1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * VFIO API definition 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #ifndef VFIO_H 13 #define VFIO_H 14 15 #include <linux/types.h> 16 #include <linux/ioctl.h> 17 18 #define VFIO_API_VERSION 0 19 20 21 /* Kernel & User level defines for VFIO IOCTLs. */ 22 23 /* Extensions */ 24 25 #define VFIO_TYPE1_IOMMU 1 26 #define VFIO_SPAPR_TCE_IOMMU 2 27 #define VFIO_TYPE1v2_IOMMU 3 28 /* 29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This 30 * capability is subject to change as groups are added or removed. 31 */ 32 #define VFIO_DMA_CC_IOMMU 4 33 34 /* Check if EEH is supported */ 35 #define VFIO_EEH 5 36 37 /* Two-stage IOMMU */ 38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ 39 40 #define VFIO_SPAPR_TCE_v2_IOMMU 7 41 42 /* 43 * The No-IOMMU IOMMU offers no translation or isolation for devices and 44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU 45 * code will taint the host kernel and should be used with extreme caution. 46 */ 47 #define VFIO_NOIOMMU_IOMMU 8 48 49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */ 50 #define VFIO_UNMAP_ALL 9 51 52 /* 53 * Supports the vaddr flag for DMA map and unmap. Not supported for mediated 54 * devices, so this capability is subject to change as groups are added or 55 * removed. 56 */ 57 #define VFIO_UPDATE_VADDR 10 58 59 /* 60 * The IOCTL interface is designed for extensibility by embedding the 61 * structure length (argsz) and flags into structures passed between 62 * kernel and userspace. We therefore use the _IO() macro for these 63 * defines to avoid implicitly embedding a size into the ioctl request. 64 * As structure fields are added, argsz will increase to match and flag 65 * bits will be defined to indicate additional fields with valid data. 66 * It's *always* the caller's responsibility to indicate the size of 67 * the structure passed by setting argsz appropriately. 68 */ 69 70 #define VFIO_TYPE (';') 71 #define VFIO_BASE 100 72 73 /* 74 * For extension of INFO ioctls, VFIO makes use of a capability chain 75 * designed after PCI/e capabilities. A flag bit indicates whether 76 * this capability chain is supported and a field defined in the fixed 77 * structure defines the offset of the first capability in the chain. 78 * This field is only valid when the corresponding bit in the flags 79 * bitmap is set. This offset field is relative to the start of the 80 * INFO buffer, as is the next field within each capability header. 81 * The id within the header is a shared address space per INFO ioctl, 82 * while the version field is specific to the capability id. The 83 * contents following the header are specific to the capability id. 84 */ 85 struct vfio_info_cap_header { 86 __u16 id; /* Identifies capability */ 87 __u16 version; /* Version specific to the capability ID */ 88 __u32 next; /* Offset of next capability */ 89 }; 90 91 /* 92 * Callers of INFO ioctls passing insufficiently sized buffers will see 93 * the capability chain flag bit set, a zero value for the first capability 94 * offset (if available within the provided argsz), and argsz will be 95 * updated to report the necessary buffer size. For compatibility, the 96 * INFO ioctl will not report error in this case, but the capability chain 97 * will not be available. 98 */ 99 100 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ 101 102 /** 103 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) 104 * 105 * Report the version of the VFIO API. This allows us to bump the entire 106 * API version should we later need to add or change features in incompatible 107 * ways. 108 * Return: VFIO_API_VERSION 109 * Availability: Always 110 */ 111 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) 112 113 /** 114 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) 115 * 116 * Check whether an extension is supported. 117 * Return: 0 if not supported, 1 (or some other positive integer) if supported. 118 * Availability: Always 119 */ 120 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) 121 122 /** 123 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) 124 * 125 * Set the iommu to the given type. The type must be supported by an 126 * iommu driver as verified by calling CHECK_EXTENSION using the same 127 * type. A group must be set to this file descriptor before this 128 * ioctl is available. The IOMMU interfaces enabled by this call are 129 * specific to the value set. 130 * Return: 0 on success, -errno on failure 131 * Availability: When VFIO group attached 132 */ 133 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) 134 135 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ 136 137 /** 138 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, 139 * struct vfio_group_status) 140 * 141 * Retrieve information about the group. Fills in provided 142 * struct vfio_group_info. Caller sets argsz. 143 * Return: 0 on succes, -errno on failure. 144 * Availability: Always 145 */ 146 struct vfio_group_status { 147 __u32 argsz; 148 __u32 flags; 149 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) 150 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) 151 }; 152 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) 153 154 /** 155 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) 156 * 157 * Set the container for the VFIO group to the open VFIO file 158 * descriptor provided. Groups may only belong to a single 159 * container. Containers may, at their discretion, support multiple 160 * groups. Only when a container is set are all of the interfaces 161 * of the VFIO file descriptor and the VFIO group file descriptor 162 * available to the user. 163 * Return: 0 on success, -errno on failure. 164 * Availability: Always 165 */ 166 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) 167 168 /** 169 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) 170 * 171 * Remove the group from the attached container. This is the 172 * opposite of the SET_CONTAINER call and returns the group to 173 * an initial state. All device file descriptors must be released 174 * prior to calling this interface. When removing the last group 175 * from a container, the IOMMU will be disabled and all state lost, 176 * effectively also returning the VFIO file descriptor to an initial 177 * state. 178 * Return: 0 on success, -errno on failure. 179 * Availability: When attached to container 180 */ 181 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) 182 183 /** 184 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) 185 * 186 * Return a new file descriptor for the device object described by 187 * the provided string. The string should match a device listed in 188 * the devices subdirectory of the IOMMU group sysfs entry. The 189 * group containing the device must already be added to this context. 190 * Return: new file descriptor on success, -errno on failure. 191 * Availability: When attached to container 192 */ 193 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) 194 195 /* --------------- IOCTLs for DEVICE file descriptors --------------- */ 196 197 /** 198 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, 199 * struct vfio_device_info) 200 * 201 * Retrieve information about the device. Fills in provided 202 * struct vfio_device_info. Caller sets argsz. 203 * Return: 0 on success, -errno on failure. 204 */ 205 struct vfio_device_info { 206 __u32 argsz; 207 __u32 flags; 208 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ 209 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ 210 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ 211 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ 212 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ 213 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ 214 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */ 215 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ 216 #define VFIO_DEVICE_FLAGS_CDX (1 << 8) /* vfio-cdx device */ 217 __u32 num_regions; /* Max region index + 1 */ 218 __u32 num_irqs; /* Max IRQ index + 1 */ 219 __u32 cap_offset; /* Offset within info struct of first cap */ 220 __u32 pad; 221 }; 222 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) 223 224 /* 225 * Vendor driver using Mediated device framework should provide device_api 226 * attribute in supported type attribute groups. Device API string should be one 227 * of the following corresponding to device flags in vfio_device_info structure. 228 */ 229 230 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" 231 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" 232 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" 233 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" 234 #define VFIO_DEVICE_API_AP_STRING "vfio-ap" 235 236 /* 237 * The following capabilities are unique to s390 zPCI devices. Their contents 238 * are further-defined in vfio_zdev.h 239 */ 240 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 241 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 242 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 243 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 244 245 /* 246 * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp 247 * completion to the root bus with supported widths provided via flags. 