1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #ifndef TCG_H 26 #define TCG_H 27 28 #include "cpu.h" 29 #include "exec/memop.h" 30 #include "exec/tb-context.h" 31 #include "qemu/bitops.h" 32 #include "qemu/plugin.h" 33 #include "qemu/queue.h" 34 #include "tcg/tcg-mo.h" 35 #include "tcg-target.h" 36 #include "qemu/int128.h" 37 38 /* XXX: make safe guess about sizes */ 39 #define MAX_OP_PER_INSTR 266 40 41 #if HOST_LONG_BITS == 32 42 #define MAX_OPC_PARAM_PER_ARG 2 43 #else 44 #define MAX_OPC_PARAM_PER_ARG 1 45 #endif 46 #define MAX_OPC_PARAM_IARGS 6 47 #define MAX_OPC_PARAM_OARGS 1 48 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS) 49 50 /* A Call op needs up to 4 + 2N parameters on 32-bit archs, 51 * and up to 4 + N parameters on 64-bit archs 52 * (N = number of input arguments + output arguments). */ 53 #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS)) 54 55 #define CPU_TEMP_BUF_NLONGS 128 56 57 /* Default target word size to pointer size. */ 58 #ifndef TCG_TARGET_REG_BITS 59 # if UINTPTR_MAX == UINT32_MAX 60 # define TCG_TARGET_REG_BITS 32 61 # elif UINTPTR_MAX == UINT64_MAX 62 # define TCG_TARGET_REG_BITS 64 63 # else 64 # error Unknown pointer size for tcg target 65 # endif 66 #endif 67 68 #if TCG_TARGET_REG_BITS == 32 69 typedef int32_t tcg_target_long; 70 typedef uint32_t tcg_target_ulong; 71 #define TCG_PRIlx PRIx32 72 #define TCG_PRIld PRId32 73 #elif TCG_TARGET_REG_BITS == 64 74 typedef int64_t tcg_target_long; 75 typedef uint64_t tcg_target_ulong; 76 #define TCG_PRIlx PRIx64 77 #define TCG_PRIld PRId64 78 #else 79 #error unsupported 80 #endif 81 82 /* Oversized TCG guests make things like MTTCG hard 83 * as we can't use atomics for cputlb updates. 84 */ 85 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 86 #define TCG_OVERSIZED_GUEST 1 87 #else 88 #define TCG_OVERSIZED_GUEST 0 89 #endif 90 91 #if TCG_TARGET_NB_REGS <= 32 92 typedef uint32_t TCGRegSet; 93 #elif TCG_TARGET_NB_REGS <= 64 94 typedef uint64_t TCGRegSet; 95 #else 96 #error unsupported 97 #endif 98 99 #if TCG_TARGET_REG_BITS == 32 100 /* Turn some undef macros into false macros. */ 101 #define TCG_TARGET_HAS_extrl_i64_i32 0 102 #define TCG_TARGET_HAS_extrh_i64_i32 0 103 #define TCG_TARGET_HAS_div_i64 0 104 #define TCG_TARGET_HAS_rem_i64 0 105 #define TCG_TARGET_HAS_div2_i64 0 106 #define TCG_TARGET_HAS_rot_i64 0 107 #define TCG_TARGET_HAS_ext8s_i64 0 108 #define TCG_TARGET_HAS_ext16s_i64 0 109 #define TCG_TARGET_HAS_ext32s_i64 0 110 #define TCG_TARGET_HAS_ext8u_i64 0 111 #define TCG_TARGET_HAS_ext16u_i64 0 112 #define TCG_TARGET_HAS_ext32u_i64 0 113 #define TCG_TARGET_HAS_bswap16_i64 0 114 #define TCG_TARGET_HAS_bswap32_i64 0 115 #define TCG_TARGET_HAS_bswap64_i64 0 116 #define TCG_TARGET_HAS_neg_i64 0 117 #define TCG_TARGET_HAS_not_i64 0 118 #define TCG_TARGET_HAS_andc_i64 0 119 #define TCG_TARGET_HAS_orc_i64 0 120 #define TCG_TARGET_HAS_eqv_i64 0 121 #define TCG_TARGET_HAS_nand_i64 0 122 #define TCG_TARGET_HAS_nor_i64 0 123 #define TCG_TARGET_HAS_clz_i64 0 124 #define TCG_TARGET_HAS_ctz_i64 0 125 #define TCG_TARGET_HAS_ctpop_i64 0 126 #define TCG_TARGET_HAS_deposit_i64 0 127 #define TCG_TARGET_HAS_extract_i64 0 128 #define TCG_TARGET_HAS_sextract_i64 0 129 #define TCG_TARGET_HAS_extract2_i64 0 130 #define TCG_TARGET_HAS_movcond_i64 0 131 #define TCG_TARGET_HAS_add2_i64 0 132 #define TCG_TARGET_HAS_sub2_i64 0 133 #define TCG_TARGET_HAS_mulu2_i64 0 134 #define TCG_TARGET_HAS_muls2_i64 0 135 #define TCG_TARGET_HAS_muluh_i64 0 136 #define TCG_TARGET_HAS_mulsh_i64 0 137 /* Turn some undef macros into true macros. */ 138 #define TCG_TARGET_HAS_add2_i32 1 139 #define TCG_TARGET_HAS_sub2_i32 1 140 #endif 141 142 #ifndef TCG_TARGET_deposit_i32_valid 143 #define TCG_TARGET_deposit_i32_valid(ofs, len) 1 144 #endif 145 #ifndef TCG_TARGET_deposit_i64_valid 146 #define TCG_TARGET_deposit_i64_valid(ofs, len) 1 147 #endif 148 #ifndef TCG_TARGET_extract_i32_valid 149 #define TCG_TARGET_extract_i32_valid(ofs, len) 1 150 #endif 151 #ifndef TCG_TARGET_extract_i64_valid 152 #define TCG_TARGET_extract_i64_valid(ofs, len) 1 153 #endif 154 155 /* Only one of DIV or DIV2 should be defined. */ 156 #if defined(TCG_TARGET_HAS_div_i32) 157 #define TCG_TARGET_HAS_div2_i32 0 158 #elif defined(TCG_TARGET_HAS_div2_i32) 159 #define TCG_TARGET_HAS_div_i32 0 160 #define TCG_TARGET_HAS_rem_i32 0 161 #endif 162 #if defined(TCG_TARGET_HAS_div_i64) 163 #define TCG_TARGET_HAS_div2_i64 0 164 #elif defined(TCG_TARGET_HAS_div2_i64) 165 #define TCG_TARGET_HAS_div_i64 0 166 #define TCG_TARGET_HAS_rem_i64 0 167 #endif 168 169 /* For 32-bit targets, some sort of unsigned widening multiply is required. */ 170 #if TCG_TARGET_REG_BITS == 32 \ 171 && !