DEVICE_STATE_SET_ERROR(state) \ 615 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \ 616 VFIO_DEVICE_STATE_RESUMING) 617 618 __u32 reserved; 619 __u64 pending_bytes; 620 __u64 data_offset; 621 __u64 data_size; 622 }; 623 624 /* 625 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped 626 * which allows direct access to non-MSIX registers which happened to be within 627 * the same system page. 628 * 629 * Even though the userspace gets direct access to the MSIX data, the existing 630 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. 631 */ 632 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 633 634 /* 635 * Capability with compressed real address (aka SSA - small system address) 636 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing 637 * and by the userspace to associate a NVLink bridge with a GPU. 638 */ 639 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 640 641 struct vfio_region_info_cap_nvlink2_ssatgt { 642 struct vfio_info_cap_header header; 643 __u64 tgt; 644 }; 645 646 /* 647 * Capability with an NVLink link speed. The value is read by 648 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" 649 * property in the device tree. The value is fixed in the hardware 650 * and failing to provide the correct value results in the link 651 * not working with no indication from the driver why. 652 */ 653 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 654 655 struct vfio_region_info_cap_nvlink2_lnkspd { 656 struct vfio_info_cap_header header; 657 __u32 link_speed; 658 __u32 __pad; 659 }; 660 661 /** 662 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, 663 * struct vfio_irq_info) 664 * 665 * Retrieve information about a device IRQ. Caller provides 666 * struct vfio_irq_info with index value set. Caller sets argsz. 667 * Implementation of IRQ mapping is bus driver specific. Indexes 668 * using multiple IRQs are primarily intended to support MSI-like 669 * interrupt blocks. Zero count irq blocks may be used to describe 670 * unimplemented interrupt types. 671 * 672 * The EVENTFD flag indicates the interrupt index supports eventfd based 673 * signaling. 674 * 675 * The MASKABLE flags indicates the index supports MASK and UNMASK 676 * actions described below. 677 * 678 * AUTOMASKED indicates that after signaling, the interrupt line is 679 * automatically masked by VFIO and the user needs to unmask the line 680 * to receive new interrupts. This is primarily intended to distinguish 681 * level triggered interrupts. 682 * 683 * The NORESIZE flag indicates that the interrupt lines within the index 684 * are setup as a set and new subindexes cannot be enabled without first 685 * disabling the entire index. This is used for interrupts like PCI MSI 686 * and MSI-X where the driver may only use a subset of the available 687 * indexes, but VFIO needs to enable a specific number of vectors 688 * upfront. In the case of MSI-X, where the user can enable MSI-X and 689 * then add and unmask vectors, it's up to userspace to make the decision 690 * whether to allocate the maximum supported number of vectors or tear 691 * down setup and incrementally increase the vectors as each is enabled. 692 */ 693 struct vfio_irq_info { 694 __u32 argsz; 695 __u32 flags; 696 #define VFIO_IRQ_INFO_EVENTFD (1 << 0) 697 #define VFIO_IRQ_INFO_MASKABLE (1 << 1) 698 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) 699 #define VFIO_IRQ_INFO_NORESIZE (1 << 3) 700 __u32 index; /* IRQ index */ 701 __u32 count; /* Number of IRQs within this index */ 702 }; 703 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) 704 705 /** 706 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) 707 * 708 * Set signaling, masking, and unmasking of interrupts. Caller provides 709 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate 710 * the range of subindexes being specified. 711 * 712 * The DATA flags specify the type of data provided. If DATA_NONE, the 713 * operation performs the specified action immediately on the specified 714 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: 715 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. 716 * 717 * DATA_BOOL allows sparse support for the same on arrays of interrupts. 718 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): 719 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, 720 * data = {1,0,1} 721 * 722 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. 723 * A value of -1 can be used to either de-assign interrupts if already 724 * assigned or skip un-assigned interrupts. For example, to set an eventfd 725 * to be trigger for interrupts [0,0] and [0,2]: 726 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, 727 * data = {fd1, -1, fd2} 728 * If index [0,1] is previously set, two count = 1 ioctls calls would be 729 * required to set [0,0] and [0,2] without changing [0,1]. 730 * 731 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used 732 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing 733 * from userspace (ie. simulate hardware triggering). 734 * 735 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER 736 * enables the interrupt index for the device. Individual subindex interrupts 737 * can be disabled using the -1 value for DATA_EVENTFD or the index can be 738 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. 