248 */ 249 #define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP 5 250 struct vfio_device_info_cap_pci_atomic_comp { 251 struct vfio_info_cap_header header; 252 __u32 flags; 253 #define VFIO_PCI_ATOMIC_COMP32 (1 << 0) 254 #define VFIO_PCI_ATOMIC_COMP64 (1 << 1) 255 #define VFIO_PCI_ATOMIC_COMP128 (1 << 2) 256 __u32 reserved; 257 }; 258 259 /** 260 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, 261 * struct vfio_region_info) 262 * 263 * Retrieve information about a device region. Caller provides 264 * struct vfio_region_info with index value set. Caller sets argsz. 265 * Implementation of region mapping is bus driver specific. This is 266 * intended to describe MMIO, I/O port, as well as bus specific 267 * regions (ex. PCI config space). Zero sized regions may be used 268 * to describe unimplemented regions (ex. unimplemented PCI BARs). 269 * Return: 0 on success, -errno on failure. 270 */ 271 struct vfio_region_info { 272 __u32 argsz; 273 __u32 flags; 274 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ 275 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ 276 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ 277 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ 278 __u32 index; /* Region index */ 279 __u32 cap_offset; /* Offset within info struct of first cap */ 280 __u64 size; /* Region size (bytes) */ 281 __u64 offset; /* Region offset from start of device fd */ 282 }; 283 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) 284 285 /* 286 * The sparse mmap capability allows finer granularity of specifying areas 287 * within a region with mmap support. When specified, the user should only 288 * mmap the offset ranges specified by the areas array. mmaps outside of the 289 * areas specified may fail (such as the range covering a PCI MSI-X table) or 290 * may result in improper device behavior. 291 * 292 * The structures below define version 1 of this capability. 293 */ 294 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 295 296 struct vfio_region_sparse_mmap_area { 297 __u64 offset; /* Offset of mmap'able area within region */ 298 __u64 size; /* Size of mmap'able area */ 299 }; 300 301 struct vfio_region_info_cap_sparse_mmap { 302 struct vfio_info_cap_header header; 303 __u32 nr_areas; 304 __u32 reserved; 305 struct vfio_region_sparse_mmap_area areas[]; 306 }; 307 308 /* 309 * The device specific type capability allows regions unique to a specific 310 * device or class of devices to be exposed. This helps solve the problem for 311 * vfio bus drivers of defining which region indexes correspond to which region 312 * on the device, without needing to resort to static indexes, as done by 313 * vfio-pci. For instance, if we were to go back in time, we might remove 314 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes 315 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd 316 * make a "VGA" device specific type to describe the VGA access space. This 317 * means that non-VGA devices wouldn't need to waste this index, and thus the 318 * address space associated with it due to implementation of device file 319 * descriptor offsets in vfio-pci. 320 * 321 * The current implementation is now part of the user ABI, so we can't use this 322 * for VGA, but there are other upcoming use cases, such as opregions for Intel 323 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll 324 * use this for future additions. 325 * 326 * The structure below defines version 1 of this capability. 327 */ 328 #define VFIO_REGION_INFO_CAP_TYPE 2 329 330 struct vfio_region_info_cap_type { 331 struct vfio_info_cap_header header; 332 __u32 type; /* global per bus driver */ 333 __u32 subtype; /* type specific */ 334 }; 335 336 /* 337 * List of region types, global per bus driver. 338 * If you introduce a new type, please add it here. 339 */ 340 341 /* PCI region type containing a PCI vendor part */ 342 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) 343 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) 344 #define VFIO_REGION_TYPE_GFX (1) 345 #define VFIO_REGION_TYPE_CCW (2) 346 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3) 347 348 /* sub-types for VFIO_REGION_TYPE_PCI_* */ 349 350 /* 8086 vendor PCI sub-types */ 351 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) 352 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) 353 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) 354 355 /* 10de vendor PCI sub-types */ 356 /* 357 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. 358 * 359 * Deprecated, region no longer provided 360 */ 361 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) 362 363 /* 1014 vendor PCI sub-types */ 364 /* 365 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU 366 * to do TLB invalidation on a GPU. 367 * 368 * Deprecated, region no longer provided 369 */ 370 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) 371 372 /* sub-types for VFIO_REGION_TYPE_GFX */ 373 #define VFIO_REGION_SUBTYPE_GFX_EDID (1) 374 375 /** 376 * struct vfio_region_gfx_edid - EDID region layout. 377 * 378 * Set display link state and EDID blob. 379 * 380 * The EDID blob has monitor information such as brand, name, serial 381 * number, physical size, supported video modes and more. 382 * 383 * This special region allows userspace (typically qemu) set a virtual 384 * EDID for the virtual monitor, which allows a flexible display 385 * configuration. 386 * 387 * For the edid blob spec look here: 388 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data 389 * 390 * On linux systems you can find the EDID blob in sysfs: 391 * /sys/class/drm/${card}/${connector}/edid 392 * 393 * You can use the edid-decode ulility (comes with xorg-x11-utils) to 394 * decode the EDID blob. 395 * 396 * @edid_offset: location of the edid blob, relative to the 397 * start of the region (readonly). 398 * @edid_max_size: max size of the edid blob (readonly). 399 * @edid_size: actual edid size (read/write). 400 * @link_state: display link state (read/write). 401 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. 402 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. 403 * @max_xres: max display width (0 == no limitation, readonly). 404 * @max_yres: max display height (0 == no limitation, readonly). 405 * 406 * EDID update protocol: 407 * (1) set link-state to down. 408 * (2) update edid blob and size. 409 * (3) set link-state to up. 410 */ 411 struct vfio_region_gfx_edid { 412 __u32 edid_offset; 413 __u32 edid_max_size; 414 __u32 edid_size; 415 __u32 max_xres; 416 __u32 max_yres; 417 __u32 link_state; 418 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 419 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 420 }; 421 422 /* sub-types for VFIO_REGION_TYPE_CCW */ 423 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) 424 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) 425 #define VFIO_REGION_SUBTYPE_CCW_CRW (3) 426 427 /* sub-types for VFIO_REGION_TYPE_MIGRATION */ 428 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1) 429 430 struct vfio_device_migration_info { 431 __u32 device_state; /* VFIO device state */ 432 #define VFIO_DEVICE_STATE_V1_STOP (0) 433 #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0) 434 #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1) 435 #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2) 436 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \ 437 VFIO_DEVICE_STATE_V1_SAVING | \ 438 VFIO_DEVICE_STATE_V1_RESUMING) 439 440 #define VFIO_DEVICE_STATE_VALID(state) \ 441 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \ 442 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1) 443 444 #define VFIO_DEVICE_STATE_IS_ERROR(state) \ 445 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \ 446 VFIO_DEVICE_STATE_V1_RESUMING)) 447 448 #define VFIO_DEVICE_STATE_SET_ERROR(state) \ 449 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \ 450 VFIO_DEVICE_STATE_V1_RESUMING) 451 452 __u32 reserved; 453 __u64 pending_bytes; 454 __u64 data_offset; 455 __u64 data_size; 456 }; 457 458 /* 459 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped 460 * which allows direct access to non-MSIX registers which happened to be within 461 * the same system page. 462 * 463 * Even though the userspace gets direct access to the MSIX data, the existing 464 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. 465 */ 466 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 467 468 /* 469 * Capability with compressed real address (aka SSA - small system address) 470 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing 471 * and by the userspace to associate a NVLink bridge with a GPU. 472 * 473 * Deprecated, capability no longer provided 474 */ 475 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 476 477 struct vfio_region_info_cap_nvlink2_ssatgt { 478 struct vfio_info_cap_header header; 479 __u64 tgt; 480 }; 481 482 /* 483 * Capability with an NVLink link speed. The value is read by 484 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" 485 * property in the device tree. The value is fixed in the hardware 486 * and failing to provide the correct value results in the link 487 * not working with no indication from the driver why. 488 * 489 * Deprecated, capability no longer provided 490 */ 491 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 492 493 struct vfio_region_info_cap_nvlink2_lnkspd { 494 struct vfio_info_cap_header header; 495 __u32 link_speed; 496 __u32 __pad; 497 }; 498 499 /** 500 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, 501 * struct vfio_irq_info) 502 * 503 * Retrieve information about a device IRQ. Caller provides 504 * struct vfio_irq_info with index value set. Caller sets argsz. 