(defined(TCG_TARGET_HAS_mulu2_i32) \ 172 || defined(TCG_TARGET_HAS_muluh_i32)) 173 # error "Missing unsigned widening multiply" 174 #endif 175 176 #if !defined(TCG_TARGET_HAS_v64) \ 177 && !defined(TCG_TARGET_HAS_v128) \ 178 && !defined(TCG_TARGET_HAS_v256) 179 #define TCG_TARGET_MAYBE_vec 0 180 #define TCG_TARGET_HAS_abs_vec 0 181 #define TCG_TARGET_HAS_neg_vec 0 182 #define TCG_TARGET_HAS_not_vec 0 183 #define TCG_TARGET_HAS_andc_vec 0 184 #define TCG_TARGET_HAS_orc_vec 0 185 #define TCG_TARGET_HAS_roti_vec 0 186 #define TCG_TARGET_HAS_rots_vec 0 187 #define TCG_TARGET_HAS_rotv_vec 0 188 #define TCG_TARGET_HAS_shi_vec 0 189 #define TCG_TARGET_HAS_shs_vec 0 190 #define TCG_TARGET_HAS_shv_vec 0 191 #define TCG_TARGET_HAS_mul_vec 0 192 #define TCG_TARGET_HAS_sat_vec 0 193 #define TCG_TARGET_HAS_minmax_vec 0 194 #define TCG_TARGET_HAS_bitsel_vec 0 195 #define TCG_TARGET_HAS_cmpsel_vec 0 196 #else 197 #define TCG_TARGET_MAYBE_vec 1 198 #endif 199 #ifndef TCG_TARGET_HAS_v64 200 #define TCG_TARGET_HAS_v64 0 201 #endif 202 #ifndef TCG_TARGET_HAS_v128 203 #define TCG_TARGET_HAS_v128 0 204 #endif 205 #ifndef TCG_TARGET_HAS_v256 206 #define TCG_TARGET_HAS_v256 0 207 #endif 208 209 #ifndef TARGET_INSN_START_EXTRA_WORDS 210 # define TARGET_INSN_START_WORDS 1 211 #else 212 # define TARGET_INSN_START_WORDS (1 + TARGET_INSN_START_EXTRA_WORDS) 213 #endif 214 215 typedef enum TCGOpcode { 216 #define DEF(name, oargs, iargs, cargs, flags) INDEX_op_ ## name, 217 #include "tcg/tcg-opc.h" 218 #undef DEF 219 NB_OPS, 220 } TCGOpcode; 221 222 #define tcg_regset_set_reg(d, r) ((d) |= (TCGRegSet)1 << (r)) 223 #define tcg_regset_reset_reg(d, r) ((d) &= ~((TCGRegSet)1 << (r))) 224 #define tcg_regset_test_reg(d, r) (((d) >> (r)) & 1) 225 226 #ifndef TCG_TARGET_INSN_UNIT_SIZE 227 # error "Missing TCG_TARGET_INSN_UNIT_SIZE" 228 #elif TCG_TARGET_INSN_UNIT_SIZE == 1 229 typedef uint8_t tcg_insn_unit; 230 #elif TCG_TARGET_INSN_UNIT_SIZE == 2 231 typedef uint16_t tcg_insn_unit; 232 #elif TCG_TARGET_INSN_UNIT_SIZE == 4 233 typedef uint32_t tcg_insn_unit; 234 #elif TCG_TARGET_INSN_UNIT_SIZE == 8 235 typedef uint64_t tcg_insn_unit; 236 #else 237 /* The port better have done this. */ 238 #endif 239 240 241 #if defined CONFIG_DEBUG_TCG || defined QEMU_STATIC_ANALYSIS 242 # define tcg_debug_assert(X) do { assert(X); } while (0) 243 #else 244 # define tcg_debug_assert(X) \ 245 do { if (!(X)) { __builtin_unreachable(); } } while (0) 246 #endif 247 248 typedef struct TCGRelocation TCGRelocation; 249 struct TCGRelocation { 250 QSIMPLEQ_ENTRY(TCGRelocation) next; 251 tcg_insn_unit *ptr; 252 intptr_t addend; 253 int type; 254 }; 255 256 typedef struct TCGLabel TCGLabel; 257 struct TCGLabel { 258 unsigned present : 1; 259 unsigned has_value : 1; 260 unsigned id : 14; 261 unsigned refs : 16; 262 union { 263 uintptr_t value; 264 tcg_insn_unit *value_ptr; 265 } u; 266 QSIMPLEQ_HEAD(, TCGRelocation) relocs; 267 QSIMPLEQ_ENTRY(TCGLabel) next; 268 }; 269 270 typedef struct TCGPool { 271 struct TCGPool *next; 272 int size; 273 uint8_t data[] __attribute__ ((aligned)); 274 } TCGPool; 275 276 #define TCG_POOL_CHUNK_SIZE 32768 277 278 #define TCG_MAX_TEMPS 512 279 #define TCG_MAX_INSNS 512 280 281 /* when the size of the arguments of a called function is smaller than 282 this value, they are statically allocated in the TB stack frame */ 283 #define TCG_STATIC_CALL_ARGS_SIZE 128 284 285 typedef enum TCGType { 286 TCG_TYPE_I32, 287 TCG_TYPE_I64, 288 289 TCG_TYPE_V64, 290 TCG_TYPE_V128, 291 TCG_TYPE_V256, 292 293 TCG_TYPE_COUNT, /* number of different types */ 294 295 /* An alias for the size of the host register. */ 296 #if TCG_TARGET_REG_BITS == 32 297 TCG_TYPE_REG = TCG_TYPE_I32, 298 #else 299 TCG_TYPE_REG = TCG_TYPE_I64, 300 #endif 301 302 /* An alias for the size of the native pointer. */ 303 #if UINTPTR_MAX == UINT32_MAX 304 TCG_TYPE_PTR = TCG_TYPE_I32, 305 #else 306 TCG_TYPE_PTR = TCG_TYPE_I64, 307 #endif 308 309 /* An alias for the size of the target "long", aka register. */ 310 #if TARGET_LONG_BITS == 64 311 TCG_TYPE_TL = TCG_TYPE_I64, 312 #else 313 TCG_TYPE_TL = TCG_TYPE_I32, 314 #endif 315 } TCGType; 316 317 /** 318 * get_alignment_bits 319 * @memop: MemOp value 320 * 321 * Extract the alignment size from the memop. 322 */ 323 static inline unsigned get_alignment_bits(MemOp memop) 324 { 325 unsigned a = memop & MO_AMASK; 326 327 if (a == MO_UNALN) { 328 /* No alignment required. */ 329 a = 0; 330 } else if (a == MO_ALIGN) { 331 /* A natural alignment requirement. */ 332 a = memop & MO_SIZE; 333 } else { 334 /* A specific alignment requirement. */ 335 a = a >> MO_ASHIFT; 336 } 337 #if defined(CONFIG_SOFTMMU) 338 /* The requested alignment cannot overlap the TLB flags. */ 339 tcg_debug_assert((TLB_FLAGS_MASK & ((1 << a) - 1)) == 0); 340 #endif 341 return a; 342 } 343 344 typedef tcg_target_ulong TCGArg; 345 346 /* Define type and accessor macros for TCG variables. 347 348 TCG variables are the inputs and outputs of TCG ops, as described 349 in tcg/README. Target CPU front-end code uses these types to deal 350 with TCG variables as it emits TCG code via the tcg_gen_* functions. 351 They come in several flavours: 352 * TCGv_i32 : 32 bit integer type 353 * TCGv_i64 : 64 bit integer type 354 * TCGv_ptr : a host pointer type 355 * TCGv_vec : a host vector type; the exact size is not exposed 356 to the CPU front-end code. 357 * TCGv : an integer type the same size as target_ulong 358 (an alias for either TCGv_i32 or TCGv_i64) 359 The compiler's type checking will complain if you mix them 360 up and pass the wrong sized TCGv to a function. 361 362 Users of tcg_gen_* don't need to know about any of the internal 363 details of these, and should treat them as opaque types. 364 You won't be able to look inside them in a debugger either. 