739 * 740 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while 741 * ACTION_TRIGGER specifies kernel->user signaling. 742 */ 743 struct vfio_irq_set { 744 __u32 argsz; 745 __u32 flags; 746 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ 747 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ 748 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ 749 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ 750 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ 751 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ 752 __u32 index; 753 __u32 start; 754 __u32 count; 755 __u8 data[]; 756 }; 757 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) 758 759 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ 760 VFIO_IRQ_SET_DATA_BOOL | \ 761 VFIO_IRQ_SET_DATA_EVENTFD) 762 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ 763 VFIO_IRQ_SET_ACTION_UNMASK | \ 764 VFIO_IRQ_SET_ACTION_TRIGGER) 765 /** 766 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) 767 * 768 * Reset a device. 769 */ 770 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) 771 772 /* 773 * The VFIO-PCI bus driver makes use of the following fixed region and 774 * IRQ index mapping. Unimplemented regions return a size of zero. 775 * Unimplemented IRQ types return a count of zero. 776 */ 777 778 enum { 779 VFIO_PCI_BAR0_REGION_INDEX, 780 VFIO_PCI_BAR1_REGION_INDEX, 781 VFIO_PCI_BAR2_REGION_INDEX, 782 VFIO_PCI_BAR3_REGION_INDEX, 783 VFIO_PCI_BAR4_REGION_INDEX, 784 VFIO_PCI_BAR5_REGION_INDEX, 785 VFIO_PCI_ROM_REGION_INDEX, 786 VFIO_PCI_CONFIG_REGION_INDEX, 787 /* 788 * Expose VGA regions defined for PCI base class 03, subclass 00. 789 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df 790 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented 791 * range is found at it's identity mapped offset from the region 792 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas 793 * between described ranges are unimplemented. 794 */ 795 VFIO_PCI_VGA_REGION_INDEX, 796 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ 797 /* device specific cap to define content. */ 798 }; 799 800 enum { 801 VFIO_PCI_INTX_IRQ_INDEX, 802 VFIO_PCI_MSI_IRQ_INDEX, 803 VFIO_PCI_MSIX_IRQ_INDEX, 804 VFIO_PCI_ERR_IRQ_INDEX, 805 VFIO_PCI_REQ_IRQ_INDEX, 806 VFIO_PCI_NUM_IRQS 807 }; 808 809 /* 810 * The vfio-ccw bus driver makes use of the following fixed region and 811 * IRQ index mapping. Unimplemented regions return a size of zero. 812 * Unimplemented IRQ types return a count of zero. 813 */ 814 815 enum { 816 VFIO_CCW_CONFIG_REGION_INDEX, 817 VFIO_CCW_NUM_REGIONS 818 }; 819 820 enum { 821 VFIO_CCW_IO_IRQ_INDEX, 822 VFIO_CCW_CRW_IRQ_INDEX, 823 VFIO_CCW_NUM_IRQS 824 }; 825 826 /** 827 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12, 828 * struct vfio_pci_hot_reset_info) 829 * 830 * Return: 0 on success, -errno on failure: 831 * -enospc = insufficient buffer, -enodev = unsupported for device. 832 */ 833 struct vfio_pci_dependent_device { 834 __u32 group_id; 835 __u16 segment; 836 __u8 bus; 837 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ 838 }; 839 840 struct vfio_pci_hot_reset_info { 841 __u32 argsz; 842 __u32 flags; 843 __u32 count; 844 struct vfio_pci_dependent_device devices[]; 845 }; 846 847 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 848 849 /** 850 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, 851 * struct vfio_pci_hot_reset) 852 * 853 * Return: 0 on success, -errno on failure. 854 */ 855 struct vfio_pci_hot_reset { 856 __u32 argsz; 857 __u32 flags; 858 __u32 count; 859 __s32 group_fds[]; 860 }; 861 862 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) 863 864 /** 865 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, 866 * struct vfio_device_query_gfx_plane) 867 * 868 * Set the drm_plane_type and flags, then retrieve the gfx plane info. 869 * 870 * flags supported: 871 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set 872 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no 873 * support for dma-buf. 874 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set 875 * to ask if the mdev supports region. 0 on support, -EINVAL on no 876 * support for region. 877 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set 878 * with each call to query the plane info. 879 * - Others are invalid and return -EINVAL. 880 * 881 * Note: 882 * 1. Plane could be disabled by guest. In that case, success will be 883 * returned with zero-initialized drm_format, size, width and height 884 * fields. 885 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available 886 * 887 * Return: 0 on success, -errno on other failure. 888 */ 889 struct vfio_device_gfx_plane_info { 890 __u32 argsz; 891 __u32 flags; 892 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) 893 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) 894 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) 895 /* in */ 896 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ 897 /* out */ 898 __u32 drm_format; /* drm format of plane */ 899 __u64 drm_format_mod; /* tiled mode */ 900 __u32 width; /* width of plane */ 901 __u32 height; /* height of plane */ 902 __u32 stride; /* stride of plane */ 903 __u32 size; /* size of plane in bytes, align on page*/ 904 __u32 x_pos; /* horizontal position of cursor plane */ 905 __u32 y_pos; /* vertical position of cursor plane*/ 906 __u32 x_hot; /* horizontal position of cursor hotspot */ 907 __u32 y_hot; /* vertical position of cursor hotspot */ 908 union { 909 __u32 region_index; /* region index */ 910 __u32 dmabuf_id; /* dma-buf id */ 911 }; 912 }; 913 914 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) 915 916 /** 917 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) 918 * 919 * Return a new dma-buf file descriptor for an exposed guest framebuffer 920 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ 921 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. 