505 * Implementation of IRQ mapping is bus driver specific. Indexes 506 * using multiple IRQs are primarily intended to support MSI-like 507 * interrupt blocks. Zero count irq blocks may be used to describe 508 * unimplemented interrupt types. 509 * 510 * The EVENTFD flag indicates the interrupt index supports eventfd based 511 * signaling. 512 * 513 * The MASKABLE flags indicates the index supports MASK and UNMASK 514 * actions described below. 515 * 516 * AUTOMASKED indicates that after signaling, the interrupt line is 517 * automatically masked by VFIO and the user needs to unmask the line 518 * to receive new interrupts. This is primarily intended to distinguish 519 * level triggered interrupts. 520 * 521 * The NORESIZE flag indicates that the interrupt lines within the index 522 * are setup as a set and new subindexes cannot be enabled without first 523 * disabling the entire index. This is used for interrupts like PCI MSI 524 * and MSI-X where the driver may only use a subset of the available 525 * indexes, but VFIO needs to enable a specific number of vectors 526 * upfront. In the case of MSI-X, where the user can enable MSI-X and 527 * then add and unmask vectors, it's up to userspace to make the decision 528 * whether to allocate the maximum supported number of vectors or tear 529 * down setup and incrementally increase the vectors as each is enabled. 530 * Absence of the NORESIZE flag indicates that vectors can be enabled 531 * and disabled dynamically without impacting other vectors within the 532 * index. 533 */ 534 struct vfio_irq_info { 535 __u32 argsz; 536 __u32 flags; 537 #define VFIO_IRQ_INFO_EVENTFD (1 << 0) 538 #define VFIO_IRQ_INFO_MASKABLE (1 << 1) 539 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) 540 #define VFIO_IRQ_INFO_NORESIZE (1 << 3) 541 __u32 index; /* IRQ index */ 542 __u32 count; /* Number of IRQs within this index */ 543 }; 544 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) 545 546 /** 547 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) 548 * 549 * Set signaling, masking, and unmasking of interrupts. Caller provides 550 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate 551 * the range of subindexes being specified. 552 * 553 * The DATA flags specify the type of data provided. If DATA_NONE, the 554 * operation performs the specified action immediately on the specified 555 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: 556 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. 557 * 558 * DATA_BOOL allows sparse support for the same on arrays of interrupts. 559 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): 560 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, 561 * data = {1,0,1} 562 * 563 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. 564 * A value of -1 can be used to either de-assign interrupts if already 565 * assigned or skip un-assigned interrupts. For example, to set an eventfd 566 * to be trigger for interrupts [0,0] and [0,2]: 567 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, 568 * data = {fd1, -1, fd2} 569 * If index [0,1] is previously set, two count = 1 ioctls calls would be 570 * required to set [0,0] and [0,2] without changing [0,1]. 571 * 572 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used 573 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing 574 * from userspace (ie. simulate hardware triggering). 575 * 576 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER 577 * enables the interrupt index for the device. Individual subindex interrupts 578 * can be disabled using the -1 value for DATA_EVENTFD or the index can be 579 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. 580 * 581 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while 582 * ACTION_TRIGGER specifies kernel->user signaling. 583 */ 584 struct vfio_irq_set { 585 __u32 argsz; 586 __u32 flags; 587 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ 588 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ 589 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ 590 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ 591 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ 592 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ 593 __u32 index; 594 __u32 start; 595 __u32 count; 596 __u8 data[]; 597 }; 598 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) 599 600 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ 601 VFIO_IRQ_SET_DATA_BOOL | \ 602 VFIO_IRQ_SET_DATA_EVENTFD) 603 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ 604 VFIO_IRQ_SET_ACTION_UNMASK | \ 605 VFIO_IRQ_SET_ACTION_TRIGGER) 606 /** 607 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) 608 * 609 * Reset a device. 610 */ 611 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) 612 613 /* 614 * The VFIO-PCI bus driver makes use of the following fixed region and 615 * IRQ index mapping. Unimplemented regions return a size of zero. 616 * Unimplemented IRQ types return a count of zero. 617 */ 618 619 enum { 620 VFIO_PCI_BAR0_REGION_INDEX, 621 VFIO_PCI_BAR1_REGION_INDEX, 622 VFIO_PCI_BAR2_REGION_INDEX, 623 VFIO_PCI_BAR3_REGION_INDEX, 624 VFIO_PCI_BAR4_REGION_INDEX, 625 VFIO_PCI_BAR5_REGION_INDEX, 626 VFIO_PCI_ROM_REGION_INDEX, 627 VFIO_PCI_CONFIG_REGION_INDEX, 628 /* 629 * Expose VGA regions defined for PCI base class 03, subclass 00. 630 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df 631 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented 632 * range is found at it's identity mapped offset from the region 633 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas 634 * between described ranges are unimplemented. 635 */ 636 VFIO_PCI_VGA_REGION_INDEX, 637 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ 638 /* device specific cap to define content. */ 639 }; 640 641 enum { 642 VFIO_PCI_INTX_IRQ_INDEX, 643 VFIO_PCI_MSI_IRQ_INDEX, 644 VFIO_PCI_MSIX_IRQ_INDEX, 645 VFIO_PCI_ERR_IRQ_INDEX, 646 VFIO_PCI_REQ_IRQ_INDEX, 647 VFIO_PCI_NUM_IRQS 648 }; 649 650 /* 651 * The vfio-ccw bus driver makes use of the following fixed region and 652 * IRQ index mapping. Unimplemented regions return a size of zero. 653 * Unimplemented IRQ types return a count of zero. 654 */ 655 656 enum { 657 VFIO_CCW_CONFIG_REGION_INDEX, 658 VFIO_CCW_NUM_REGIONS 659 }; 660 661 enum { 662 VFIO_CCW_IO_IRQ_INDEX, 663 VFIO_CCW_CRW_IRQ_INDEX, 664 VFIO_CCW_REQ_IRQ_INDEX, 665 VFIO_CCW_NUM_IRQS 666 }; 667 668 /* 669 * The vfio-ap bus driver makes use of the following IRQ index mapping. 670 * Unimplemented IRQ types return a count of zero. 671 */ 672 enum { 673 VFIO_AP_REQ_IRQ_INDEX, 674 VFIO_AP_NUM_IRQS 675 }; 676 677 /** 678 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12, 679 * struct vfio_pci_hot_reset_info) 680 * 681 * This command is used to query the affected devices in the hot reset for 682 * a given device. 683 * 684 * This command always reports the segment, bus, and devfn information for 685 * each affected device, and selectively reports the group_id or devid per 686 * the way how the calling device is opened. 687 * 688 * - If the calling device is opened via the traditional group/container 689 * API, group_id is reported. User should check if it has owned all 690 * the affected devices and provides a set of group fds to prove the 691 * ownership in VFIO_DEVICE_PCI_HOT_RESET ioctl. 692 * 693 * - If the calling device is opened as a cdev, devid is reported. 694 * Flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set to indicate this 695 * data type. All the affected devices should be represented in 696 * the dev_set, ex. bound to a vfio driver, and also be owned by 697 * this interface which is determined by the following conditions: 698 * 1) Has a valid devid within the iommufd_ctx of the calling device. 699 * Ownership cannot be determined across separate iommufd_ctx and 700 * the cdev calling conventions do not support a proof-of-ownership 701 * model as provided in the legacy group interface. In this case 702 * valid devid with value greater than zero is provided in the return 703 * structure. 704 * 2) Does not have a valid devid within the iommufd_ctx of the calling 705 * device, but belongs to the same IOMMU group as the calling device 706 * or another opened device that has a valid devid within the 707 * iommufd_ctx of the calling device. This provides implicit ownership 708 * for devices within the same DMA isolation context. In this case 709 * the devid value of VFIO_PCI_DEVID_OWNED is provided in the return 710 * structure. 