365 366 Internal implementation details follow: 367 368 Note that there is no definition of the structs TCGv_i32_d etc anywhere. 369 This is deliberate, because the values we store in variables of type 370 TCGv_i32 are not really pointers-to-structures. They're just small 371 integers, but keeping them in pointer types like this means that the 372 compiler will complain if you accidentally pass a TCGv_i32 to a 373 function which takes a TCGv_i64, and so on. Only the internals of 374 TCG need to care about the actual contents of the types. */ 375 376 typedef struct TCGv_i32_d *TCGv_i32; 377 typedef struct TCGv_i64_d *TCGv_i64; 378 typedef struct TCGv_ptr_d *TCGv_ptr; 379 typedef struct TCGv_vec_d *TCGv_vec; 380 typedef TCGv_ptr TCGv_env; 381 #if TARGET_LONG_BITS == 32 382 #define TCGv TCGv_i32 383 #elif TARGET_LONG_BITS == 64 384 #define TCGv TCGv_i64 385 #else 386 #error Unhandled TARGET_LONG_BITS value 387 #endif 388 389 /* call flags */ 390 /* Helper does not read globals (either directly or through an exception). It 391 implies TCG_CALL_NO_WRITE_GLOBALS. */ 392 #define TCG_CALL_NO_READ_GLOBALS 0x0001 393 /* Helper does not write globals */ 394 #define TCG_CALL_NO_WRITE_GLOBALS 0x0002 395 /* Helper can be safely suppressed if the return value is not used. */ 396 #define TCG_CALL_NO_SIDE_EFFECTS 0x0004 397 /* Helper is QEMU_NORETURN. */ 398 #define TCG_CALL_NO_RETURN 0x0008 399 400 /* convenience version of most used call flags */ 401 #define TCG_CALL_NO_RWG TCG_CALL_NO_READ_GLOBALS 402 #define TCG_CALL_NO_WG TCG_CALL_NO_WRITE_GLOBALS 403 #define TCG_CALL_NO_SE TCG_CALL_NO_SIDE_EFFECTS 404 #define TCG_CALL_NO_RWG_SE (TCG_CALL_NO_RWG | TCG_CALL_NO_SE) 405 #define TCG_CALL_NO_WG_SE (TCG_CALL_NO_WG | TCG_CALL_NO_SE) 406 407 /* Used to align parameters. See the comment before tcgv_i32_temp. */ 408 #define TCG_CALL_DUMMY_ARG ((TCGArg)0) 409 410 /* Conditions. Note that these are laid out for easy manipulation by 411 the functions below: 412 bit 0 is used for inverting; 413 bit 1 is signed, 414 bit 2 is unsigned, 415 bit 3 is used with bit 0 for swapping signed/unsigned. */ 416 typedef enum { 417 /* non-signed */ 418 TCG_COND_NEVER = 0 | 0 | 0 | 0, 419 TCG_COND_ALWAYS = 0 | 0 | 0 | 1, 420 TCG_COND_EQ = 8 | 0 | 0 | 0, 421 TCG_COND_NE = 8 | 0 | 0 | 1, 422 /* signed */ 423 TCG_COND_LT = 0 | 0 | 2 | 0, 424 TCG_COND_GE = 0 | 0 | 2 | 1, 425 TCG_COND_LE = 8 | 0 | 2 | 0, 426 TCG_COND_GT = 8 | 0 | 2 | 1, 427 /* unsigned */ 428 TCG_COND_LTU = 0 | 4 | 0 | 0, 429 TCG_COND_GEU = 0 | 4 | 0 | 1, 430 TCG_COND_LEU = 8 | 4 | 0 | 0, 431 TCG_COND_GTU = 8 | 4 | 0 | 1, 432 } TCGCond; 433 434 /* Invert the sense of the comparison. */ 435 static inline TCGCond tcg_invert_cond(TCGCond c) 436 { 437 return (TCGCond)(c ^ 1); 438 } 439 440 /* Swap the operands in a comparison. */ 441 static inline TCGCond tcg_swap_cond(TCGCond c) 442 { 443 return c & 6 ? (TCGCond)(c ^ 9) : c; 444 } 445 446 /* Create an "unsigned" version of a "signed" comparison. */ 447 static inline TCGCond tcg_unsigned_cond(TCGCond c) 448 { 449 return c & 2 ? (TCGCond)(c ^ 6) : c; 450 } 451 452 /* Create a "signed" version of an "unsigned" comparison. */ 453 static inline TCGCond tcg_signed_cond(TCGCond c) 454 { 455 return c & 4 ? (TCGCond)(c ^ 6) : c; 456 } 457 458 /* Must a comparison be considered unsigned? */ 459 static inline bool is_unsigned_cond(TCGCond c) 460 { 461 return (c & 4) != 0; 462 } 463 464 /* Create a "high" version of a double-word comparison. 465 This removes equality from a LTE or GTE comparison. */ 466 static inline TCGCond tcg_high_cond(TCGCond c) 467 { 468 switch (c) { 469 case TCG_COND_GE: 470 case TCG_COND_LE: 471 case TCG_COND_GEU: 472 case TCG_COND_LEU: 473 return (TCGCond)(c ^ 8); 474 default: 475 return c; 476 } 477 } 478 479 typedef enum TCGTempVal { 480 TEMP_VAL_DEAD, 481 TEMP_VAL_REG, 482 TEMP_VAL_MEM, 483 TEMP_VAL_CONST, 484 } TCGTempVal; 485 486 typedef struct TCGTemp { 487 TCGReg reg:8; 488 TCGTempVal val_type:8; 489 TCGType base_type:8; 490 TCGType type:8; 491 unsigned int fixed_reg:1; 492 unsigned int indirect_reg:1; 493 unsigned int indirect_base:1; 494 unsigned int mem_coherent:1; 495 unsigned int mem_allocated:1; 496 /* If true, the temp is saved across both basic blocks and 497 translation blocks. */ 498 unsigned int temp_global:1; 499 /* If true, the temp is saved across basic blocks but dead 500 at the end of translation blocks. If false, the temp is 501 dead at the end of basic blocks. */ 502 unsigned int temp_local:1; 503 unsigned int temp_allocated:1; 504 505 tcg_target_long val; 506 struct TCGTemp *mem_base; 507 intptr_t mem_offset; 508 const char *name; 509 510 /* Pass-specific information that can be stored for a temporary. 511 One word worth of integer data, and one pointer to data 512 allocated separately. */ 513 uintptr_t state; 514 void *state_ptr; 515 } TCGTemp; 516 517 typedef struct TCGContext TCGContext; 518 519 typedef struct TCGTempSet { 520 unsigned long l[BITS_TO_LONGS(TCG_MAX_TEMPS)]; 521 } TCGTempSet; 522 523 /* While we limit helpers to 6 arguments, for 32-bit hosts, with padding, 524 this imples a max of 6*2 (64-bit in) + 2 (64-bit out) = 14 operands. 