922 */ 923 924 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) 925 926 /** 927 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, 928 * struct vfio_device_ioeventfd) 929 * 930 * Perform a write to the device at the specified device fd offset, with 931 * the specified data and width when the provided eventfd is triggered. 932 * vfio bus drivers may not support this for all regions, for all widths, 933 * or at all. vfio-pci currently only enables support for BAR regions, 934 * excluding the MSI-X vector table. 935 * 936 * Return: 0 on success, -errno on failure. 937 */ 938 struct vfio_device_ioeventfd { 939 __u32 argsz; 940 __u32 flags; 941 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ 942 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ 943 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ 944 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ 945 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) 946 __u64 offset; /* device fd offset of write */ 947 __u64 data; /* data to be written */ 948 __s32 fd; /* -1 for de-assignment */ 949 }; 950 951 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) 952 953 /** 954 * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17, 955 * struct vfio_device_feature) 956 * 957 * Get, set, or probe feature data of the device. The feature is selected 958 * using the FEATURE_MASK portion of the flags field. Support for a feature 959 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe 960 * may optionally include the GET and/or SET bits to determine read vs write 961 * access of the feature respectively. Probing a feature will return success 962 * if the feature is supported and all of the optionally indicated GET/SET 963 * methods are supported. The format of the data portion of the structure is 964 * specific to the given feature. The data portion is not required for 965 * probing. GET and SET are mutually exclusive, except for use with PROBE. 966 * 967 * Return 0 on success, -errno on failure. 968 */ 969 struct vfio_device_feature { 970 __u32 argsz; 971 __u32 flags; 972 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ 973 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ 974 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ 975 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ 976 __u8 data[]; 977 }; 978 979 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) 980 981 /* 982 * Provide support for setting a PCI VF Token, which is used as a shared 983 * secret between PF and VF drivers. This feature may only be set on a 984 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing 985 * open VFs. Data provided when setting this feature is a 16-byte array 986 * (__u8 b[16]), representing a UUID. 987 */ 988 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) 989 990 /* -------- API for Type1 VFIO IOMMU -------- */ 991 992 /** 993 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) 994 * 995 * Retrieve information about the IOMMU object. Fills in provided 996 * struct vfio_iommu_info. Caller sets argsz. 997 * 998 * XXX Should we do these by CHECK_EXTENSION too? 999 */ 1000 struct vfio_iommu_type1_info { 1001 __u32 argsz; 1002 __u32 flags; 1003 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ 1004 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ 1005 __u64 iova_pgsizes; /* Bitmap of supported page sizes */ 1006 __u32 cap_offset; /* Offset within info struct of first cap */ 1007 }; 1008 1009 /* 1010 * The IOVA capability allows to report the valid IOVA range(s) 1011 * excluding any non-relaxable reserved regions exposed by 1012 * devices attached to the container. Any DMA map attempt 1013 * outside the valid iova range will return error. 1014 * 1015 * The structures below define version 1 of this capability. 1016 */ 1017 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 1018 1019 struct vfio_iova_range { 1020 __u64 start; 1021 __u64 end; 1022 }; 1023 1024 struct vfio_iommu_type1_info_cap_iova_range { 1025 struct vfio_info_cap_header header; 1026 __u32 nr_iovas; 1027 __u32 reserved; 1028 struct vfio_iova_range iova_ranges[]; 1029 }; 1030 1031 /* 1032 * The migration capability allows to report supported features for migration. 1033 * 1034 * The structures below define version 1 of this capability. 1035 * 1036 * The existence of this capability indicates that IOMMU kernel driver supports 1037 * dirty page logging. 1038 * 1039 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty 1040 * page logging. 1041 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap 1042 * size in bytes that can be used by user applications when getting the dirty 1043 * bitmap. 1044 */ 1045 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 1046 1047 struct vfio_iommu_type1_info_cap_migration { 1048 struct vfio_info_cap_header header; 1049 __u32 flags; 1050 __u64 pgsize_bitmap; 1051 __u64 max_dirty_bitmap_size; /* in bytes */ 1052 }; 1053 1054 /* 1055 * The DMA available capability allows to report the current number of 1056 * simultaneously outstanding DMA mappings that are allowed. 