1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * VFIO API definition 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #ifndef VFIO_H 13 #define VFIO_H 14 15 #include <linux/types.h> 16 #include <linux/ioctl.h> 17 18 #define VFIO_API_VERSION 0 19 20 21 /* Kernel & User level defines for VFIO IOCTLs. */ 22 23 /* Extensions */ 24 25 #define VFIO_TYPE1_IOMMU 1 26 #define VFIO_SPAPR_TCE_IOMMU 2 27 #define VFIO_TYPE1v2_IOMMU 3 28 /* 29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This 30 * capability is subject to change as groups are added or removed. 31 */ 32 #define VFIO_DMA_CC_IOMMU 4 33 34 /* Check if EEH is supported */ 35 #define VFIO_EEH 5 36 37 /* Two-stage IOMMU */ 38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ 39 40 #define VFIO_SPAPR_TCE_v2_IOMMU 7 41 42 /* 43 * The No-IOMMU IOMMU offers no translation or isolation for devices and 44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU 45 * code will taint the host kernel and should be used with extreme caution. 46 */ 47 #define VFIO_NOIOMMU_IOMMU 8 48 49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */ 50 #define VFIO_UNMAP_ALL 9 51 52 /* 53 * Supports the vaddr flag for DMA map and unmap. Not supported for mediated 54 * devices, so this capability is subject to change as groups are added or 55 * removed. 56 */ 57 #define VFIO_UPDATE_VADDR 10 58 59 /* 60 * The IOCTL interface is designed for extensibility by embedding the 61 * structure length (argsz) and flags into structures passed between 62 * kernel and userspace. We therefore use the _IO() macro for these 63 * defines to avoid implicitly embedding a size into the ioctl request. 64 * As structure fields are added, argsz will increase to match and flag 65 * bits will be defined to indicate additional fields with valid data. 66 * It's *always* the caller's responsibility to indicate the size of 67 * the structure passed by setting argsz appropriately. 68 */ 69 70 #define VFIO_TYPE (';') 71 #define VFIO_BASE 100 72 73 /* 74 * For extension of INFO ioctls, VFIO makes use of a capability chain 75 * designed after PCI/e capabilities. A flag bit indicates whether 76 * this capability chain is supported and a field defined in the fixed 77 * structure defines the offset of the first capability in the chain. 78 * This field is only valid when the corresponding bit in the flags 79 * bitmap is set. This offset field is relative to the start of the 80 * INFO buffer, as is the next field within each capability header. 81 * The id within the header is a shared address space per INFO ioctl, 82 * while the version field is specific to the capability id. The 83 * contents following the header are specific to the capability id. 84 */ 85 struct vfio_info_cap_header { 86 __u16 id; /* Identifies capability */ 87 __u16 version; /* Version specific to the capability ID */ 88 __u32 next; /* Offset of next capability */ 89 }; 90 91 /* 92 * Callers of INFO ioctls passing insufficiently sized buffers will see 93 * the capability chain flag bit set, a zero value for the first capability 94 * offset (if available within the provided argsz), and argsz will be 95 * updated to report the necessary buffer size. For compatibility, the 96 * INFO ioctl will not report error in this case, but the capability chain 97 * will not be available. 98 */ 99 100 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ 101 102 /** 103 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) 104 * 105 * Report the version of the VFIO API. This allows us to bump the entire 106 * API version should we later need to add or change features in incompatible 107 * ways. 108 * Return: VFIO_API_VERSION 109 * Availability: Always 110 */ 111 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) 112 113 /** 114 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) 115 * 116 * Check whether an extension is supported. 117 * Return: 0 if not supported, 1 (or some other positive integer) if supported. 118 * Availability: Always 119 */ 120 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) 121 122 /** 123 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) 124 * 125 * Set the iommu to the given type. The type must be supported by an 126 * iommu driver as verified by calling CHECK_EXTENSION using the same 127 * type. A group must be set to this file descriptor before this 128 * ioctl is available. The IOMMU interfaces enabled by this call are 129 * specific to the value set. 130 * Return: 0 on success, -errno on failure 131 * Availability: When VFIO group attached 132 */ 133 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) 134 135 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ 136 137 /** 138 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, 139 * struct vfio_group_status) 140 * 141 * Retrieve information about the group. Fills in provided 142 * struct vfio_group_info. Caller sets argsz. 143 * Return: 0 on succes, -errno on failure. 144 * Availability: Always 145 */ 146 struct vfio_group_status { 147 __u32 argsz; 148 __u32 flags; 149 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) 150 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) 151 }; 152 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) 153 154 /** 155 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) 156 * 157 * Set the container for the VFIO group to the open VFIO file 158 * descriptor provided. Groups may only belong to a single 159 * container. Containers may, at their discretion, support multiple 160 * groups. Only when a container is set are all of the interfaces 161 * of the VFIO file descriptor and the VFIO group file descriptor 162 * available to the user. 163 * Return: 0 on success, -errno on failure. 164 * Availability: Always 165 */ 166 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) 167 168 /** 169 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) 170 * 171 * Remove the group from the attached container. This is the 172 * opposite of the SET_CONTAINER call and returns the group to 173 * an initial state. All device file descriptors must be released 174 * prior to calling this interface. When removing the last group 175 * from a container, the IOMMU will be disabled and all state lost, 176 * effectively also returning the VFIO file descriptor to an initial 177 * state. 178 * Return: 0 on success, -errno on failure. 179 * Availability: When attached to container 180 */ 181 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) 182 183 /** 184 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) 185 * 186 * Return a new file descriptor for the device object described by 187 * the provided string. The string should match a device listed in 188 * the devices subdirectory of the IOMMU group sysfs entry. The 189 * group containing the device must already be added to this context. 190 * Return: new file descriptor on success, -errno on failure. 191 * Availability: When attached to container 192 */ 193 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) 194 195 /* --------------- IOCTLs for DEVICE file descriptors --------------- */ 196 197 /** 198 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, 199 * struct vfio_device_info) 200 * 201 * Retrieve information about the device. Fills in provided 202 * struct vfio_device_info. Caller sets argsz. 203 * Return: 0 on success, -errno on failure. 204 */ 205 struct vfio_device_info { 206 __u32 argsz; 207 __u32 flags; 208 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ 209 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ 210 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ 211 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ 212 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ 213 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ 214 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */ 215 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ 216 #define VFIO_DEVICE_FLAGS_CDX (1 << 8) /* vfio-cdx device */ 217 __u32 num_regions; /* Max region index + 1 */ 218 __u32 num_irqs; /* Max IRQ index + 1 */ 219 __u32 cap_offset; /* Offset within info struct of first cap */ 220 }; 221 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) 222 223 /* 224 * Vendor driver using Mediated device framework should provide device_api 225 * attribute in supported type attribute groups. Device API string should be one 226 * of the following corresponding to device flags in vfio_device_info structure. 