525 There are never more than 2 outputs, which means that we can store all 526 dead + sync data within 16 bits. */ 527 #define DEAD_ARG 4 528 #define SYNC_ARG 1 529 typedef uint16_t TCGLifeData; 530 531 /* The layout here is designed to avoid a bitfield crossing of 532 a 32-bit boundary, which would cause GCC to add extra padding. */ 533 typedef struct TCGOp { 534 TCGOpcode opc : 8; /* 8 */ 535 536 /* Parameters for this opcode. See below. */ 537 unsigned param1 : 4; /* 12 */ 538 unsigned param2 : 4; /* 16 */ 539 540 /* Lifetime data of the operands. */ 541 unsigned life : 16; /* 32 */ 542 543 /* Next and previous opcodes. */ 544 QTAILQ_ENTRY(TCGOp) link; 545 #ifdef CONFIG_PLUGIN 546 QSIMPLEQ_ENTRY(TCGOp) plugin_link; 547 #endif 548 549 /* Arguments for the opcode. */ 550 TCGArg args[MAX_OPC_PARAM]; 551 552 /* Register preferences for the output(s). */ 553 TCGRegSet output_pref[2]; 554 } TCGOp; 555 556 #define TCGOP_CALLI(X) (X)->param1 557 #define TCGOP_CALLO(X) (X)->param2 558 559 #define TCGOP_VECL(X) (X)->param1 560 #define TCGOP_VECE(X) (X)->param2 561 562 /* Make sure operands fit in the bitfields above. */ 563 QEMU_BUILD_BUG_ON(NB_OPS > (1 << 8)); 564 565 typedef struct TCGProfile { 566 int64_t cpu_exec_time; 567 int64_t tb_count1; 568 int64_t tb_count; 569 int64_t op_count; /* total insn count */ 570 int op_count_max; /* max insn per TB */ 571 int temp_count_max; 572 int64_t temp_count; 573 int64_t del_op_count; 574 int64_t code_in_len; 575 int64_t code_out_len; 576 int64_t search_out_len; 577 int64_t interm_time; 578 int64_t code_time; 579 int64_t la_time; 580 int64_t opt_time; 581 int64_t restore_count; 582 int64_t restore_time; 583 int64_t table_op_count[NB_OPS]; 584 } TCGProfile; 585 586 struct TCGContext { 587 uint8_t *pool_cur, *pool_end; 588 TCGPool *pool_first, *pool_current, *pool_first_large; 589 int nb_labels; 590 int nb_globals; 591 int nb_temps; 592 int nb_indirects; 593 int nb_ops; 594 595 /* goto_tb support */ 596 tcg_insn_unit *code_buf; 597 uint16_t *tb_jmp_reset_offset; /* tb->jmp_reset_offset */ 598 uintptr_t *tb_jmp_insn_offset; /* tb->jmp_target_arg if direct_jump */ 599 uintptr_t *tb_jmp_target_addr; /* tb->jmp_target_arg if !direct_jump */ 600 601 TCGRegSet reserved_regs; 602 uint32_t tb_cflags; /* cflags of the current TB */ 603 intptr_t current_frame_offset; 604 intptr_t frame_start; 605 intptr_t frame_end; 606 TCGTemp *frame_temp; 607 608 tcg_insn_unit *code_ptr; 609 610 #ifdef CONFIG_PROFILER 611 TCGProfile prof; 612 #endif 613 614 #ifdef CONFIG_DEBUG_TCG 615 int temps_in_use; 616 int goto_tb_issue_mask; 617 const TCGOpcode *vecop_list; 618 #endif 619 620 /* Code generation. Note that we specifically do not use tcg_insn_unit 621 here, because there's too much arithmetic throughout that relies 622 on addition and subtraction working on bytes. Rely on the GCC 623 extension that allows arithmetic on void*. */ 624 void *code_gen_prologue; 625 void *code_gen_epilogue; 626 void *code_gen_buffer; 627 size_t code_gen_buffer_size; 628 void *code_gen_ptr; 629 void *data_gen_ptr; 630 631 /* Threshold to flush the translated code buffer. */ 632 void *code_gen_highwater; 633 634 size_t tb_phys_invalidate_count; 635 636 /* Track which vCPU triggers events */ 637 CPUState *cpu; /* *_trans */ 638 639 /* These structures are private to tcg-target.c.inc. */ 640 #ifdef TCG_TARGET_NEED_LDST_LABELS 641 QSIMPLEQ_HEAD(, TCGLabelQemuLdst) ldst_labels; 642 #endif 643 #ifdef TCG_TARGET_NEED_POOL_LABELS 644 struct TCGLabelPoolData *pool_labels; 645 #endif 646 647 TCGLabel *exitreq_label; 648 649 #ifdef CONFIG_PLUGIN 650 /* 651 * We keep one plugin_tb struct per TCGContext. Note that on every TB 652 * translation we clear but do not free its contents; this way we 653 * avoid a lot of malloc/free churn, since after a few TB's it's 654 * unlikely that we'll need to allocate either more instructions or more 655 * space for instructions (for variable-instruction-length ISAs). 656 */ 657 struct qemu_plugin_tb *plugin_tb; 658 659 /* descriptor of the instruction being translated */ 660 struct qemu_plugin_insn *plugin_insn; 661 662 /* list to quickly access the injected ops */ 663 QSIMPLEQ_HEAD(, TCGOp) plugin_ops; 664 #endif 665 666 TCGTempSet free_temps[TCG_TYPE_COUNT * 2]; 667 TCGTemp temps[TCG_MAX_TEMPS]; /* globals first, temps after */ 668 669 QTAILQ_HEAD(, TCGOp) ops, free_ops; 670 QSIMPLEQ_HEAD(, TCGLabel) labels; 671 672 /* Tells which temporary holds a given register. 673 It does not take into account fixed registers */ 674 TCGTemp *reg_to_temp[TCG_TARGET_NB_REGS]; 675 676 uint16_t gen_insn_end_off[TCG_MAX_INSNS]; 677 target_ulong gen_insn_data[TCG_MAX_INSNS][TARGET_INSN_START_WORDS]; 678 }; 679 680 extern TCGContext tcg_init_ctx; 681 extern __thread TCGContext *tcg_ctx; 682 extern TCGv_env cpu_env; 683 684 static inline size_t temp_idx(TCGTemp *ts) 685 { 686 ptrdiff_t n = ts - tcg_ctx->temps; 687 tcg_debug_assert(n >= 0 && n < tcg_ctx->nb_temps); 688 return n; 689 } 690 691 static inline TCGArg temp_arg(TCGTemp *ts) 692 { 693 return (uintptr_t)ts; 694 } 695 696 static inline TCGTemp *arg_temp(TCGArg a) 697 { 698 return (TCGTemp *)(uintptr_t)a; 699 } 700 701 /* Using the offset of a temporary, relative to TCGContext, rather than 702 its index means that we don't use 0. That leaves offset 0 free for 703 a NULL representation without