711 * 712 * A devid value of VFIO_PCI_DEVID_NOT_OWNED is provided in the return 713 * structure for affected devices where device is NOT represented in the 714 * dev_set or ownership is not available. Such devices prevent the use 715 * of VFIO_DEVICE_PCI_HOT_RESET ioctl outside of the proof-of-ownership 716 * calling conventions (ie. via legacy group accessed devices). Flag 717 * VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED would be set when all the 718 * affected devices are represented in the dev_set and also owned by 719 * the user. This flag is available only when 720 * flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set, otherwise reserved. 721 * When set, user could invoke VFIO_DEVICE_PCI_HOT_RESET with a zero 722 * length fd array on the calling device as the ownership is validated 723 * by iommufd_ctx. 724 * 725 * Return: 0 on success, -errno on failure: 726 * -enospc = insufficient buffer, -enodev = unsupported for device. 727 */ 728 struct vfio_pci_dependent_device { 729 union { 730 __u32 group_id; 731 __u32 devid; 732 #define VFIO_PCI_DEVID_OWNED 0 733 #define VFIO_PCI_DEVID_NOT_OWNED -1 734 }; 735 __u16 segment; 736 __u8 bus; 737 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ 738 }; 739 740 struct vfio_pci_hot_reset_info { 741 __u32 argsz; 742 __u32 flags; 743 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID (1 << 0) 744 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED (1 << 1) 745 __u32 count; 746 struct vfio_pci_dependent_device devices[]; 747 }; 748 749 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 750 751 /** 752 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, 753 * struct vfio_pci_hot_reset) 754 * 755 * A PCI hot reset results in either a bus or slot reset which may affect 756 * other devices sharing the bus/slot. The calling user must have 757 * ownership of the full set of affected devices as determined by the 758 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO ioctl. 759 * 760 * When called on a device file descriptor acquired through the vfio 761 * group interface, the user is required to provide proof of ownership 762 * of those affected devices via the group_fds array in struct 763 * vfio_pci_hot_reset. 764 * 765 * When called on a direct cdev opened vfio device, the flags field of 766 * struct vfio_pci_hot_reset_info reports the ownership status of the 767 * affected devices and this ioctl must be called with an empty group_fds 768 * array. See above INFO ioctl definition for ownership requirements. 769 * 770 * Mixed usage of legacy groups and cdevs across the set of affected 771 * devices is not supported. 772 * 773 * Return: 0 on success, -errno on failure. 774 */ 775 struct vfio_pci_hot_reset { 776 __u32 argsz; 777 __u32 flags; 778 __u32 count; 779 __s32 group_fds[]; 780 }; 781 782 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) 783 784 /** 785 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, 786 * struct vfio_device_query_gfx_plane) 787 * 788 * Set the drm_plane_type and flags, then retrieve the gfx plane info. 789 * 790 * flags supported: 791 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set 792 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no 793 * support for dma-buf. 794 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set 795 * to ask if the mdev supports region. 0 on support, -EINVAL on no 796 * support for region. 797 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set 798 * with each call to query the plane info. 799 * - Others are invalid and return -EINVAL. 800 * 801 * Note: 802 * 1. Plane could be disabled by guest. In that case, success will be 803 * returned with zero-initialized drm_format, size, width and height 804 * fields. 805 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available 806 * 807 * Return: 0 on success, -errno on other failure. 808 */ 809 struct vfio_device_gfx_plane_info { 810 __u32 argsz; 811 __u32 flags; 812 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) 813 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) 814 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) 815 /* in */ 816 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ 817 /* out */ 818 __u32 drm_format; /* drm format of plane */ 819 __u64 drm_format_mod; /* tiled mode */ 820 __u32 width; /* width of plane */ 821 __u32 height; /* height of plane */ 822 __u32 stride; /* stride of plane */ 823 __u32 size; /* size of plane in bytes, align on page*/ 824 __u32 x_pos; /* horizontal position of cursor plane */ 825 __u32 y_pos; /* vertical position of cursor plane*/ 826 __u32 x_hot; /* horizontal position of cursor hotspot */ 827 __u32 y_hot; /* vertical position of cursor hotspot */ 828 union { 829 __u32 region_index; /* region index */ 830 __u32 dmabuf_id; /* dma-buf id */ 831 }; 832 }; 833 834 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) 835 836 /** 837 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) 838 * 839 * Return a new dma-buf file descriptor for an exposed guest framebuffer 840 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ 841 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. 842 */ 843 844 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) 845 846 /** 847 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, 848 * struct vfio_device_ioeventfd) 849 * 850 * Perform a write to the device at the specified device fd offset, with 851 * the specified data and width when the provided eventfd is triggered. 852 * vfio bus drivers may not support this for all regions, for all widths, 853 * or at all. vfio-pci currently only enables support for BAR regions, 854 * excluding the MSI-X vector table. 855 * 856 * Return: 0 on success, -errno on failure. 857 */ 858 struct vfio_device_ioeventfd { 859 __u32 argsz; 860 __u32 flags; 861 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ 862 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ 863 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ 864 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ 865 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) 866 __u64 offset; /* device fd offset of write */ 867 __u64 data; /* data to be written */ 868 __s32 fd; /* -1 for de-assignment */ 869 }; 870 871 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) 872 873 /** 874 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 875 * struct vfio_device_feature) 876 * 877 * Get, set, or probe feature data of the device. The feature is selected 878 * using the FEATURE_MASK portion of the flags field. Support for a feature 879 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe 880 * may optionally include the GET and/or SET bits to determine read vs write 881 * access of the feature respectively. Probing a feature will return success 882 * if the feature is supported and all of the optionally indicated GET/SET 883 * methods are supported. The format of the data portion of the structure is 884 * specific to the given feature. The data portion is not required for 885 * probing. GET and SET are mutually exclusive, except for use with PROBE. 886 * 887 * Return 0 on success, -errno on failure. 888 */ 889 struct vfio_device_feature { 890 __u32 argsz; 891 __u32 flags; 892 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ 893 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ 894 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ 895 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ 896 __u8 data[]; 897 }; 898 899 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) 900 901 /* 902 * VFIO_DEVICE_BIND_IOMMUFD - _IOR(VFIO_TYPE, VFIO_BASE + 18, 903 * struct vfio_device_bind_iommufd) 904 * @argsz: User filled size of this data. 905 * @flags: Must be 0. 906 * @iommufd: iommufd to bind. 907 * @out_devid: The device id generated by this bind. devid is a handle for 908 * this device/iommufd bond and can be used in IOMMUFD commands. 909 * 910 * Bind a vfio_device to the specified iommufd. 911 * 912 * User is restricted from accessing the device before the binding operation 913 * is completed. Only allowed on cdev fds. 914 * 915 * Unbind is automatically conducted when device fd is closed. 916 * 917 * Return: 0 on success, -errno on failure. 918 */ 919 struct vfio_device_bind_iommufd { 920 __u32 argsz; 921 __u32 flags; 922 __s32 iommufd; 923 __u32 out_devid; 924 }; 925 926 #define VFIO_DEVICE_BIND_IOMMUFD _IO(VFIO_TYPE, VFIO_BASE + 18) 927 928 /* 929 * VFIO_DEVICE_ATTACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 19, 930 * struct vfio_device_attach_iommufd_pt) 931 * @argsz: User filled size of this data. 932 * @flags: Must be 0. 933 * @pt_id: Input the target id which can represent an ioas or a hwpt 934 * allocated via iommufd subsystem. 935 * Output the input ioas id or the attached hwpt id which could 936 * be the specified hwpt itself or a hwpt automatically created 937 * for the specified ioas by kernel during the attachment. 938 * 939 * Associate the device with an address space within the bound iommufd. 940 * Undo by VFIO_DEVICE_DETACH_IOMMUFD_PT or device fd close. This is only 941 * allowed on cdev fds. 942 * 943 * If a vfio device is currently attached to a valid hw_pagetable, without doing 944 * a VFIO_DEVICE_DETACH_IOMMUFD_PT, a second VFIO_DEVICE_ATTACH_IOMMUFD_PT ioctl 945 * passing in another hw_pagetable (hwpt) id is allowed. This action, also known 946 * as a hw_pagetable replacement, will replace the device's currently attached 947 * hw_pagetable with a new hw_pagetable corresponding to the given pt_id. 948 * 949 * Return: 0 on success, -errno on failure. 