227 */ 228 229 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" 230 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" 231 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" 232 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" 233 #define VFIO_DEVICE_API_AP_STRING "vfio-ap" 234 235 /* 236 * The following capabilities are unique to s390 zPCI devices. Their contents 237 * are further-defined in vfio_zdev.h 238 */ 239 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 240 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 241 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 242 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 243 244 /* 245 * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp 246 * completion to the root bus with supported widths provided via flags. 247 */ 248 #define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP 5 249 struct vfio_device_info_cap_pci_atomic_comp { 250 struct vfio_info_cap_header header; 251 __u32 flags; 252 #define VFIO_PCI_ATOMIC_COMP32 (1 << 0) 253 #define VFIO_PCI_ATOMIC_COMP64 (1 << 1) 254 #define VFIO_PCI_ATOMIC_COMP128 (1 << 2) 255 __u32 reserved; 256 }; 257 258 /** 259 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, 260 * struct vfio_region_info) 261 * 262 * Retrieve information about a device region. Caller provides 263 * struct vfio_region_info with index value set. Caller sets argsz. 264 * Implementation of region mapping is bus driver specific. This is 265 * intended to describe MMIO, I/O port, as well as bus specific 266 * regions (ex. PCI config space). Zero sized regions may be used 267 * to describe unimplemented regions (ex. unimplemented PCI BARs). 268 * Return: 0 on success, -errno on failure. 269 */ 270 struct vfio_region_info { 271 __u32 argsz; 272 __u32 flags; 273 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ 274 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ 275 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ 276 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ 277 __u32 index; /* Region index */ 278 __u32 cap_offset; /* Offset within info struct of first cap */ 279 __u64 size; /* Region size (bytes) */ 280 __u64 offset; /* Region offset from start of device fd */ 281 }; 282 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) 283 284 /* 285 * The sparse mmap capability allows finer granularity of specifying areas 286 * within a region with mmap support. When specified, the user should only 287 * mmap the offset ranges specified by the areas array. mmaps outside of the 288 * areas specified may fail (such as the range covering a PCI MSI-X table) or 289 * may result in improper device behavior. 290 * 291 * The structures below define version 1 of this capability. 292 */ 293 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 294 295 struct vfio_region_sparse_mmap_area { 296 __u64 offset; /* Offset of mmap'able area within region */ 297 __u64 size; /* Size of mmap'able area */ 298 }; 299 300 struct vfio_region_info_cap_sparse_mmap { 301 struct vfio_info_cap_header header; 302 __u32 nr_areas; 303 __u32 reserved; 304 struct vfio_region_sparse_mmap_area areas[]; 305 }; 306 307 /* 308 * The device specific type capability allows regions unique to a specific 309 * device or class of devices to be exposed. This helps solve the problem for 310 * vfio bus drivers of defining which region indexes correspond to which region 311 * on the device, without needing to resort to static indexes, as done by 312 * vfio-pci. For instance, if we were to go back in time, we might remove 313 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes 314 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd 315 * make a "VGA" device specific type to describe the VGA access space. This 316 * means that non-VGA devices wouldn't need to waste this index, and thus the 317 * address space associated with it due to implementation of device file 318 * descriptor offsets in vfio-pci. 319 * 320 * The current implementation is now part of the user ABI, so we can't use this 321 * for VGA, but there are other upcoming use cases, such as opregions for Intel 322 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll 323 * use this for future additions. 324 * 325 * The structure below defines version 1 of this capability. 326 */ 327 #define VFIO_REGION_INFO_CAP_TYPE 2 328 329 struct vfio_region_info_cap_type { 330 struct vfio_info_cap_header header; 331 __u32 type; /* global per bus driver */ 332 __u32 subtype; /* type specific */ 333 }; 334 335 /* 336 * List of region types, global per bus driver. 337 * If you introduce a new type, please add it here. 338 */ 339 340 /* PCI region type containing a PCI vendor part */ 341 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) 342 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) 343 #define VFIO_REGION_TYPE_GFX (1) 344 #define VFIO_REGION_TYPE_CCW (2) 345 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3) 346 347 /* sub-types for VFIO_REGION_TYPE_PCI_* */ 348 349 /* 8086 vendor PCI sub-types */ 350 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) 351 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) 352 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) 353 354 /* 10de vendor PCI sub-types */ 355 /* 356 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. 357 * 358 * Deprecated, region no longer provided 359 */ 360 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) 361 362 /* 1014 vendor PCI sub-types */ 363 /* 364 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU 365 * to do TLB invalidation on a GPU. 366 * 367 * Deprecated, region no longer provided 368 */ 369 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) 370 371 /* sub-types for VFIO_REGION_TYPE_GFX */ 372 #define VFIO_REGION_SUBTYPE_GFX_EDID (1) 373 374 /** 375 * struct vfio_region_gfx_edid - EDID region layout. 376 * 377 * Set display link state and EDID blob. 378 * 379 * The EDID blob has monitor information such as brand, name, serial 380 * number, physical size, supported video modes and more. 381 * 382 * This special region allows userspace (typically qemu) set a virtual 383 * EDID for the virtual monitor, which allows a flexible display 384 * configuration. 385 * 386 * For the edid blob spec look here: 387 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data 388 * 389 * On linux systems you can find the EDID blob in sysfs: 390 * /sys/class/drm/${card}/${connector}/edid 391 * 392 * You can use the edid-decode ulility (comes with xorg-x11-utils) to 393 * decode the EDID blob. 394 * 395 * @edid_offset: location of the edid blob, relative to the 396 * start of the region (readonly). 397 * @edid_max_size: max size of the edid blob (readonly). 398 * @edid_size: actual edid size (read/write). 399 * @link_state: display link state (read/write). 400 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. 401 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. 402 * @max_xres: max display width (0 == no limitation, readonly). 403 * @max_yres: max display height (0 == no limitation, readonly). 404 * 405 * EDID update protocol: 406 * (1) set link-state to down. 407 * (2) update edid blob and size. 408 * (3) set link-state to up. 409 */ 410 struct vfio_region_gfx_edid { 411 __u32 edid_offset; 412 __u32 edid_max_size; 413 __u32 edid_size; 414 __u32 max_xres; 415 __u32 max_yres; 416 __u32 link_state; 417 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 418 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 419 }; 420 421 /* sub-types for VFIO_REGION_TYPE_CCW */ 422 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) 423 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) 424 #define VFIO_REGION_SUBTYPE_CCW_CRW (3) 425 426 /* sub-types for VFIO_REGION_TYPE_MIGRATION */ 427 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1) 428 429 struct vfio_device_migration_info { 430 __u32 device_state; /* VFIO device state */ 431 #define VFIO_DEVICE_STATE_V1_STOP (0) 432 #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0) 433 #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1) 434 #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2) 435 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \ 436 VFIO_DEVICE_STATE_V1_SAVING | \ 437 VFIO_DEVICE_STATE_V1_RESUMING) 438 439 #define VFIO_DEVICE_STATE_VALID(state) \ 440 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \ 441 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1) 442 443 #define VFIO_DEVICE_STATE_IS_ERROR(state) \ 444 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \ 445 VFIO_DEVICE_STATE_V1_RESUMING)) 446 447 #define VFIO_DEVICE_STATE_SET_ERROR(state) \ 448 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \ 449 VFIO_DEVICE_STATE_V1_RESUMING) 450 451 __u32 reserved; 452 __u64 pending_bytes; 453 __u64 data_offset; 454 __u64 data_size; 455 }; 456 457 /* 458 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped 459 * which allows direct access to non-MSIX registers which happened to be within 460 * the same system page. 461 * 462 * Even though the userspace gets direct access to the MSIX data, the existing 463 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. 