having to leave index 0 unused. */ 704 static inline TCGTemp *tcgv_i32_temp(TCGv_i32 v) 705 { 706 uintptr_t o = (uintptr_t)v; 707 TCGTemp *t = (void *)tcg_ctx + o; 708 tcg_debug_assert(offsetof(TCGContext, temps[temp_idx(t)]) == o); 709 return t; 710 } 711 712 static inline TCGTemp *tcgv_i64_temp(TCGv_i64 v) 713 { 714 return tcgv_i32_temp((TCGv_i32)v); 715 } 716 717 static inline TCGTemp *tcgv_ptr_temp(TCGv_ptr v) 718 { 719 return tcgv_i32_temp((TCGv_i32)v); 720 } 721 722 static inline TCGTemp *tcgv_vec_temp(TCGv_vec v) 723 { 724 return tcgv_i32_temp((TCGv_i32)v); 725 } 726 727 static inline TCGArg tcgv_i32_arg(TCGv_i32 v) 728 { 729 return temp_arg(tcgv_i32_temp(v)); 730 } 731 732 static inline TCGArg tcgv_i64_arg(TCGv_i64 v) 733 { 734 return temp_arg(tcgv_i64_temp(v)); 735 } 736 737 static inline TCGArg tcgv_ptr_arg(TCGv_ptr v) 738 { 739 return temp_arg(tcgv_ptr_temp(v)); 740 } 741 742 static inline TCGArg tcgv_vec_arg(TCGv_vec v) 743 { 744 return temp_arg(tcgv_vec_temp(v)); 745 } 746 747 static inline TCGv_i32 temp_tcgv_i32(TCGTemp *t) 748 { 749 (void)temp_idx(t); /* trigger embedded assert */ 750 return (TCGv_i32)((void *)t - (void *)tcg_ctx); 751 } 752 753 static inline TCGv_i64 temp_tcgv_i64(TCGTemp *t) 754 { 755 return (TCGv_i64)temp_tcgv_i32(t); 756 } 757 758 static inline TCGv_ptr temp_tcgv_ptr(TCGTemp *t) 759 { 760 return (TCGv_ptr)temp_tcgv_i32(t); 761 } 762 763 static inline TCGv_vec temp_tcgv_vec(TCGTemp *t) 764 { 765 return (TCGv_vec)temp_tcgv_i32(t); 766 } 767 768 #if TCG_TARGET_REG_BITS == 32 769 static inline TCGv_i32 TCGV_LOW(TCGv_i64 t) 770 { 771 return temp_tcgv_i32(tcgv_i64_temp(t)); 772 } 773 774 static inline TCGv_i32 TCGV_HIGH(TCGv_i64 t) 775 { 776 return temp_tcgv_i32(tcgv_i64_temp(t) + 1); 777 } 778 #endif 779 780 static inline TCGArg tcg_get_insn_param(TCGOp *op, int arg) 781 { 782 return op->args[arg]; 783 } 784 785 static inline void tcg_set_insn_param(TCGOp *op, int arg, TCGArg v) 786 { 787 op->args[arg] = v; 788 } 789 790 static inline target_ulong tcg_get_insn_start_param(TCGOp *op, int arg) 791 { 792 #if TARGET_LONG_BITS <= TCG_TARGET_REG_BITS 793 return tcg_get_insn_param(op, arg); 794 #else 795 return tcg_get_insn_param(op, arg * 2) | 796 ((uint64_t)tcg_get_insn_param(op, arg * 2 + 1) << 32); 797 #endif 798 } 799 800 static inline void tcg_set_insn_start_param(TCGOp *op, int arg, target_ulong v) 801 { 802 #if TARGET_LONG_BITS <= TCG_TARGET_REG_BITS 803 tcg_set_insn_param(op, arg, v); 804 #else 805 tcg_set_insn_param(op, arg * 2, v); 806 tcg_set_insn_param(op, arg * 2 + 1, v >> 32); 807 #endif 808 } 809 810 /* The last op that was emitted. */ 811 static inline TCGOp *tcg_last_op(void) 812 { 813 return QTAILQ_LAST(&tcg_ctx->ops); 814 } 815 816 /* Test for whether to terminate the TB for using too many opcodes. */ 817 static inline bool tcg_op_buf_full(void) 818 { 819 /* This is not a hard limit, it merely stops translation when 820 * we have produced "enough" opcodes. We want to limit TB size 821 * such that a RISC host can reasonably use a 16-bit signed 822 * branch within the TB. We also need to be mindful of the 823 * 16-bit unsigned offsets, TranslationBlock.jmp_reset_offset[] 824 * and TCGContext.gen_insn_end_off[]. 825 */ 826 return tcg_ctx->nb_ops >= 4000; 827 } 828 829 /* pool based memory allocation */ 830 831 /* user-mode: mmap_lock must be held for tcg_malloc_internal. */ 832 void *tcg_malloc_internal(TCGContext *s, int size); 833 void tcg_pool_reset(TCGContext *s); 834 TranslationBlock *tcg_tb_alloc(TCGContext *s); 835 836 void tcg_region_init(void); 837 void tb_destroy(TranslationBlock *tb); 838 void tcg_region_reset_all(void); 839 840 size_t tcg_code_size(void); 841 size_t tcg_code_capacity(void); 842 843 void tcg_tb_insert(TranslationBlock *tb); 844 void tcg_tb_remove(TranslationBlock *tb); 845 size_t tcg_tb_phys_invalidate_count(void); 846 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr); 847 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data); 848 size_t tcg_nb_tbs(void); 849 850 /* user-mode: Called with mmap_lock held. */ 851 static inline void *tcg_malloc(int size) 852 { 853 TCGContext *s = tcg_ctx; 854 uint8_t *ptr, *ptr_end; 855 856 /* ??? This is a weak placeholder for minimum malloc alignment. */ 857 size = QEMU_ALIGN_UP(size, 8); 858 859 ptr = s->pool_cur; 860 ptr_end = ptr + size; 861 if (unlikely(ptr_end > s->pool_end)) { 862 return tcg_malloc_internal(tcg_ctx, size); 863 } else { 864 s->pool_cur = ptr_end; 865 return ptr; 866 } 867 } 868 869 void tcg_context_init(TCGContext *s); 870 void tcg_register_thread(void); 871 void tcg_prologue_init(TCGContext *s); 872 void tcg_func_start(TCGContext *s); 873 874 int tcg_gen_code(TCGContext *s, TranslationBlock *tb); 875 876 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size); 877 878 TCGTemp *tcg_global_mem_new_internal(TCGType, TCGv_ptr, 879 intptr_t, const char *); 880 TCGTemp *tcg_temp_new_internal(TCGType, bool); 881 void tcg_temp_free_internal(TCGTemp *); 882 TCGv_vec tcg_temp_new_vec(TCGType type); 883 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match); 884 885 static inline void tcg_temp_free_i32(TCGv_i32 arg) 886 { 887 tcg_temp_free_internal(tcgv_i32_temp(arg)); 888 } 889 890 static inline void