1057 * 1058 * The structure below defines version 1 of this capability. 1059 * 1060 * avail: specifies the current number of outstanding DMA mappings allowed. 1061 */ 1062 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 1063 1064 struct vfio_iommu_type1_info_dma_avail { 1065 struct vfio_info_cap_header header; 1066 __u32 avail; 1067 }; 1068 1069 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1070 1071 /** 1072 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) 1073 * 1074 * Map process virtual addresses to IO virtual addresses using the 1075 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. 1076 */ 1077 struct vfio_iommu_type1_dma_map { 1078 __u32 argsz; 1079 __u32 flags; 1080 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ 1081 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ 1082 __u64 vaddr; /* Process virtual address */ 1083 __u64 iova; /* IO virtual address */ 1084 __u64 size; /* Size of mapping (bytes) */ 1085 }; 1086 1087 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) 1088 1089 struct vfio_bitmap { 1090 __u64 pgsize; /* page size for bitmap in bytes */ 1091 __u64 size; /* in bytes */ 1092 __u64 *data; /* one bit per page */ 1093 }; 1094 1095 /** 1096 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, 1097 * struct vfio_dma_unmap) 1098 * 1099 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. 1100 * Caller sets argsz. The actual unmapped size is returned in the size 1101 * field. No guarantee is made to the user that arbitrary unmaps of iova 1102 * or size different from those used in the original mapping call will 1103 * succeed. 1104 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap 1105 * before unmapping IO virtual addresses. When this flag is set, the user must 1106 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated 1107 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. 1108 * A bit in the bitmap represents one page, of user provided page size in 1109 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set 1110 * indicates that the page at that offset from iova is dirty. A Bitmap of the 1111 * pages in the range of unmapped size is returned in the user-provided 1112 * vfio_bitmap.data. 1113 */ 1114 struct vfio_iommu_type1_dma_unmap { 1115 __u32 argsz; 1116 __u32 flags; 1117 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) 1118 __u64 iova; /* IO virtual address */ 1119 __u64 size; /* Size of mapping (bytes) */ 1120 __u8 data[]; 1121 }; 1122 1123 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) 1124 1125 /* 1126 * IOCTLs to enable/disable IOMMU container usage. 1127 * No parameters are supported. 1128 */ 1129 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) 1130 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) 1131 1132 /** 1133 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 1134 * struct vfio_iommu_type1_dirty_bitmap) 1135 * IOCTL is used for dirty pages logging. 1136 * Caller should set flag depending on which operation to perform, details as 1137 * below: 1138 * 1139 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs 1140 * the IOMMU driver to log pages that are dirtied or potentially dirtied by 1141 * the device; designed to be used when a migration is in progress. Dirty pages 1142 * are logged until logging is disabled by user application by calling the IOCTL 1143 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. 1144 * 1145 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs 1146 * the IOMMU driver to stop logging dirtied pages. 1147 * 1148 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set 1149 * returns the dirty pages bitmap for IOMMU container for a given IOVA range. 1150 * The user must specify the IOVA range and the pgsize through the structure 1151 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface 1152 * supports getting a bitmap of the smallest supported pgsize only and can be 1153 * modified in future to get a bitmap of any specified supported pgsize. The 1154 * user must provide a zeroed memory area for the bitmap memory and specify its 1155 * size in bitmap.size. One bit is used to represent one page consecutively 1156 * starting from iova offset. The user should provide page size in bitmap.pgsize 1157 * field. A bit set in the bitmap indicates that the page at that offset from 1158 * iova is dirty. The caller must set argsz to a value including the size of 1159 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the 1160 * actual bitmap. If dirty pages logging is not enabled, an error will be 1161 * returned. 1162 * 1163 * Only one of the flags _START, _STOP and _GET may be specified at a time. 1164 * 1165 */ 1166 struct vfio_iommu_type1_dirty_bitmap { 1167 __u32 argsz; 1168 __u32 flags; 1169 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) 1170 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) 1171 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) 1172 __u8 data[]; 1173 }; 1174 1175 struct vfio_iommu_type1_dirty_bitmap_get { 1176 __u64 iova; /* IO virtual address */ 1177 __u64 size; /* Size of iova range */ 1178 struct vfio_bitmap bitmap; 1179 }; 1180 1181 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) 1182 1183 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ 1184 1185 /* 1186 * The SPAPR TCE DDW info struct provides the information about 1187 * the details of Dynamic DMA window capability. 