464 */ 465 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 466 467 /* 468 * Capability with compressed real address (aka SSA - small system address) 469 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing 470 * and by the userspace to associate a NVLink bridge with a GPU. 471 * 472 * Deprecated, capability no longer provided 473 */ 474 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 475 476 struct vfio_region_info_cap_nvlink2_ssatgt { 477 struct vfio_info_cap_header header; 478 __u64 tgt; 479 }; 480 481 /* 482 * Capability with an NVLink link speed. The value is read by 483 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" 484 * property in the device tree. The value is fixed in the hardware 485 * and failing to provide the correct value results in the link 486 * not working with no indication from the driver why. 487 * 488 * Deprecated, capability no longer provided 489 */ 490 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 491 492 struct vfio_region_info_cap_nvlink2_lnkspd { 493 struct vfio_info_cap_header header; 494 __u32 link_speed; 495 __u32 __pad; 496 }; 497 498 /** 499 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, 500 * struct vfio_irq_info) 501 * 502 * Retrieve information about a device IRQ. Caller provides 503 * struct vfio_irq_info with index value set. Caller sets argsz. 504 * Implementation of IRQ mapping is bus driver specific. Indexes 505 * using multiple IRQs are primarily intended to support MSI-like 506 * interrupt blocks. Zero count irq blocks may be used to describe 507 * unimplemented interrupt types. 508 * 509 * The EVENTFD flag indicates the interrupt index supports eventfd based 510 * signaling. 511 * 512 * The MASKABLE flags indicates the index supports MASK and UNMASK 513 * actions described below. 514 * 515 * AUTOMASKED indicates that after signaling, the interrupt line is 516 * automatically masked by VFIO and the user needs to unmask the line 517 * to receive new interrupts. This is primarily intended to distinguish 518 * level triggered interrupts. 519 * 520 * The NORESIZE flag indicates that the interrupt lines within the index 521 * are setup as a set and new subindexes cannot be enabled without first 522 * disabling the entire index. This is used for interrupts like PCI MSI 523 * and MSI-X where the driver may only use a subset of the available 524 * indexes, but VFIO needs to enable a specific number of vectors 525 * upfront. In the case of MSI-X, where the user can enable MSI-X and 526 * then add and unmask vectors, it's up to userspace to make the decision 527 * whether to allocate the maximum supported number of vectors or tear 528 * down setup and incrementally increase the vectors as each is enabled. 529 * Absence of the NORESIZE flag indicates that vectors can be enabled 530 * and disabled dynamically without impacting other vectors within the 531 * index. 532 */ 533 struct vfio_irq_info { 534 __u32 argsz; 535 __u32 flags; 536 #define VFIO_IRQ_INFO_EVENTFD (1 << 0) 537 #define VFIO_IRQ_INFO_MASKABLE (1 << 1) 538 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) 539 #define VFIO_IRQ_INFO_NORESIZE (1 << 3) 540 __u32 index; /* IRQ index */ 541 __u32 count; /* Number of IRQs within this index */ 542 }; 543 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) 544 545 /** 546 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) 547 * 548 * Set signaling, masking, and unmasking of interrupts. Caller provides 549 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate 550 * the range of subindexes being specified. 551 * 552 * The DATA flags specify the type of data provided. If DATA_NONE, the 553 * operation performs the specified action immediately on the specified 554 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: 555 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. 556 * 557 * DATA_BOOL allows sparse support for the same on arrays of interrupts. 558 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): 559 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, 560 * data = {1,0,1} 561 * 562 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. 563 * A value of -1 can be used to either de-assign interrupts if already 564 * assigned or skip un-assigned interrupts. For example, to set an eventfd 565 * to be trigger for interrupts [0,0] and [0,2]: 566 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, 567 * data = {fd1, -1, fd2} 568 * If index [0,1] is previously set, two count = 1 ioctls calls would be 569 * required to set [0,0] and [0,2] without changing [0,1]. 570 * 571 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used 572 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing 573 * from userspace (ie. simulate hardware triggering). 574 * 575 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER 576 * enables the interrupt index for the device. Individual subindex interrupts 577 * can be disabled using the -1 value for DATA_EVENTFD or the index can be 578 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. 579 * 580 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while 581 * ACTION_TRIGGER specifies kernel->user signaling. 582 */ 583 struct vfio_irq_set { 584 __u32 argsz; 585 __u32 flags; 586 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ 587 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ 588 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ 589 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ 590 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ 591 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ 592 __u32 index; 593 __u32 start; 594 __u32 count; 595 __u8 data[]; 596 }; 597 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) 598 599 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ 600 VFIO_IRQ_SET_DATA_BOOL | \ 601 VFIO_IRQ_SET_DATA_EVENTFD) 602 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ 603 VFIO_IRQ_SET_ACTION_UNMASK | \ 604 VFIO_IRQ_SET_ACTION_TRIGGER) 605 /** 606 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) 607 * 608 * Reset a device. 609 */ 610 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) 611 612 /* 613 * The VFIO-PCI bus driver makes use of the following fixed region and 614 * IRQ index mapping. Unimplemented regions return a size of zero. 615 * Unimplemented IRQ types return a count of zero. 616 */ 617 618 enum { 619 VFIO_PCI_BAR0_REGION_INDEX, 620 VFIO_PCI_BAR1_REGION_INDEX, 621 VFIO_PCI_BAR2_REGION_INDEX, 622 VFIO_PCI_BAR3_REGION_INDEX, 623 VFIO_PCI_BAR4_REGION_INDEX, 624 VFIO_PCI_BAR5_REGION_INDEX, 625 VFIO_PCI_ROM_REGION_INDEX, 626 VFIO_PCI_CONFIG_REGION_INDEX, 627 /* 628 * Expose VGA regions defined for PCI base class 03, subclass 00. 629 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df 630 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented 631 * range is found at it's identity mapped offset from the region 632 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas 633 * between described ranges are unimplemented. 634 */ 635 VFIO_PCI_VGA_REGION_INDEX, 636 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ 637 /* device specific cap to define content. */ 638 }; 639 640 enum { 641 VFIO_PCI_INTX_IRQ_INDEX, 642 VFIO_PCI_MSI_IRQ_INDEX, 643 VFIO_PCI_MSIX_IRQ_INDEX, 644 VFIO_PCI_ERR_IRQ_INDEX, 645 VFIO_PCI_REQ_IRQ_INDEX, 646 VFIO_PCI_NUM_IRQS 647 }; 648 649 /* 650 * The vfio-ccw bus driver makes use of the following fixed region and 651 * IRQ index mapping. Unimplemented regions return a size of zero. 652 * Unimplemented IRQ types return a count of zero. 653 */ 654 655 enum { 656 VFIO_CCW_CONFIG_REGION_INDEX, 657 VFIO_CCW_NUM_REGIONS 658 }; 659 660 enum { 661 VFIO_CCW_IO_IRQ_INDEX, 662 VFIO_CCW_CRW_IRQ_INDEX, 663 VFIO_CCW_REQ_IRQ_INDEX, 664 VFIO_CCW_NUM_IRQS 665 }; 666 667 /* 668 * The vfio-ap bus driver makes use of the following IRQ index mapping. 