tcg_temp_free_i64(TCGv_i64 arg) 891 { 892 tcg_temp_free_internal(tcgv_i64_temp(arg)); 893 } 894 895 static inline void tcg_temp_free_ptr(TCGv_ptr arg) 896 { 897 tcg_temp_free_internal(tcgv_ptr_temp(arg)); 898 } 899 900 static inline void tcg_temp_free_vec(TCGv_vec arg) 901 { 902 tcg_temp_free_internal(tcgv_vec_temp(arg)); 903 } 904 905 static inline TCGv_i32 tcg_global_mem_new_i32(TCGv_ptr reg, intptr_t offset, 906 const char *name) 907 { 908 TCGTemp *t = tcg_global_mem_new_internal(TCG_TYPE_I32, reg, offset, name); 909 return temp_tcgv_i32(t); 910 } 911 912 static inline TCGv_i32 tcg_temp_new_i32(void) 913 { 914 TCGTemp *t = tcg_temp_new_internal(TCG_TYPE_I32, false); 915 return temp_tcgv_i32(t); 916 } 917 918 static inline TCGv_i32 tcg_temp_local_new_i32(void) 919 { 920 TCGTemp *t = tcg_temp_new_internal(TCG_TYPE_I32, true); 921 return temp_tcgv_i32(t); 922 } 923 924 static inline TCGv_i64 tcg_global_mem_new_i64(TCGv_ptr reg, intptr_t offset, 925 const char *name) 926 { 927 TCGTemp *t = tcg_global_mem_new_internal(TCG_TYPE_I64, reg, offset, name); 928 return temp_tcgv_i64(t); 929 } 930 931 static inline TCGv_i64 tcg_temp_new_i64(void) 932 { 933 TCGTemp *t = tcg_temp_new_internal(TCG_TYPE_I64, false); 934 return temp_tcgv_i64(t); 935 } 936 937 static inline TCGv_i64 tcg_temp_local_new_i64(void) 938 { 939 TCGTemp *t = tcg_temp_new_internal(TCG_TYPE_I64, true); 940 return temp_tcgv_i64(t); 941 } 942 943 static inline TCGv_ptr tcg_global_mem_new_ptr(TCGv_ptr reg, intptr_t offset, 944 const char *name) 945 { 946 TCGTemp *t = tcg_global_mem_new_internal(TCG_TYPE_PTR, reg, offset, name); 947 return temp_tcgv_ptr(t); 948 } 949 950 static inline TCGv_ptr tcg_temp_new_ptr(void) 951 { 952 TCGTemp *t = tcg_temp_new_internal(TCG_TYPE_PTR, false); 953 return temp_tcgv_ptr(t); 954 } 955 956 static inline TCGv_ptr tcg_temp_local_new_ptr(void) 957 { 958 TCGTemp *t = tcg_temp_new_internal(TCG_TYPE_PTR, true); 959 return temp_tcgv_ptr(t); 960 } 961 962 #if defined(CONFIG_DEBUG_TCG) 963 /* If you call tcg_clear_temp_count() at the start of a section of 964 * code which is not supposed to leak any TCG temporaries, then 965 * calling tcg_check_temp_count() at the end of the section will 966 * return 1 if the section did in fact leak a temporary. 967 */ 968 void tcg_clear_temp_count(void); 969 int tcg_check_temp_count(void); 970 #else 971 #define tcg_clear_temp_count() do { } while (0) 972 #define tcg_check_temp_count() 0 973 #endif 974 975 int64_t tcg_cpu_exec_time(void); 976 void tcg_dump_info(void); 977 void tcg_dump_op_count(void); 978 979 #define TCG_CT_ALIAS 0x80 980 #define TCG_CT_IALIAS 0x40 981 #define TCG_CT_NEWREG 0x20 /* output requires a new register */ 982 #define TCG_CT_REG 0x01 983 #define TCG_CT_CONST 0x02 /* any constant of register size */ 984 985 typedef struct TCGArgConstraint { 986 uint16_t ct; 987 uint8_t alias_index; 988 union { 989 TCGRegSet regs; 990 } u; 991 } TCGArgConstraint; 992 993 #define TCG_MAX_OP_ARGS 16 994 995 /* Bits for TCGOpDef->flags, 8 bits available. */ 996 enum { 997 /* Instruction exits the translation block. */ 998 TCG_OPF_BB_EXIT = 0x01, 999 /* Instruction defines the end of a basic block. */ 1000 TCG_OPF_BB_END = 0x02, 1001 /* Instruction clobbers call registers and potentially update globals. */ 1002 TCG_OPF_CALL_CLOBBER = 0x04, 1003 /* Instruction has side effects: it cannot be removed if its outputs 1004 are not used, and might trigger exceptions. */ 1005 TCG_OPF_SIDE_EFFECTS = 0x08, 1006 /* Instruction operands are 64-bits (otherwise 32-bits). */ 1007 TCG_OPF_64BIT = 0x10, 1008 /* Instruction is optional and not implemented by the host, or insn 1009 is generic and should not be implemened by the host. */ 1010 TCG_OPF_NOT_PRESENT = 0x20, 1011 /* Instruction operands are vectors. */ 1012 TCG_OPF_VECTOR = 0x40, 1013 }; 1014 1015 typedef struct TCGOpDef { 1016 const char *name; 1017 uint8_t nb_oargs, nb_iargs, nb_cargs, nb_args; 1018 uint8_t flags; 1019 TCGArgConstraint *args_ct; 1020 int *sorted_args; 1021 #if defined(CONFIG_DEBUG_TCG) 1022 int used; 1023 #endif 1024 } TCGOpDef; 1025 1026 extern TCGOpDef tcg_op_defs[]; 1027 extern const size_t tcg_op_defs_max; 1028 1029 typedef struct TCGTargetOpDef { 1030 TCGOpcode op; 1031 const char *args_ct_str[TCG_MAX_OP_ARGS]; 1032 } TCGTargetOpDef; 1033 1034 #define tcg_abort() \ 1035 do {\ 1036 fprintf(stderr, "%s:%d: tcg fatal error\n", __FILE__, __LINE__);\ 1037 abort();\ 1038 } while (0) 1039 1040 bool tcg_op_supported(TCGOpcode op); 1041 1042 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args); 1043 1044 TCGOp *tcg_emit_op(TCGOpcode opc); 1045 void tcg_op_remove(TCGContext *s, TCGOp *op); 1046 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *op, TCGOpcode opc); 1047 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *op, TCGOpcode opc); 1048 1049 void tcg_optimize(TCGContext *s); 1050 1051 TCGv_i32 tcg_const_i32(int32_t val); 1052 TCGv_i64 tcg_const_i64(int64_t val); 1053 TCGv_i32 tcg_const_local_i32(int32_t val); 1054 TCGv_i64 tcg_const_local_i64(int64_t val); 1055 TCGv_vec tcg_const_zeros_vec(TCGType); 1056 TCGv_vec tcg_const_ones_vec(TCGType); 1057 TCGv_vec tcg_const_zeros_vec_matching(TCGv_vec); 1058 TCGv_vec tcg_const_ones_vec_matching(TCGv_vec); 1059 1060 #if UINTPTR_MAX == UINT32_MAX 1061 # define tcg_const_ptr(x) ((TCGv_ptr)tcg_const_i32((intptr_t)(x))) 1062 # define tcg_const_local_ptr(x) ((TCGv_ptr)tcg_const_local_i32((intptr_t)(x))) 1063 #else 1064 # define tcg_const_ptr(x) ((TCGv_ptr)tcg_const_i64((intptr_t)(x))) 1065 # define tcg_const_local_ptr(x) ((TCGv_ptr)tcg_const_local_i64((intptr_t)(x))) 1066 #endif 1067 1068 TCGLabel *gen_new_label(void); 1069 1070 /** 1071 * label_arg 1072 * @l: label 1073 * 1074 * Encode a label for storage in the TCG opcode stream. 