950 */ 951 struct vfio_device_attach_iommufd_pt { 952 __u32 argsz; 953 __u32 flags; 954 __u32 pt_id; 955 }; 956 957 #define VFIO_DEVICE_ATTACH_IOMMUFD_PT _IO(VFIO_TYPE, VFIO_BASE + 19) 958 959 /* 960 * VFIO_DEVICE_DETACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 20, 961 * struct vfio_device_detach_iommufd_pt) 962 * @argsz: User filled size of this data. 963 * @flags: Must be 0. 964 * 965 * Remove the association of the device and its current associated address 966 * space. After it, the device should be in a blocking DMA state. This is only 967 * allowed on cdev fds. 968 * 969 * Return: 0 on success, -errno on failure. 970 */ 971 struct vfio_device_detach_iommufd_pt { 972 __u32 argsz; 973 __u32 flags; 974 }; 975 976 #define VFIO_DEVICE_DETACH_IOMMUFD_PT _IO(VFIO_TYPE, VFIO_BASE + 20) 977 978 /* 979 * Provide support for setting a PCI VF Token, which is used as a shared 980 * secret between PF and VF drivers. This feature may only be set on a 981 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing 982 * open VFs. Data provided when setting this feature is a 16-byte array 983 * (__u8 b[16]), representing a UUID. 984 */ 985 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) 986 987 /* 988 * Indicates the device can support the migration API through 989 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and 990 * ERROR states are always supported. Support for additional states is 991 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be 992 * set. 993 * 994 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and 995 * RESUMING are supported. 996 * 997 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P 998 * is supported in addition to the STOP_COPY states. 999 * 1000 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that 1001 * PRE_COPY is supported in addition to the STOP_COPY states. 1002 * 1003 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY 1004 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported 1005 * in addition to the STOP_COPY states. 1006 * 1007 * Other combinations of flags have behavior to be defined in the future. 1008 */ 1009 struct vfio_device_feature_migration { 1010 __aligned_u64 flags; 1011 #define VFIO_MIGRATION_STOP_COPY (1 << 0) 1012 #define VFIO_MIGRATION_P2P (1 << 1) 1013 #define VFIO_MIGRATION_PRE_COPY (1 << 2) 1014 }; 1015 #define VFIO_DEVICE_FEATURE_MIGRATION 1 1016 1017 /* 1018 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO 1019 * device. The new state is supplied in device_state, see enum 1020 * vfio_device_mig_state for details 1021 * 1022 * The kernel migration driver must fully transition the device to the new state 1023 * value before the operation returns to the user. 1024 * 1025 * The kernel migration driver must not generate asynchronous device state 1026 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET 1027 * ioctl as described above. 1028 * 1029 * If this function fails then current device_state may be the original 1030 * operating state or some other state along the combination transition path. 1031 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt 1032 * to return to the original state, or attempt to return to some other state 1033 * such as RUNNING or STOP. 1034 * 1035 * If the new_state starts a new data transfer session then the FD associated 1036 * with that session is returned in data_fd. The user is responsible to close 1037 * this FD when it is finished. The user must consider the migration data stream 1038 * carried over the FD to be opaque and must preserve the byte order of the 1039 * stream. The user is not required to preserve buffer segmentation when writing 1040 * the data stream during the RESUMING operation. 1041 * 1042 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO 1043 * device, data_fd will be -1. 1044 */ 1045 struct vfio_device_feature_mig_state { 1046 __u32 device_state; /* From enum vfio_device_mig_state */ 1047 __s32 data_fd; 1048 }; 1049 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2 1050 1051 /* 1052 * The device migration Finite State Machine is described by the enum 1053 * vfio_device_mig_state. Some of the FSM arcs will create a migration data 1054 * transfer session by returning a FD, in this case the migration data will 1055 * flow over the FD using read() and write() as discussed below. 1056 * 1057 * There are 5 states to support VFIO_MIGRATION_STOP_COPY: 1058 * RUNNING - The device is running normally 1059 * STOP - The device does not change the internal or external state 1060 * STOP_COPY - The device internal state can be read out 1061 * RESUMING - The device is stopped and is loading a new internal state 1062 * ERROR - The device has failed and must be reset 1063 * 1064 * And optional states to support VFIO_MIGRATION_P2P: 1065 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA 1066 * And VFIO_MIGRATION_PRE_COPY: 1067 * PRE_COPY - The device is running normally but tracking internal state 1068 * changes 1069 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY: 1070 * PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA 1071 * 1072 * The FSM takes actions on the arcs between FSM states. The driver implements 1073 * the following behavior for the FSM arcs: 1074 * 1075 * RUNNING_P2P -> STOP 1076 * STOP_COPY -> STOP 1077 * While in STOP the device must stop the operation of the device. The device 1078 * must not generate interrupts, DMA, or any other change to external state. 1079 * It must not change its internal state. When stopped the device and kernel 1080 * migration driver must accept and respond to interaction to support external 1081 * subsystems in the STOP state, for example PCI MSI-X and PCI config space. 1082 * Failure by the user to restrict device access while in STOP must not result 1083 * in error conditions outside the user context (ex. host system faults). 1084 * 1085 * The STOP_COPY arc will terminate a data transfer session. 1086 * 1087 * RESUMING -> STOP 1088 * Leaving RESUMING terminates a data transfer session and indicates the 1089 * device should complete processing of the data delivered by write(). The 1090 * kernel migration driver should complete the incorporation of data written 1091 * to the data transfer FD into the device internal state and perform 1092 * final validity and consistency checking of the new device state. If the 1093 * user provided data is found to be incomplete, inconsistent, or otherwise 1094 * invalid, the migration driver must fail the SET_STATE ioctl and 1095 * optionally go to the ERROR state as described below. 1096 * 1097 * While in STOP the device has the same behavior as other STOP states 1098 * described above. 1099 * 1100 * To abort a RESUMING session the device must be reset. 1101 * 1102 * PRE_COPY -> RUNNING 1103 * RUNNING_P2P -> RUNNING 1104 * While in RUNNING the device is fully operational, the device may generate 1105 * interrupts, DMA, respond to MMIO, all vfio device regions are functional, 1106 * and the device may advance its internal state. 1107 * 1108 * The PRE_COPY arc will terminate a data transfer session. 1109 * 1110 * PRE_COPY_P2P -> RUNNING_P2P 1111 * RUNNING -> RUNNING_P2P 1112 * STOP -> RUNNING_P2P 1113 * While in RUNNING_P2P the device is partially running in the P2P quiescent 1114 * state defined below. 1115 * 1116 * The PRE_COPY_P2P arc will terminate a data transfer session. 1117 * 1118 * RUNNING -> PRE_COPY 1119 * RUNNING_P2P -> PRE_COPY_P2P 1120 * STOP -> STOP_COPY 1121 * PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states 1122 * which share a data transfer session. Moving between these states alters 1123 * what is streamed in session, but does not terminate or otherwise affect 1124 * the associated fd. 1125 * 1126 * These arcs begin the process of saving the device state and will return a 1127 * new data_fd. The migration driver may perform actions such as enabling 1128 * dirty logging of device state when entering PRE_COPY or PER_COPY_P2P. 1129 * 1130 * Each arc does not change the device operation, the device remains 1131 * RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below 1132 * in PRE_COPY_P2P -> STOP_COPY. 1133 * 1134 * PRE_COPY -> PRE_COPY_P2P 1135 * Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above. 1136 * However, while in the PRE_COPY_P2P state, the device is partially running 1137 * in the P2P quiescent state defined below, like RUNNING_P2P. 1138 * 1139 * PRE_COPY_P2P -> PRE_COPY 1140 * This arc allows returning the device to a full RUNNING behavior while 1141 * continuing all the behaviors of PRE_COPY. 1142 * 1143 * PRE_COPY_P2P -> STOP_COPY 1144 * While in the STOP_COPY state the device has the same behavior as STOP 1145 * with the addition that the data transfers session continues to stream the 1146 * migration state. End of stream on the FD indicates the entire device 1147 * state has been transferred. 1148 * 1149 * The user should take steps to restrict access to vfio device regions while 1150 * the device is in STOP_COPY or risk corruption of the device migration data 1151 * stream. 