669 * Unimplemented IRQ types return a count of zero. 670 */ 671 enum { 672 VFIO_AP_REQ_IRQ_INDEX, 673 VFIO_AP_NUM_IRQS 674 }; 675 676 /** 677 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12, 678 * struct vfio_pci_hot_reset_info) 679 * 680 * Return: 0 on success, -errno on failure: 681 * -enospc = insufficient buffer, -enodev = unsupported for device. 682 */ 683 struct vfio_pci_dependent_device { 684 __u32 group_id; 685 __u16 segment; 686 __u8 bus; 687 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ 688 }; 689 690 struct vfio_pci_hot_reset_info { 691 __u32 argsz; 692 __u32 flags; 693 __u32 count; 694 struct vfio_pci_dependent_device devices[]; 695 }; 696 697 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 698 699 /** 700 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, 701 * struct vfio_pci_hot_reset) 702 * 703 * Return: 0 on success, -errno on failure. 704 */ 705 struct vfio_pci_hot_reset { 706 __u32 argsz; 707 __u32 flags; 708 __u32 count; 709 __s32 group_fds[]; 710 }; 711 712 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) 713 714 /** 715 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, 716 * struct vfio_device_query_gfx_plane) 717 * 718 * Set the drm_plane_type and flags, then retrieve the gfx plane info. 719 * 720 * flags supported: 721 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set 722 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no 723 * support for dma-buf. 724 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set 725 * to ask if the mdev supports region. 0 on support, -EINVAL on no 726 * support for region. 727 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set 728 * with each call to query the plane info. 729 * - Others are invalid and return -EINVAL. 730 * 731 * Note: 732 * 1. Plane could be disabled by guest. In that case, success will be 733 * returned with zero-initialized drm_format, size, width and height 734 * fields. 735 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available 736 * 737 * Return: 0 on success, -errno on other failure. 738 */ 739 struct vfio_device_gfx_plane_info { 740 __u32 argsz; 741 __u32 flags; 742 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) 743 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) 744 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) 745 /* in */ 746 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ 747 /* out */ 748 __u32 drm_format; /* drm format of plane */ 749 __u64 drm_format_mod; /* tiled mode */ 750 __u32 width; /* width of plane */ 751 __u32 height; /* height of plane */ 752 __u32 stride; /* stride of plane */ 753 __u32 size; /* size of plane in bytes, align on page*/ 754 __u32 x_pos; /* horizontal position of cursor plane */ 755 __u32 y_pos; /* vertical position of cursor plane*/ 756 __u32 x_hot; /* horizontal position of cursor hotspot */ 757 __u32 y_hot; /* vertical position of cursor hotspot */ 758 union { 759 __u32 region_index; /* region index */ 760 __u32 dmabuf_id; /* dma-buf id */ 761 }; 762 }; 763 764 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) 765 766 /** 767 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) 768 * 769 * Return a new dma-buf file descriptor for an exposed guest framebuffer 770 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ 771 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. 772 */ 773 774 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) 775 776 /** 777 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, 778 * struct vfio_device_ioeventfd) 779 * 780 * Perform a write to the device at the specified device fd offset, with 781 * the specified data and width when the provided eventfd is triggered. 782 * vfio bus drivers may not support this for all regions, for all widths, 783 * or at all. vfio-pci currently only enables support for BAR regions, 784 * excluding the MSI-X vector table. 785 * 786 * Return: 0 on success, -errno on failure. 787 */ 788 struct vfio_device_ioeventfd { 789 __u32 argsz; 790 __u32 flags; 791 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ 792 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ 793 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ 794 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ 795 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) 796 __u64 offset; /* device fd offset of write */ 797 __u64 data; /* data to be written */ 798 __s32 fd; /* -1 for de-assignment */ 799 }; 800 801 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) 802 803 /** 804 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 805 * struct vfio_device_feature) 806 * 807 * Get, set, or probe feature data of the device. The feature is selected 808 * using the FEATURE_MASK portion of the flags field. Support for a feature 809 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe 810 * may optionally include the GET and/or SET bits to determine read vs write 811 * access of the feature respectively. Probing a feature will return success 812 * if the feature is supported and all of the optionally indicated GET/SET 813 * methods are supported. The format of the data portion of the structure is 814 * specific to the given feature. The data portion is not required for 815 * probing. GET and SET are mutually exclusive, except for use with PROBE. 816 * 817 * Return 0 on success, -errno on failure. 818 */ 819 struct vfio_device_feature { 820 __u32 argsz; 821 __u32 flags; 822 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ 823 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ 824 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ 825 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ 826 __u8 data[]; 827 }; 828 829 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) 830 831 /* 832 * Provide support for setting a PCI VF Token, which is used as a shared 833 * secret between PF and VF drivers. This feature may only be set on a 834 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing 835 * open VFs. Data provided when setting this feature is a 16-byte array 836 * (__u8 b[16]), representing a UUID. 837 */ 838 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) 839 840 /* 841 * Indicates the device can support the migration API through 842 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and 843 * ERROR states are always supported. Support for additional states is 844 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be 845 * set. 846 * 847 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and 848 * RESUMING are supported. 849 * 850 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P 851 * is supported in addition to the STOP_COPY states. 852 * 853 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that 854 * PRE_COPY is supported in addition to the STOP_COPY states. 855 * 856 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY 857 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported 858 * in addition to the STOP_COPY states. 859 * 860 * Other combinations of flags have behavior to be defined in the future. 861 */ 862 struct vfio_device_feature_migration { 863 __aligned_u64 flags; 864 #define VFIO_MIGRATION_STOP_COPY (1 << 0) 865 #define VFIO_MIGRATION_P2P (1 << 1) 866 #define VFIO_MIGRATION_PRE_COPY (1 << 2) 867 }; 868 #define VFIO_DEVICE_FEATURE_MIGRATION 1 869 870 /* 871 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO 872 * device. The new state is supplied in device_state, see enum 873 * vfio_device_mig_state for details 874 * 875 * The kernel migration driver must fully transition the device to the new state 876 * value before the operation returns to the user. 877 * 878 * The kernel migration driver must not generate asynchronous device state 879 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET 880 * ioctl as described above. 