1075 */ 1076 1077 static inline TCGArg label_arg(TCGLabel *l) 1078 { 1079 return (uintptr_t)l; 1080 } 1081 1082 /** 1083 * arg_label 1084 * @i: value 1085 * 1086 * The opposite of label_arg. Retrieve a label from the 1087 * encoding of the TCG opcode stream. 1088 */ 1089 1090 static inline TCGLabel *arg_label(TCGArg i) 1091 { 1092 return (TCGLabel *)(uintptr_t)i; 1093 } 1094 1095 /** 1096 * tcg_ptr_byte_diff 1097 * @a, @b: addresses to be differenced 1098 * 1099 * There are many places within the TCG backends where we need a byte 1100 * difference between two pointers. While this can be accomplished 1101 * with local casting, it's easy to get wrong -- especially if one is 1102 * concerned with the signedness of the result. 1103 * 1104 * This version relies on GCC's void pointer arithmetic to get the 1105 * correct result. 1106 */ 1107 1108 static inline ptrdiff_t tcg_ptr_byte_diff(void *a, void *b) 1109 { 1110 return a - b; 1111 } 1112 1113 /** 1114 * tcg_pcrel_diff 1115 * @s: the tcg context 1116 * @target: address of the target 1117 * 1118 * Produce a pc-relative difference, from the current code_ptr 1119 * to the destination address. 1120 */ 1121 1122 static inline ptrdiff_t tcg_pcrel_diff(TCGContext *s, void *target) 1123 { 1124 return tcg_ptr_byte_diff(target, s->code_ptr); 1125 } 1126 1127 /** 1128 * tcg_current_code_size 1129 * @s: the tcg context 1130 * 1131 * Compute the current code size within the translation block. 1132 * This is used to fill in qemu's data structures for goto_tb. 1133 */ 1134 1135 static inline size_t tcg_current_code_size(TCGContext *s) 1136 { 1137 return tcg_ptr_byte_diff(s->code_ptr, s->code_buf); 1138 } 1139 1140 /* Combine the MemOp and mmu_idx parameters into a single value. */ 1141 typedef uint32_t TCGMemOpIdx; 1142 1143 /** 1144 * make_memop_idx 1145 * @op: memory operation 1146 * @idx: mmu index 1147 * 1148 * Encode these values into a single parameter. 1149 */ 1150 static inline TCGMemOpIdx make_memop_idx(MemOp op, unsigned idx) 1151 { 1152 tcg_debug_assert(idx <= 15); 1153 return (op << 4) | idx; 1154 } 1155 1156 /** 1157 * get_memop 1158 * @oi: combined op/idx parameter 1159 * 1160 * Extract the memory operation from the combined value. 1161 */ 1162 static inline MemOp get_memop(TCGMemOpIdx oi) 1163 { 1164 return oi >> 4; 1165 } 1166 1167 /** 1168 * get_mmuidx 1169 * @oi: combined op/idx parameter 1170 * 1171 * Extract the mmu index from the combined value. 1172 */ 1173 static inline unsigned get_mmuidx(TCGMemOpIdx oi) 1174 { 1175 return oi & 15; 1176 } 1177 1178 /** 1179 * tcg_qemu_tb_exec: 1180 * @env: pointer to CPUArchState for the CPU 1181 * @tb_ptr: address of generated code for the TB to execute 1182 * 1183 * Start executing code from a given translation block. 1184 * Where translation blocks have been linked, execution 1185 * may proceed from the given TB into successive ones. 1186 * Control eventually returns only when some action is needed 1187 * from the top-level loop: either control must pass to a TB 1188 * which has not yet been directly linked, or an asynchronous 1189 * event such as an interrupt needs handling. 1190 * 1191 * Return: The return value is the value passed to the corresponding 1192 * tcg_gen_exit_tb() at translation time of the last TB attempted to execute. 1193 * The value is either zero or a 4-byte aligned pointer to that TB combined 1194 * with additional information in its two least significant bits. The 1195 * additional information is encoded as follows: 1196 * 0, 1: the link between this TB and the next is via the specified 1197 * TB index (0 or 1). That is, we left the TB via (the equivalent 1198 * of) "goto_tb <index>". The main loop uses this to determine 1199 * how to link the TB just executed to the next. 1200 * 2: we are using instruction counting code generation, and we 1201 * did not start executing this TB because the instruction counter 1202 * would hit zero midway through it. In this case the pointer 1203 * returned is the TB we were about to execute, and the caller must 1204 * arrange to execute the remaining count of instructions. 1205 * 3: we stopped because the CPU's exit_request flag was set 1206 * (usually meaning that there is an interrupt that needs to be 1207 * handled). The pointer returned is the TB we were about to execute 1208 * when we noticed the pending exit request. 1209 * 1210 * If the bottom two bits indicate an exit-via-index then the CPU 1211 * state is correctly synchronised and ready for execution of the next 1212 * TB (and in particular the guest PC is the address to execute next). 