1152 * 1153 * STOP -> RESUMING 1154 * Entering the RESUMING state starts a process of restoring the device state 1155 * and will return a new data_fd. The data stream fed into the data_fd should 1156 * be taken from the data transfer output of a single FD during saving from 1157 * a compatible device. The migration driver may alter/reset the internal 1158 * device state for this arc if required to prepare the device to receive the 1159 * migration data. 1160 * 1161 * STOP_COPY -> PRE_COPY 1162 * STOP_COPY -> PRE_COPY_P2P 1163 * These arcs are not permitted and return error if requested. Future 1164 * revisions of this API may define behaviors for these arcs, in this case 1165 * support will be discoverable by a new flag in 1166 * VFIO_DEVICE_FEATURE_MIGRATION. 1167 * 1168 * any -> ERROR 1169 * ERROR cannot be specified as a device state, however any transition request 1170 * can be failed with an errno return and may then move the device_state into 1171 * ERROR. In this case the device was unable to execute the requested arc and 1172 * was also unable to restore the device to any valid device_state. 1173 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the 1174 * device_state back to RUNNING. 1175 * 1176 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent 1177 * state for the device for the purposes of managing multiple devices within a 1178 * user context where peer-to-peer DMA between devices may be active. The 1179 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating 1180 * any new P2P DMA transactions. If the device can identify P2P transactions 1181 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration 1182 * driver must complete any such outstanding operations prior to completing the 1183 * FSM arc into a P2P state. For the purpose of specification the states 1184 * behave as though the device was fully running if not supported. Like while in 1185 * STOP or STOP_COPY the user must not touch the device, otherwise the state 1186 * can be exited. 1187 * 1188 * The remaining possible transitions are interpreted as combinations of the 1189 * above FSM arcs. As there are multiple paths through the FSM arcs the path 1190 * should be selected based on the following rules: 1191 * - Select the shortest path. 1192 * - The path cannot have saving group states as interior arcs, only 1193 * starting/end states. 1194 * Refer to vfio_mig_get_next_state() for the result of the algorithm. 1195 * 1196 * The automatic transit through the FSM arcs that make up the combination 1197 * transition is invisible to the user. When working with combination arcs the 1198 * user may see any step along the path in the device_state if SET_STATE 1199 * fails. When handling these types of errors users should anticipate future 1200 * revisions of this protocol using new states and those states becoming 1201 * visible in this case. 1202 * 1203 * The optional states cannot be used with SET_STATE if the device does not 1204 * support them. The user can discover if these states are supported by using 1205 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can 1206 * avoid knowing about these optional states if the kernel driver supports them. 1207 * 1208 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY 1209 * is not present. 1210 */ 1211 enum vfio_device_mig_state { 1212 VFIO_DEVICE_STATE_ERROR = 0, 1213 VFIO_DEVICE_STATE_STOP = 1, 1214 VFIO_DEVICE_STATE_RUNNING = 2, 1215 VFIO_DEVICE_STATE_STOP_COPY = 3, 1216 VFIO_DEVICE_STATE_RESUMING = 4, 1217 VFIO_DEVICE_STATE_RUNNING_P2P = 5, 1218 VFIO_DEVICE_STATE_PRE_COPY = 6, 1219 VFIO_DEVICE_STATE_PRE_COPY_P2P = 7, 1220 }; 1221 1222 /** 1223 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21) 1224 * 1225 * This ioctl is used on the migration data FD in the precopy phase of the 1226 * migration data transfer. It returns an estimate of the current data sizes 1227 * remaining to be transferred. It allows the user to judge when it is 1228 * appropriate to leave PRE_COPY for STOP_COPY. 1229 * 1230 * This ioctl is valid only in PRE_COPY states and kernel driver should 1231 * return -EINVAL from any other migration state. 1232 * 1233 * The vfio_precopy_info data structure returned by this ioctl provides 1234 * estimates of data available from the device during the PRE_COPY states. 1235 * This estimate is split into two categories, initial_bytes and 1236 * dirty_bytes. 1237 * 1238 * The initial_bytes field indicates the amount of initial precopy 1239 * data available from the device. This field should have a non-zero initial 1240 * value and decrease as migration data is read from the device. 1241 * It is recommended to leave PRE_COPY for STOP_COPY only after this field 1242 * reaches zero. Leaving PRE_COPY earlier might make things slower. 1243 * 1244 * The dirty_bytes field tracks device state changes relative to data 1245 * previously retrieved. This field starts at zero and may increase as 1246 * the internal device state is modified or decrease as that modified 1247 * state is read from the device. 1248 * 1249 * Userspace may use the combination of these fields to estimate the 1250 * potential data size available during the PRE_COPY phases, as well as 1251 * trends relative to the rate the device is dirtying its internal 1252 * state, but these fields are not required to have any bearing relative 1253 * to the data size available during the STOP_COPY phase. 1254 * 1255 * Drivers have a lot of flexibility in when and what they transfer during the 1256 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO. 1257 * 1258 * During pre-copy the migration data FD has a temporary "end of stream" that is 1259 * reached when both initial_bytes and dirty_byte are zero. For instance, this 1260 * may indicate that the device is idle and not currently dirtying any internal 1261 * state. When read() is done on this temporary end of stream the kernel driver 1262 * should return ENOMSG from read(). Userspace can wait for more data (which may 1263 * never come) by using poll. 1264 * 1265 * Once in STOP_COPY the migration data FD has a permanent end of stream 1266 * signaled in the usual way by read() always returning 0 and poll always 1267 * returning readable. ENOMSG may not be returned in STOP_COPY. 1268 * Support for this ioctl is mandatory if a driver claims to support 1269 * VFIO_MIGRATION_PRE_COPY. 1270 * 1271 * Return: 0 on success, -1 and errno set on failure. 1272 */ 1273 struct vfio_precopy_info { 1274 __u32 argsz; 1275 __u32 flags; 1276 __aligned_u64 initial_bytes; 1277 __aligned_u64 dirty_bytes; 1278 }; 1279 1280 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21) 1281 1282 /* 1283 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power 1284 * state with the platform-based power management. Device use of lower power 1285 * states depends on factors managed by the runtime power management core, 1286 * including system level support and coordinating support among dependent 1287 * devices. Enabling device low power entry does not guarantee lower power 1288 * usage by the device, nor is a mechanism provided through this feature to 1289 * know the current power state of the device. If any device access happens 1290 * (either from the host or through the vfio uAPI) when the device is in the 1291 * low power state, then the host will move the device out of the low power 1292 * state as necessary prior to the access. Once the access is completed, the 1293 * device may re-enter the low power state. For single shot low power support 1294 * with wake-up notification, see 1295 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd 1296 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after 1297 * calling LOW_POWER_EXIT. 1298 */ 1299 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3 1300 1301 /* 1302 * This device feature has the same behavior as 1303 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user 1304 * provides an eventfd for wake-up notification. When the device moves out of 1305 * the low power state for the wake-up, the host will not allow the device to 1306 * re-enter a low power state without a subsequent user call to one of the low 1307 * power entry device feature IOCTLs. Access to mmap'd device regions is 1308 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the 1309 * low power exit. The low power exit can happen either through LOW_POWER_EXIT 1310 * or through any other access (where the wake-up notification has been 1311 * generated). The access to mmap'd device regions will not trigger low power 1312 * exit. 1313 * 1314 * The notification through the provided eventfd will be generated only when 1315 * the device has entered and is resumed from a low power state after 1316 * calling this device feature IOCTL. A device that has not entered low power 1317 * state, as managed through the runtime power management core, will not 1318 * generate a notification through the provided eventfd on access. Calling the 1319 * LOW_POWER_EXIT feature is optional in the case where notification has been 1320 * signaled on the provided eventfd that a resume from low power has occurred. 