881 * 882 * If this function fails then current device_state may be the original 883 * operating state or some other state along the combination transition path. 884 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt 885 * to return to the original state, or attempt to return to some other state 886 * such as RUNNING or STOP. 887 * 888 * If the new_state starts a new data transfer session then the FD associated 889 * with that session is returned in data_fd. The user is responsible to close 890 * this FD when it is finished. The user must consider the migration data stream 891 * carried over the FD to be opaque and must preserve the byte order of the 892 * stream. The user is not required to preserve buffer segmentation when writing 893 * the data stream during the RESUMING operation. 894 * 895 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO 896 * device, data_fd will be -1. 897 */ 898 struct vfio_device_feature_mig_state { 899 __u32 device_state; /* From enum vfio_device_mig_state */ 900 __s32 data_fd; 901 }; 902 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2 903 904 /* 905 * The device migration Finite State Machine is described by the enum 906 * vfio_device_mig_state. Some of the FSM arcs will create a migration data 907 * transfer session by returning a FD, in this case the migration data will 908 * flow over the FD using read() and write() as discussed below. 909 * 910 * There are 5 states to support VFIO_MIGRATION_STOP_COPY: 911 * RUNNING - The device is running normally 912 * STOP - The device does not change the internal or external state 913 * STOP_COPY - The device internal state can be read out 914 * RESUMING - The device is stopped and is loading a new internal state 915 * ERROR - The device has failed and must be reset 916 * 917 * And optional states to support VFIO_MIGRATION_P2P: 918 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA 919 * And VFIO_MIGRATION_PRE_COPY: 920 * PRE_COPY - The device is running normally but tracking internal state 921 * changes 922 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY: 923 * PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA 924 * 925 * The FSM takes actions on the arcs between FSM states. The driver implements 926 * the following behavior for the FSM arcs: 927 * 928 * RUNNING_P2P -> STOP 929 * STOP_COPY -> STOP 930 * While in STOP the device must stop the operation of the device. The device 931 * must not generate interrupts, DMA, or any other change to external state. 932 * It must not change its internal state. When stopped the device and kernel 933 * migration driver must accept and respond to interaction to support external 934 * subsystems in the STOP state, for example PCI MSI-X and PCI config space. 935 * Failure by the user to restrict device access while in STOP must not result 936 * in error conditions outside the user context (ex. host system faults). 937 * 938 * The STOP_COPY arc will terminate a data transfer session. 939 * 940 * RESUMING -> STOP 941 * Leaving RESUMING terminates a data transfer session and indicates the 942 * device should complete processing of the data delivered by write(). The 943 * kernel migration driver should complete the incorporation of data written 944 * to the data transfer FD into the device internal state and perform 945 * final validity and consistency checking of the new device state. If the 946 * user provided data is found to be incomplete, inconsistent, or otherwise 947 * invalid, the migration driver must fail the SET_STATE ioctl and 948 * optionally go to the ERROR state as described below. 949 * 950 * While in STOP the device has the same behavior as other STOP states 951 * described above. 952 * 953 * To abort a RESUMING session the device must be reset. 954 * 955 * PRE_COPY -> RUNNING 956 * RUNNING_P2P -> RUNNING 957 * While in RUNNING the device is fully operational, the device may generate 958 * interrupts, DMA, respond to MMIO, all vfio device regions are functional, 959 * and the device may advance its internal state. 960 * 961 * The PRE_COPY arc will terminate a data transfer session. 962 * 963 * PRE_COPY_P2P -> RUNNING_P2P 964 * RUNNING -> RUNNING_P2P 965 * STOP -> RUNNING_P2P 966 * While in RUNNING_P2P the device is partially running in the P2P quiescent 967 * state defined below. 968 * 969 * The PRE_COPY_P2P arc will terminate a data transfer session. 970 * 971 * RUNNING -> PRE_COPY 972 * RUNNING_P2P -> PRE_COPY_P2P 973 * STOP -> STOP_COPY 974 * PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states 975 * which share a data transfer session. Moving between these states alters 976 * what is streamed in session, but does not terminate or otherwise affect 977 * the associated fd. 978 * 979 * These arcs begin the process of saving the device state and will return a 980 * new data_fd. The migration driver may perform actions such as enabling 981 * dirty logging of device state when entering PRE_COPY or PER_COPY_P2P. 982 * 983 * Each arc does not change the device operation, the device remains 984 * RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below 985 * in PRE_COPY_P2P -> STOP_COPY. 986 * 987 * PRE_COPY -> PRE_COPY_P2P 988 * Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above. 989 * However, while in the PRE_COPY_P2P state, the device is partially running 990 * in the P2P quiescent state defined below, like RUNNING_P2P. 991 * 992 * PRE_COPY_P2P -> PRE_COPY 993 * This arc allows returning the device to a full RUNNING behavior while 994 * continuing all the behaviors of PRE_COPY. 995 * 996 * PRE_COPY_P2P -> STOP_COPY 997 * While in the STOP_COPY state the device has the same behavior as STOP 998 * with the addition that the data transfers session continues to stream the 999 * migration state. End of stream on the FD indicates the entire device 1000 * state has been transferred. 1001 * 1002 * The user should take steps to restrict access to vfio device regions while 1003 * the device is in STOP_COPY or risk corruption of the device migration data 1004 * stream. 1005 * 1006 * STOP -> RESUMING 1007 * Entering the RESUMING state starts a process of restoring the device state 1008 * and will return a new data_fd. The data stream fed into the data_fd should 1009 * be taken from the data transfer output of a single FD during saving from 1010 * a compatible device. The migration driver may alter/reset the internal 1011 * device state for this arc if required to prepare the device to receive the 1012 * migration data. 1013 * 1014 * STOP_COPY -> PRE_COPY 1015 * STOP_COPY -> PRE_COPY_P2P 1016 * These arcs are not permitted and return error if requested. Future 1017 * revisions of this API may define behaviors for these arcs, in this case 1018 * support will be discoverable by a new flag in 1019 * VFIO_DEVICE_FEATURE_MIGRATION. 1020 * 1021 * any -> ERROR 1022 * ERROR cannot be specified as a device state, however any transition request 1023 * can be failed with an errno return and may then move the device_state into 1024 * ERROR. In this case the device was unable to execute the requested arc and 1025 * was also unable to restore the device to any valid device_state. 1026 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the 1027 * device_state back to RUNNING. 1028 * 1029 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent 1030 * state for the device for the purposes of managing multiple devices within a 1031 * user context where peer-to-peer DMA between devices may be active. The 1032 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating 1033 * any new P2P DMA transactions. If the device can identify P2P transactions 1034 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration 1035 * driver must complete any such outstanding operations prior to completing the 1036 * FSM arc into a P2P state. For the purpose of specification the states 1037 * behave as though the device was fully running if not supported. Like while in 1038 * STOP or STOP_COPY the user must not touch the device, otherwise the state 1039 * can be exited. 1040 * 1041 * The remaining possible transitions are interpreted as combinations of the 1042 * above FSM arcs. As there are multiple paths through the FSM arcs the path 1043 * should be selected based on the following rules: 1044 * - Select the shortest path. 1045 * - The path cannot have saving group states as interior arcs, only 1046 * starting/end states. 1047 * Refer to vfio_mig_get_next_state() for the result of the algorithm. 