1188 * 1189 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. 1190 * @max_dynamic_windows_supported tells the maximum number of windows 1191 * which the platform can create. 1192 * @levels tells the maximum number of levels in multi-level IOMMU tables; 1193 * this allows splitting a table into smaller chunks which reduces 1194 * the amount of physically contiguous memory required for the table. 1195 */ 1196 struct vfio_iommu_spapr_tce_ddw_info { 1197 __u64 pgsizes; /* Bitmap of supported page sizes */ 1198 __u32 max_dynamic_windows_supported; 1199 __u32 levels; 1200 }; 1201 1202 /* 1203 * The SPAPR TCE info struct provides the information about the PCI bus 1204 * address ranges available for DMA, these values are programmed into 1205 * the hardware so the guest has to know that information. 1206 * 1207 * The DMA 32 bit window start is an absolute PCI bus address. 1208 * The IOVA address passed via map/unmap ioctls are absolute PCI bus 1209 * addresses too so the window works as a filter rather than an offset 1210 * for IOVA addresses. 1211 * 1212 * Flags supported: 1213 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows 1214 * (DDW) support is present. @ddw is only supported when DDW is present. 1215 */ 1216 struct vfio_iommu_spapr_tce_info { 1217 __u32 argsz; 1218 __u32 flags; 1219 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ 1220 __u32 dma32_window_start; /* 32 bit window start (bytes) */ 1221 __u32 dma32_window_size; /* 32 bit window size (bytes) */ 1222 struct vfio_iommu_spapr_tce_ddw_info ddw; 1223 }; 1224 1225 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1226 1227 /* 1228 * EEH PE operation struct provides ways to: 1229 * - enable/disable EEH functionality; 1230 * - unfreeze IO/DMA for frozen PE; 1231 * - read PE state; 1232 * - reset PE; 1233 * - configure PE; 1234 * - inject EEH error. 1235 */ 1236 struct vfio_eeh_pe_err { 1237 __u32 type; 1238 __u32 func; 1239 __u64 addr; 1240 __u64 mask; 1241 }; 1242 1243 struct vfio_eeh_pe_op { 1244 __u32 argsz; 1245 __u32 flags; 1246 __u32 op; 1247 union { 1248 struct vfio_eeh_pe_err err; 1249 }; 1250 }; 1251 1252 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ 1253 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ 1254 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ 1255 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ 1256 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ 1257 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ 1258 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ 1259 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ 1260 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ 1261 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ 1262 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ 1263 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ 1264 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ 1265 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ 1266 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ 1267 1268 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) 1269 1270 /** 1271 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) 1272 * 1273 * Registers user space memory where DMA is allowed. It pins 1274 * user pages and does the locked memory accounting so 1275 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls 1276 * get faster. 1277 */ 1278 struct vfio_iommu_spapr_register_memory { 1279 __u32 argsz; 1280 __u32 flags; 1281 __u64 vaddr; /* Process virtual address */ 1282 __u64 size; /* Size of mapping (bytes) */ 1283 }; 1284 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) 1285 1286 /** 1287 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) 1288 * 1289 * Unregisters user space memory registered with 1290 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. 1291 * Uses vfio_iommu_spapr_register_memory for parameters. 1292 */ 1293 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) 1294 1295 /** 1296 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) 1297 * 1298 * Creates an additional TCE table and programs it (sets a new DMA window) 1299 * to every IOMMU group in the container. It receives page shift, window 1300 * size and number of levels in the TCE table being created. 1301 * 1302 * It allocates and returns an offset on a PCI bus of the new DMA window. 1303 */ 1304 struct vfio_iommu_spapr_tce_create { 1305 __u32 argsz; 1306 __u32 flags; 1307 /* in */ 1308 __u32 page_shift; 1309 __u32 __resv1; 1310 __u64 window_size; 1311 __u32 levels; 1312 __u32 __resv2; 1313 /* out */ 1314 __u64 start_addr; 1315 }; 1316 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) 1317 1318 /** 1319 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) 1320 * 1321 * Unprograms a TCE table from all groups in the container and destroys it. 1322 * It receives a PCI bus offset as a window id. 1323 */ 1324 struct vfio_iommu_spapr_tce_remove { 1325 __u32 argsz; 1326 __u32 flags; 1327 /* in */ 1328 __u64 start_addr; 1329 }; 1330 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) 1331 1332 /* ***************************************************************** */ 1333 1334 #endif /* VFIO_H */ 1335