1321 */ 1322 struct vfio_device_low_power_entry_with_wakeup { 1323 __s32 wakeup_eventfd; 1324 __u32 reserved; 1325 }; 1326 1327 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4 1328 1329 /* 1330 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as 1331 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or 1332 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features. 1333 * This device feature IOCTL may itself generate a wakeup eventfd notification 1334 * in the latter case if the device had previously entered a low power state. 1335 */ 1336 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5 1337 1338 /* 1339 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging. 1340 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports 1341 * DMA logging. 1342 * 1343 * DMA logging allows a device to internally record what DMAs the device is 1344 * initiating and report them back to userspace. It is part of the VFIO 1345 * migration infrastructure that allows implementing dirty page tracking 1346 * during the pre copy phase of live migration. Only DMA WRITEs are logged, 1347 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. 1348 * 1349 * When DMA logging is started a range of IOVAs to monitor is provided and the 1350 * device can optimize its logging to cover only the IOVA range given. Each 1351 * DMA that the device initiates inside the range will be logged by the device 1352 * for later retrieval. 1353 * 1354 * page_size is an input that hints what tracking granularity the device 1355 * should try to achieve. If the device cannot do the hinted page size then 1356 * it's the driver choice which page size to pick based on its support. 1357 * On output the device will return the page size it selected. 1358 * 1359 * ranges is a pointer to an array of 1360 * struct vfio_device_feature_dma_logging_range. 1361 * 1362 * The core kernel code guarantees to support by minimum num_ranges that fit 1363 * into a single kernel page. User space can try higher values but should give 1364 * up if the above can't be achieved as of some driver limitations. 1365 * 1366 * A single call to start device DMA logging can be issued and a matching stop 1367 * should follow at the end. Another start is not allowed in the meantime. 1368 */ 1369 struct vfio_device_feature_dma_logging_control { 1370 __aligned_u64 page_size; 1371 __u32 num_ranges; 1372 __u32 __reserved; 1373 __aligned_u64 ranges; 1374 }; 1375 1376 struct vfio_device_feature_dma_logging_range { 1377 __aligned_u64 iova; 1378 __aligned_u64 length; 1379 }; 1380 1381 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6 1382 1383 /* 1384 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started 1385 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START 1386 */ 1387 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7 1388 1389 /* 1390 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log 1391 * 1392 * Query the device's DMA log for written pages within the given IOVA range. 1393 * During querying the log is cleared for the IOVA range. 1394 * 1395 * bitmap is a pointer to an array of u64s that will hold the output bitmap 1396 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits 1397 * is given by: 1398 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64)) 1399 * 1400 * The input page_size can be any power of two value and does not have to 1401 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver 1402 * will format its internal logging to match the reporting page size, possibly 1403 * by replicating bits if the internal page size is lower than requested. 1404 * 1405 * The LOGGING_REPORT will only set bits in the bitmap and never clear or 1406 * perform any initialization of the user provided bitmap. 1407 * 1408 * If any error is returned userspace should assume that the dirty log is 1409 * corrupted. Error recovery is to consider all memory dirty and try to 1410 * restart the dirty tracking, or to abort/restart the whole migration. 1411 * 1412 * If DMA logging is not enabled, an error will be returned. 1413 * 1414 */ 1415 struct vfio_device_feature_dma_logging_report { 1416 __aligned_u64 iova; 1417 __aligned_u64 length; 1418 __aligned_u64 page_size; 1419 __aligned_u64 bitmap; 1420 }; 1421 1422 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8 1423 1424 /* 1425 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will 1426 * be required to complete stop copy. 1427 * 1428 * Note: Can be called on each device state. 1429 */ 1430 1431 struct vfio_device_feature_mig_data_size { 1432 __aligned_u64 stop_copy_length; 1433 }; 1434 1435 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9 1436 1437 /* -------- API for Type1 VFIO IOMMU -------- */ 1438 1439 /** 1440 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) 1441 * 1442 * Retrieve information about the IOMMU object. Fills in provided 1443 * struct vfio_iommu_info. Caller sets argsz. 1444 * 1445 * XXX Should we do these by CHECK_EXTENSION too? 1446 */ 1447 struct vfio_iommu_type1_info { 1448 __u32 argsz; 1449 __u32 flags; 1450 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ 1451 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ 1452 __u64 iova_pgsizes; /* Bitmap of supported page sizes */ 1453 __u32 cap_offset; /* Offset within info struct of first cap */ 1454 __u32 pad; 1455 }; 1456 1457 /* 1458 * The IOVA capability allows to report the valid IOVA range(s) 1459 * excluding any non-relaxable reserved regions exposed by 1460 * devices attached to the container. Any DMA map attempt 1461 * outside the valid iova range will return error. 1462 * 1463 * The structures below define version 1 of this capability. 1464 */ 1465 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 1466 1467 struct vfio_iova_range { 1468 __u64 start; 1469 __u64 end; 1470 }; 1471 1472 struct vfio_iommu_type1_info_cap_iova_range { 1473 struct vfio_info_cap_header header; 1474 __u32 nr_iovas; 1475 __u32 reserved; 1476 struct vfio_iova_range iova_ranges[]; 1477 }; 1478 1479 /* 1480 * The migration capability allows to report supported features for migration. 1481 * 1482 * The structures below define version 1 of this capability. 1483 * 1484 * The existence of this capability indicates that IOMMU kernel driver supports 1485 * dirty page logging. 1486 * 1487 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty 1488 * page logging. 1489 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap 1490 * size in bytes that can be used by user applications when getting the dirty 1491 * bitmap. 1492 */ 1493 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 1494 1495 struct vfio_iommu_type1_info_cap_migration { 1496 struct vfio_info_cap_header header; 1497 __u32 flags; 1498 __u64 pgsize_bitmap; 1499 __u64 max_dirty_bitmap_size; /* in bytes */ 1500 }; 1501 1502 /* 1503 * The DMA available capability allows to report the current number of 1504 * simultaneously outstanding DMA mappings that are allowed. 1505 * 1506 * The structure below defines version 1 of this capability. 1507 * 1508 * avail: specifies the current number of outstanding DMA mappings allowed. 1509 */ 1510 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 1511 1512 struct vfio_iommu_type1_info_dma_avail { 1513 struct vfio_info_cap_header header; 1514 __u32 avail; 1515 }; 1516 1517 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1518 1519 /** 1520 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) 1521 * 1522 * Map process virtual addresses to IO virtual addresses using the 1523 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. 1524 * 1525 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr 1526 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To 1527 * maintain memory consistency within the user application, the updated vaddr 1528 * must address the same memory object as originally mapped. Failure to do so 1529 * will result in user memory corruption and/or device misbehavior. iova and 1530 * size must match those in the original MAP_DMA call. Protection is not 1531 * changed, and the READ & WRITE flags must be 0. 1532 */ 1533 struct vfio_iommu_type1_dma_map { 1534 __u32 argsz; 1535 __u32 flags; 1536 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ 1537 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ 1538 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2) 1539 __u64 vaddr; /* Process virtual address */ 1540 __u64 iova; /* IO virtual address */ 1541 __u64 size; /* Size of mapping (bytes) */ 1542 }; 1543 1544 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) 1545 1546 struct vfio_bitmap { 1547 __u64 pgsize; /* page size for bitmap in bytes */ 1548 __u64 size; /* in bytes */ 1549 __u64 *data; /* one bit per page */ 1550 }; 1551 1552 /** 1553 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, 1554 * struct vfio_dma_unmap) 1555 * 1556 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. 1557 * Caller sets argsz. The actual unmapped size is returned in the size 1558 * field. No guarantee is made to the user that arbitrary unmaps of iova 1559 * or size different from those used in the original mapping call will 1560 * succeed. 1561 * 1562 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap 1563 * before unmapping IO virtual addresses. When this flag is set, the user must 1564 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated 1565 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. 