1048 * 1049 * The automatic transit through the FSM arcs that make up the combination 1050 * transition is invisible to the user. When working with combination arcs the 1051 * user may see any step along the path in the device_state if SET_STATE 1052 * fails. When handling these types of errors users should anticipate future 1053 * revisions of this protocol using new states and those states becoming 1054 * visible in this case. 1055 * 1056 * The optional states cannot be used with SET_STATE if the device does not 1057 * support them. The user can discover if these states are supported by using 1058 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can 1059 * avoid knowing about these optional states if the kernel driver supports them. 1060 * 1061 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY 1062 * is not present. 1063 */ 1064 enum vfio_device_mig_state { 1065 VFIO_DEVICE_STATE_ERROR = 0, 1066 VFIO_DEVICE_STATE_STOP = 1, 1067 VFIO_DEVICE_STATE_RUNNING = 2, 1068 VFIO_DEVICE_STATE_STOP_COPY = 3, 1069 VFIO_DEVICE_STATE_RESUMING = 4, 1070 VFIO_DEVICE_STATE_RUNNING_P2P = 5, 1071 VFIO_DEVICE_STATE_PRE_COPY = 6, 1072 VFIO_DEVICE_STATE_PRE_COPY_P2P = 7, 1073 }; 1074 1075 /** 1076 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21) 1077 * 1078 * This ioctl is used on the migration data FD in the precopy phase of the 1079 * migration data transfer. It returns an estimate of the current data sizes 1080 * remaining to be transferred. It allows the user to judge when it is 1081 * appropriate to leave PRE_COPY for STOP_COPY. 1082 * 1083 * This ioctl is valid only in PRE_COPY states and kernel driver should 1084 * return -EINVAL from any other migration state. 1085 * 1086 * The vfio_precopy_info data structure returned by this ioctl provides 1087 * estimates of data available from the device during the PRE_COPY states. 1088 * This estimate is split into two categories, initial_bytes and 1089 * dirty_bytes. 1090 * 1091 * The initial_bytes field indicates the amount of initial precopy 1092 * data available from the device. This field should have a non-zero initial 1093 * value and decrease as migration data is read from the device. 1094 * It is recommended to leave PRE_COPY for STOP_COPY only after this field 1095 * reaches zero. Leaving PRE_COPY earlier might make things slower. 1096 * 1097 * The dirty_bytes field tracks device state changes relative to data 1098 * previously retrieved. This field starts at zero and may increase as 1099 * the internal device state is modified or decrease as that modified 1100 * state is read from the device. 1101 * 1102 * Userspace may use the combination of these fields to estimate the 1103 * potential data size available during the PRE_COPY phases, as well as 1104 * trends relative to the rate the device is dirtying its internal 1105 * state, but these fields are not required to have any bearing relative 1106 * to the data size available during the STOP_COPY phase. 1107 * 1108 * Drivers have a lot of flexibility in when and what they transfer during the 1109 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO. 1110 * 1111 * During pre-copy the migration data FD has a temporary "end of stream" that is 1112 * reached when both initial_bytes and dirty_byte are zero. For instance, this 1113 * may indicate that the device is idle and not currently dirtying any internal 1114 * state. When read() is done on this temporary end of stream the kernel driver 1115 * should return ENOMSG from read(). Userspace can wait for more data (which may 1116 * never come) by using poll. 1117 * 1118 * Once in STOP_COPY the migration data FD has a permanent end of stream 1119 * signaled in the usual way by read() always returning 0 and poll always 1120 * returning readable. ENOMSG may not be returned in STOP_COPY. 1121 * Support for this ioctl is mandatory if a driver claims to support 1122 * VFIO_MIGRATION_PRE_COPY. 1123 * 1124 * Return: 0 on success, -1 and errno set on failure. 1125 */ 1126 struct vfio_precopy_info { 1127 __u32 argsz; 1128 __u32 flags; 1129 __aligned_u64 initial_bytes; 1130 __aligned_u64 dirty_bytes; 1131 }; 1132 1133 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21) 1134 1135 /* 1136 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power 1137 * state with the platform-based power management. Device use of lower power 1138 * states depends on factors managed by the runtime power management core, 1139 * including system level support and coordinating support among dependent 1140 * devices. Enabling device low power entry does not guarantee lower power 1141 * usage by the device, nor is a mechanism provided through this feature to 1142 * know the current power state of the device. If any device access happens 1143 * (either from the host or through the vfio uAPI) when the device is in the 1144 * low power state, then the host will move the device out of the low power 1145 * state as necessary prior to the access. Once the access is completed, the 1146 * device may re-enter the low power state. For single shot low power support 1147 * with wake-up notification, see 1148 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd 1149 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after 1150 * calling LOW_POWER_EXIT. 1151 */ 1152 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3 1153 1154 /* 1155 * This device feature has the same behavior as 1156 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user 1157 * provides an eventfd for wake-up notification. When the device moves out of 1158 * the low power state for the wake-up, the host will not allow the device to 1159 * re-enter a low power state without a subsequent user call to one of the low 1160 * power entry device feature IOCTLs. Access to mmap'd device regions is 1161 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the 1162 * low power exit. The low power exit can happen either through LOW_POWER_EXIT 1163 * or through any other access (where the wake-up notification has been 1164 * generated). The access to mmap'd device regions will not trigger low power 1165 * exit. 1166 * 1167 * The notification through the provided eventfd will be generated only when 1168 * the device has entered and is resumed from a low power state after 1169 * calling this device feature IOCTL. A device that has not entered low power 1170 * state, as managed through the runtime power management core, will not 1171 * generate a notification through the provided eventfd on access. Calling the 1172 * LOW_POWER_EXIT feature is optional in the case where notification has been 1173 * signaled on the provided eventfd that a resume from low power has occurred. 1174 */ 1175 struct vfio_device_low_power_entry_with_wakeup { 1176 __s32 wakeup_eventfd; 1177 __u32 reserved; 1178 }; 1179 1180 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4 1181 1182 /* 1183 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as 1184 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or 1185 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features. 1186 * This device feature IOCTL may itself generate a wakeup eventfd notification 1187 * in the latter case if the device had previously entered a low power state. 1188 */ 1189 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5 1190 1191 /* 1192 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging. 1193 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports 1194 * DMA logging. 1195 * 1196 * DMA logging allows a device to internally record what DMAs the device is 1197 * initiating and report them back to userspace. It is part of the VFIO 1198 * migration infrastructure that allows implementing dirty page tracking 1199 * during the pre copy phase of live migration. Only DMA WRITEs are logged, 1200 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. 1201 * 1202 * When DMA logging is started a range of IOVAs to monitor is provided and the 1203 * device can optimize its logging to cover only the IOVA range given. Each 1204 * DMA that the device initiates inside the range will be logged by the device 1205 * for later retrieval. 1206 * 1207 * page_size is an input that hints what tracking granularity the device 1208 * should try to achieve. If the device cannot do the hinted page size then 1209 * it's the driver choice which page size to pick based on its support. 1210 * On output the device will return the page size it selected. 1211 * 1212 * ranges is a pointer to an array of 1213 * struct vfio_device_feature_dma_logging_range. 1214 * 1215 * The core kernel code guarantees to support by minimum num_ranges that fit 1216 * into a single kernel page. User space can try higher values but should give 1217 * up if the above can't be achieved as of some driver limitations. 1218 * 1219 * A single call to start device DMA logging can be issued and a matching stop 1220 * should follow at the end. Another start is not allowed in the meantime. 1221 */ 1222 struct vfio_device_feature_dma_logging_control { 1223 __aligned_u64 page_size; 1224 __u32 num_ranges; 1225 __u32 __reserved; 1226 __aligned_u64 ranges; 1227 }; 1228 1229 struct vfio_device_feature_dma_logging_range { 1230 __aligned_u64 iova; 1231 __aligned_u64 length; 1232 }; 1233 1234 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6 1235 1236 /* 1237 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started 1238 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START 1239 */ 1240 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7 1241 1242 /* 1243 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log 1244 * 1245 * Query the device's DMA log for written pages within the given IOVA range. 1246 * During querying the log is cleared for the IOVA range. 1247 * 1248 * bitmap is a pointer to an array of u64s that will hold the output bitmap 1249 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits 1250 * is given by: 1251 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64)) 1252 * 1253 * The input page_size can be any power of two value and does not have to 1254 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver 1255 * will format its internal logging to match the reporting page size, possibly 1256 * by replicating bits if the internal page size is lower than requested. 1257 * 1258 * The LOGGING_REPORT will only set bits in the bitmap and never clear or 1259 * perform any initialization of the user provided bitmap. 1260 * 1261 * If any error is returned userspace should assume that the dirty log is 1262 * corrupted. Error recovery is to consider all memory dirty and try to 1263 * restart the dirty tracking, or to abort/restart the whole migration. 1264 * 1265 * If DMA logging is not enabled, an error will be returned. 1266 * 1267 */ 1268 struct vfio_device_feature_dma_logging_report { 1269 __aligned_u64 iova; 1270 __aligned_u64 length; 1271 __aligned_u64 page_size; 1272 __aligned_u64 bitmap; 1273 }; 1274 1275 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8 1276 1277 /* 1278 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will 1279 * be required to complete stop copy. 1280 * 1281 * Note: Can be called on each device state. 1282 */ 1283 1284 struct vfio_device_feature_mig_data_size { 1285 __aligned_u64 stop_copy_length; 1286 }; 1287 1288 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9 1289 1290 /* -------- API for Type1 VFIO IOMMU -------- */ 1291 1292 /** 1293 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) 1294 * 1295 * Retrieve information about the IOMMU object. Fills in provided 1296 * struct vfio_iommu_info. Caller sets argsz. 1297 * 1298 * XXX Should we do these by CHECK_EXTENSION too? 1299 */ 1300 struct vfio_iommu_type1_info { 1301 __u32 argsz; 1302 __u32 flags; 1303 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ 1304 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ 1305 __u64 iova_pgsizes; /* Bitmap of supported page sizes */ 1306 __u32 cap_offset; /* Offset within info struct of first cap */ 1307 }; 1308 1309 /* 1310 * The IOVA capability allows to report the valid IOVA range(s) 1311 * excluding any non-relaxable reserved regions exposed by 1312 * devices attached to the container. Any DMA map attempt 1313 * outside the valid iova range will return error. 1314 * 1315 * The structures below define version 1 of this capability. 1316 */ 1317 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 1318 1319 struct vfio_iova_range { 1320 __u64 start; 1321 __u64 end; 1322 }; 1323 1324 struct vfio_iommu_type1_info_cap_iova_range { 1325 struct vfio_info_cap_header header; 1326 __u32 nr_iovas; 1327 __u32 reserved; 1328 struct vfio_iova_range iova_ranges[]; 1329 }; 1330 1331 /* 1332 * The migration capability allows to report supported features for migration. 1333 * 1334 * The structures below define version 1 of this capability. 1335 * 1336 * The existence of this capability indicates that IOMMU kernel driver supports 1337 * dirty page logging. 1338 * 1339 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty 1340 * page logging. 1341 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap 1342 * size in bytes that can be used by user applications when getting the dirty 1343 * bitmap. 1344 */ 1345 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 1346 1347 struct vfio_iommu_type1_info_cap_migration { 1348 struct vfio_info_cap_header header; 1349 __u32 flags; 1350 __u64 pgsize_bitmap; 1351 __u64 max_dirty_bitmap_size; /* in bytes */ 1352 }; 1353 1354 /* 1355 * The DMA available capability allows to report the current number of 1356 * simultaneously outstanding DMA mappings that are allowed. 1357 * 1358 * The structure below defines version 1 of this capability. 1359 * 1360 * avail: specifies the current number of outstanding DMA mappings allowed. 1361 */ 1362 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 1363 1364 struct vfio_iommu_type1_info_dma_avail { 1365 struct vfio_info_cap_header header; 1366 __u32 avail; 1367 }; 1368 1369 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1370 1371 /** 1372 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) 1373 * 1374 * Map process virtual addresses to IO virtual addresses using the 1375 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. 1376 * 1377 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr 1378 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To 1379 * maintain memory consistency within the user application, the updated vaddr 1380 * must address the same memory object as originally mapped. Failure to do so 1381 * will result in user memory corruption and/or device misbehavior. iova and 1382 * size must match those in the original MAP_DMA call. Protection is not 1383 * changed, and the READ & WRITE flags must be 0. 1384 */ 1385 struct vfio_iommu_type1_dma_map { 1386 __u32 argsz; 1387 __u32 flags; 1388 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ 1389 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ 1390 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2) 1391 __u64 vaddr; /* Process virtual address */ 1392 __u64 iova; /* IO virtual address */ 1393 __u64 size; /* Size of mapping (bytes) */ 1394 }; 1395 1396 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) 1397 1398 struct vfio_bitmap { 1399 __u64 pgsize; /* page size for bitmap in bytes */ 1400 __u64 size; /* in bytes */ 1401 __u64 *data; /* one bit per page */ 1402 }; 1403 1404 /** 1405 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, 1406 * struct vfio_dma_unmap) 1407 * 1408 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. 1409 * Caller sets argsz. The actual unmapped size is returned in the size 1410 * field. No guarantee is made to the user that arbitrary unmaps of iova 1411 * or size different from those used in the original mapping call will 1412 * succeed. 1413 * 1414 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap 1415 * before unmapping IO virtual addresses. When this flag is set, the user must 1416 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated 1417 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. 1418 * A bit in the bitmap represents one page, of user provided page size in 1419 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set 1420 * indicates that the page at that offset from iova is dirty. A Bitmap of the 1421 * pages in the range of unmapped size is returned in the user-provided 1422 * vfio_bitmap.data. 1423 * 1424 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size 1425 * must be 0. This cannot be combined with the get-dirty-bitmap flag. 1426 * 1427 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host 1428 * virtual addresses in the iova range. DMA to already-mapped pages continues. 1429 * Groups may not be added to the container while any addresses are invalid. 