1566 * A bit in the bitmap represents one page, of user provided page size in 1567 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set 1568 * indicates that the page at that offset from iova is dirty. A Bitmap of the 1569 * pages in the range of unmapped size is returned in the user-provided 1570 * vfio_bitmap.data. 1571 * 1572 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size 1573 * must be 0. This cannot be combined with the get-dirty-bitmap flag. 1574 * 1575 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host 1576 * virtual addresses in the iova range. DMA to already-mapped pages continues. 1577 * Groups may not be added to the container while any addresses are invalid. 1578 * This cannot be combined with the get-dirty-bitmap flag. 1579 */ 1580 struct vfio_iommu_type1_dma_unmap { 1581 __u32 argsz; 1582 __u32 flags; 1583 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) 1584 #define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1) 1585 #define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2) 1586 __u64 iova; /* IO virtual address */ 1587 __u64 size; /* Size of mapping (bytes) */ 1588 __u8 data[]; 1589 }; 1590 1591 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) 1592 1593 /* 1594 * IOCTLs to enable/disable IOMMU container usage. 1595 * No parameters are supported. 1596 */ 1597 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) 1598 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) 1599 1600 /** 1601 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 1602 * struct vfio_iommu_type1_dirty_bitmap) 1603 * IOCTL is used for dirty pages logging. 1604 * Caller should set flag depending on which operation to perform, details as 1605 * below: 1606 * 1607 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs 1608 * the IOMMU driver to log pages that are dirtied or potentially dirtied by 1609 * the device; designed to be used when a migration is in progress. Dirty pages 1610 * are logged until logging is disabled by user application by calling the IOCTL 1611 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. 1612 * 1613 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs 1614 * the IOMMU driver to stop logging dirtied pages. 1615 * 1616 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set 1617 * returns the dirty pages bitmap for IOMMU container for a given IOVA range. 1618 * The user must specify the IOVA range and the pgsize through the structure 1619 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface 1620 * supports getting a bitmap of the smallest supported pgsize only and can be 1621 * modified in future to get a bitmap of any specified supported pgsize. The 1622 * user must provide a zeroed memory area for the bitmap memory and specify its 1623 * size in bitmap.size. One bit is used to represent one page consecutively 1624 * starting from iova offset. The user should provide page size in bitmap.pgsize 1625 * field. A bit set in the bitmap indicates that the page at that offset from 1626 * iova is dirty. The caller must set argsz to a value including the size of 1627 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the 1628 * actual bitmap. If dirty pages logging is not enabled, an error will be 1629 * returned. 1630 * 1631 * Only one of the flags _START, _STOP and _GET may be specified at a time. 1632 * 1633 */ 1634 struct vfio_iommu_type1_dirty_bitmap { 1635 __u32 argsz; 1636 __u32 flags; 1637 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) 1638 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) 1639 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) 1640 __u8 data[]; 1641 }; 1642 1643 struct vfio_iommu_type1_dirty_bitmap_get { 1644 __u64 iova; /* IO virtual address */ 1645 __u64 size; /* Size of iova range */ 1646 struct vfio_bitmap bitmap; 1647 }; 1648 1649 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) 1650 1651 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ 1652 1653 /* 1654 * The SPAPR TCE DDW info struct provides the information about 1655 * the details of Dynamic DMA window capability. 1656 * 1657 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. 1658 * @max_dynamic_windows_supported tells the maximum number of windows 1659 * which the platform can create. 1660 * @levels tells the maximum number of levels in multi-level IOMMU tables; 1661 * this allows splitting a table into smaller chunks which reduces 1662 * the amount of physically contiguous memory required for the table. 1663 */ 1664 struct vfio_iommu_spapr_tce_ddw_info { 1665 __u64 pgsizes; /* Bitmap of supported page sizes */ 1666 __u32 max_dynamic_windows_supported; 1667 __u32 levels; 1668 }; 1669 1670 /* 1671 * The SPAPR TCE info struct provides the information about the PCI bus 1672 * address ranges available for DMA, these values are programmed into 1673 * the hardware so the guest has to know that information. 1674 * 1675 * The DMA 32 bit window start is an absolute PCI bus address. 1676 * The IOVA address passed via map/unmap ioctls are absolute PCI bus 1677 * addresses too so the window works as a filter rather than an offset 1678 * for IOVA addresses. 1679 * 1680 * Flags supported: 1681 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows 1682 * (DDW) support is present. @ddw is only supported when DDW is present. 1683 */ 1684 struct vfio_iommu_spapr_tce_info { 1685 __u32 argsz; 1686 __u32 flags; 1687 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ 1688 __u32 dma32_window_start; /* 32 bit window start (bytes) */ 1689 __u32 dma32_window_size; /* 32 bit window size (bytes) */ 1690 struct vfio_iommu_spapr_tce_ddw_info ddw; 1691 }; 1692 1693 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1694 1695 /* 1696 * EEH PE operation struct provides ways to: 1697 * - enable/disable EEH functionality; 1698 * - unfreeze IO/DMA for frozen PE; 1699 * - read PE state; 1700 * - reset PE; 1701 * - configure PE; 1702 * - inject EEH error. 1703 */ 1704 struct vfio_eeh_pe_err { 1705 __u32 type; 1706 __u32 func; 1707 __u64 addr; 1708 __u64 mask; 1709 }; 1710 1711 struct vfio_eeh_pe_op { 1712 __u32 argsz; 1713 __u32 flags; 1714 __u32 op; 1715 union { 1716 struct vfio_eeh_pe_err err; 1717 }; 1718 }; 1719 1720 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ 1721 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ 1722 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ 1723 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ 1724 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ 1725 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ 1726 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ 1727 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ 1728 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ 1729 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ 1730 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ 1731 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ 1732 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ 1733 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ 1734 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ 1735 1736 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) 1737 1738 /** 1739 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) 1740 * 1741 * Registers user space memory where DMA is allowed. It pins 1742 * user pages and does the locked memory accounting so 1743 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls 1744 * get faster. 1745 */ 1746 struct vfio_iommu_spapr_register_memory { 1747 __u32 argsz; 1748 __u32 flags; 1749 __u64 vaddr; /* Process virtual address */ 1750 __u64 size; /* Size of mapping (bytes) */ 1751 }; 1752 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) 1753 1754 /** 1755 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) 1756 * 1757 * Unregisters user space memory registered with 1758 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. 1759 * Uses vfio_iommu_spapr_register_memory for parameters. 1760 */ 1761 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) 1762 1763 /** 1764 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) 1765 * 1766 * Creates an additional TCE table and programs it (sets a new DMA window) 1767 * to every IOMMU group in the container. It receives page shift, window 1768 * size and number of levels in the TCE table being created. 1769 * 1770 * It allocates and returns an offset on a PCI bus of the new DMA window. 1771 */ 1772 struct vfio_iommu_spapr_tce_create { 1773 __u32 argsz; 1774 __u32 flags; 1775 /* in */ 1776 __u32 page_shift; 1777 __u32 __resv1; 1778 __u64 window_size; 1779 __u32 levels; 1780 __u32 __resv2; 1781 /* out */ 1782 __u64 start_addr; 1783 }; 1784 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) 1785 1786 /** 1787 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) 1788 * 1789 * Unprograms a TCE table from all groups in the container and destroys it. 1790 * It receives a PCI bus offset as a window id. 1791 */ 1792 struct vfio_iommu_spapr_tce_remove { 1793 __u32 argsz; 1794 __u32 flags; 1795 /* in */ 1796 __u64 start_addr; 1797 }; 1798 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) 1799 1800 /* ***************************************************************** */ 1801 1802 #endif /* VFIO_H */ 1803