1430 * This cannot be combined with the get-dirty-bitmap flag. 1431 */ 1432 struct vfio_iommu_type1_dma_unmap { 1433 __u32 argsz; 1434 __u32 flags; 1435 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) 1436 #define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1) 1437 #define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2) 1438 __u64 iova; /* IO virtual address */ 1439 __u64 size; /* Size of mapping (bytes) */ 1440 __u8 data[]; 1441 }; 1442 1443 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) 1444 1445 /* 1446 * IOCTLs to enable/disable IOMMU container usage. 1447 * No parameters are supported. 1448 */ 1449 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) 1450 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) 1451 1452 /** 1453 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 1454 * struct vfio_iommu_type1_dirty_bitmap) 1455 * IOCTL is used for dirty pages logging. 1456 * Caller should set flag depending on which operation to perform, details as 1457 * below: 1458 * 1459 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs 1460 * the IOMMU driver to log pages that are dirtied or potentially dirtied by 1461 * the device; designed to be used when a migration is in progress. Dirty pages 1462 * are logged until logging is disabled by user application by calling the IOCTL 1463 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. 1464 * 1465 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs 1466 * the IOMMU driver to stop logging dirtied pages. 1467 * 1468 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set 1469 * returns the dirty pages bitmap for IOMMU container for a given IOVA range. 1470 * The user must specify the IOVA range and the pgsize through the structure 1471 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface 1472 * supports getting a bitmap of the smallest supported pgsize only and can be 1473 * modified in future to get a bitmap of any specified supported pgsize. The 1474 * user must provide a zeroed memory area for the bitmap memory and specify its 1475 * size in bitmap.size. One bit is used to represent one page consecutively 1476 * starting from iova offset. The user should provide page size in bitmap.pgsize 1477 * field. A bit set in the bitmap indicates that the page at that offset from 1478 * iova is dirty. The caller must set argsz to a value including the size of 1479 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the 1480 * actual bitmap. If dirty pages logging is not enabled, an error will be 1481 * returned. 1482 * 1483 * Only one of the flags _START, _STOP and _GET may be specified at a time. 1484 * 1485 */ 1486 struct vfio_iommu_type1_dirty_bitmap { 1487 __u32 argsz; 1488 __u32 flags; 1489 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) 1490 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) 1491 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) 1492 __u8 data[]; 1493 }; 1494 1495 struct vfio_iommu_type1_dirty_bitmap_get { 1496 __u64 iova; /* IO virtual address */ 1497 __u64 size; /* Size of iova range */ 1498 struct vfio_bitmap bitmap; 1499 }; 1500 1501 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) 1502 1503 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ 1504 1505 /* 1506 * The SPAPR TCE DDW info struct provides the information about 1507 * the details of Dynamic DMA window capability. 1508 * 1509 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. 1510 * @max_dynamic_windows_supported tells the maximum number of windows 1511 * which the platform can create. 1512 * @levels tells the maximum number of levels in multi-level IOMMU tables; 1513 * this allows splitting a table into smaller chunks which reduces 1514 * the amount of physically contiguous memory required for the table. 1515 */ 1516 struct vfio_iommu_spapr_tce_ddw_info { 1517 __u64 pgsizes; /* Bitmap of supported page sizes */ 1518 __u32 max_dynamic_windows_supported; 1519 __u32 levels; 1520 }; 1521 1522 /* 1523 * The SPAPR TCE info struct provides the information about the PCI bus 1524 * address ranges available for DMA, these values are programmed into 1525 * the hardware so the guest has to know that information. 1526 * 1527 * The DMA 32 bit window start is an absolute PCI bus address. 1528 * The IOVA address passed via map/unmap ioctls are absolute PCI bus 1529 * addresses too so the window works as a filter rather than an offset 1530 * for IOVA addresses. 1531 * 1532 * Flags supported: 1533 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows 1534 * (DDW) support is present. @ddw is only supported when DDW is present. 1535 */ 1536 struct vfio_iommu_spapr_tce_info { 1537 __u32 argsz; 1538 __u32 flags; 1539 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ 1540 __u32 dma32_window_start; /* 32 bit window start (bytes) */ 1541 __u32 dma32_window_size; /* 32 bit window size (bytes) */ 1542 struct vfio_iommu_spapr_tce_ddw_info ddw; 1543 }; 1544 1545 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1546 1547 /* 1548 * EEH PE operation struct provides ways to: 1549 * - enable/disable EEH functionality; 1550 * - unfreeze IO/DMA for frozen PE; 1551 * - read PE state; 1552 * - reset PE; 1553 * - configure PE; 1554 * - inject EEH error. 1555 */ 1556 struct vfio_eeh_pe_err { 1557 __u32 type; 1558 __u32 func; 1559 __u64 addr; 1560 __u64 mask; 1561 }; 1562 1563 struct vfio_eeh_pe_op { 1564 __u32 argsz; 1565 __u32 flags; 1566 __u32 op; 1567 union { 1568 struct vfio_eeh_pe_err err; 1569 }; 1570 }; 1571 1572 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ 1573 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ 1574 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ 1575 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ 1576 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ 1577 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ 1578 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ 1579 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ 1580 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ 1581 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ 1582 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ 1583 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ 1584 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ 1585 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ 1586 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ 1587 1588 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) 1589 1590 /** 1591 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) 1592 * 1593 * Registers user space memory where DMA is allowed. It pins 1594 * user pages and does the locked memory accounting so 1595 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls 1596 * get faster. 1597 */ 1598 struct vfio_iommu_spapr_register_memory { 1599 __u32 argsz; 1600 __u32 flags; 1601 __u64 vaddr; /* Process virtual address */ 1602 __u64 size; /* Size of mapping (bytes) */ 1603 }; 1604 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) 1605 1606 /** 1607 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) 1608 * 1609 * Unregisters user space memory registered with 1610 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. 1611 * Uses vfio_iommu_spapr_register_memory for parameters. 1612 */ 1613 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) 1614 1615 /** 1616 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) 1617 * 1618 * Creates an additional TCE table and programs it (sets a new DMA window) 1619 * to every IOMMU group in the container. It receives page shift, window 1620 * size and number of levels in the TCE table being created. 1621 * 1622 * It allocates and returns an offset on a PCI bus of the new DMA window. 1623 */ 1624 struct vfio_iommu_spapr_tce_create { 1625 __u32 argsz; 1626 __u32 flags; 1627 /* in */ 1628 __u32 page_shift; 1629 __u32 __resv1; 1630 __u64 window_size; 1631 __u32 levels; 1632 __u32 __resv2; 1633 /* out */ 1634 __u64 start_addr; 1635 }; 1636 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) 1637 1638 /** 1639 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) 1640 * 1641 * Unprograms a TCE table from all groups in the container and destroys it. 1642 * It receives a PCI bus offset as a window id. 1643 */ 1644 struct vfio_iommu_spapr_tce_remove { 1645 __u32 argsz; 1646 __u32 flags; 1647 /* in */ 1648 __u64 start_addr; 1649 }; 1650 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) 1651 1652 /* ***************************************************************** */ 1653 1654 #endif /* VFIO_H */ 1655