1213 * Otherwise, we gave up on execution of this TB before it started, and 1214 * the caller must fix up the CPU state by calling the CPU's 1215 * synchronize_from_tb() method with the TB pointer we return (falling 1216 * back to calling the CPU's set_pc method with tb->pb if no 1217 * synchronize_from_tb() method exists). 1218 * 1219 * Note that TCG targets may use a different definition of tcg_qemu_tb_exec 1220 * to this default (which just calls the prologue.code emitted by 1221 * tcg_target_qemu_prologue()). 1222 */ 1223 #define TB_EXIT_MASK 3 1224 #define TB_EXIT_IDX0 0 1225 #define TB_EXIT_IDX1 1 1226 #define TB_EXIT_IDXMAX 1 1227 #define TB_EXIT_REQUESTED 3 1228 1229 #ifdef HAVE_TCG_QEMU_TB_EXEC 1230 uintptr_t tcg_qemu_tb_exec(CPUArchState *env, uint8_t *tb_ptr); 1231 #else 1232 # define tcg_qemu_tb_exec(env, tb_ptr) \ 1233 ((uintptr_t (*)(void *, void *))tcg_ctx->code_gen_prologue)(env, tb_ptr) 1234 #endif 1235 1236 void tcg_register_jit(void *buf, size_t buf_size); 1237 1238 #if TCG_TARGET_MAYBE_vec 1239 /* Return zero if the tuple (opc, type, vece) is unsupportable; 1240 return > 0 if it is directly supportable; 1241 return < 0 if we must call tcg_expand_vec_op. */ 1242 int tcg_can_emit_vec_op(TCGOpcode, TCGType, unsigned); 1243 #else 1244 static inline int tcg_can_emit_vec_op(TCGOpcode o, TCGType t, unsigned ve) 1245 { 1246 return 0; 1247 } 1248 #endif 1249 1250 /* Expand the tuple (opc, type, vece) on the given arguments. */ 1251 void tcg_expand_vec_op(TCGOpcode, TCGType, unsigned, TCGArg, ...); 1252 1253 /* Replicate a constant C accoring to the log2 of the element size. */ 1254 uint64_t dup_const(unsigned vece, uint64_t c); 1255 1256 #define dup_const(VECE, C) \ 1257 (__builtin_constant_p(VECE) \ 1258 ? ( (VECE) == MO_8 ? 0x0101010101010101ull * (uint8_t)(C) \ 1259 : (VECE) == MO_16 ? 0x0001000100010001ull * (uint16_t)(C) \ 1260 : (VECE) == MO_32 ? 0x0000000100000001ull * (uint32_t)(C) \ 1261 : dup_const(VECE, C)) \ 1262 : dup_const(VECE, C)) 1263 1264 1265 /* 1266 * Memory helpers that will be used by TCG generated code. 1267 */ 1268 #ifdef CONFIG_SOFTMMU 1269 /* Value zero-extended to tcg register size. */ 1270 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 1271 TCGMemOpIdx oi, uintptr_t retaddr); 1272 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 1273 TCGMemOpIdx oi, uintptr_t retaddr); 1274 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 1275 TCGMemOpIdx oi, uintptr_t retaddr); 1276 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 1277 TCGMemOpIdx oi, uintptr_t retaddr); 1278 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 1279 TCGMemOpIdx oi, uintptr_t retaddr); 1280 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 1281 TCGMemOpIdx oi, uintptr_t retaddr); 1282 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 1283 TCGMemOpIdx oi, uintptr_t retaddr); 1284 1285 /* Value sign-extended to tcg register size. */ 1286 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 1287 TCGMemOpIdx oi, uintptr_t retaddr); 1288 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 1289 TCGMemOpIdx oi, uintptr_t retaddr); 1290 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 1291 TCGMemOpIdx oi, uintptr_t retaddr); 1292 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 1293 TCGMemOpIdx oi, uintptr_t retaddr); 1294 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 1295 TCGMemOpIdx oi, uintptr_t retaddr); 1296 1297 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 1298 TCGMemOpIdx oi, uintptr_t retaddr); 1299 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1300 TCGMemOpIdx oi, uintptr_t retaddr); 1301 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1302 TCGMemOpIdx oi, uintptr_t retaddr); 1303 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1304 TCGMemOpIdx oi, uintptr_t retaddr); 1305 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1306 TCGMemOpIdx oi, uintptr_t retaddr); 1307 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1308 TCGMemOpIdx oi, uintptr_t retaddr); 1309 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1310 TCGMemOpIdx oi, uintptr_t retaddr); 1311 1312 /* Temporary aliases until backends are converted. */ 1313 #ifdef TARGET_WORDS_BIGENDIAN 1314 # define helper_ret_ldsw_mmu helper_be_ldsw_mmu 1315 # define helper_ret_lduw_mmu helper_be_lduw_mmu 1316 # define helper_ret_ldsl_mmu helper_be_ldsl_mmu 1317 # define helper_ret_ldul_mmu helper_be_ldul_mmu 1318 # define helper_ret_ldl_mmu helper_be_ldul_mmu 1319 # define helper_ret_ldq_mmu helper_be_ldq_mmu 1320 # define helper_ret_stw_mmu helper_be_stw_mmu 1321 # define helper_ret_stl_mmu helper_be_stl_mmu 1322 # define helper_ret_stq_mmu helper_be_stq_mmu 1323 #else 1324 # define helper_ret_ldsw_mmu helper_le_ldsw_mmu 1325 # define helper_ret_lduw_mmu helper_le_lduw_mmu 1326 # define helper_ret_ldsl_mmu helper_le_ldsl_mmu 1327 # define helper_ret_ldul_mmu helper_le_ldul_mmu 1328 # define helper_ret_ldl_mmu helper_le_ldul_mmu 1329 # define helper_ret_ldq_mmu helper_le_ldq_mmu 1330 # define helper_ret_stw_mmu helper_le_stw_mmu 1331 # define helper_ret_stl_mmu helper_le_stl_mmu 1332 # define helper_ret_stq_mmu helper_le_stq_mmu 1333 #endif 1334 1335 uint32_t helper_atomic_cmpxchgb_mmu(CPUArchState *env, target_ulong addr, 1336 uint32_t cmpv, uint32_t newv, 1337 TCGMemOpIdx oi, uintptr_t retaddr); 1338 uint32_t helper_atomic_cmpxchgw_le_mmu(CPUArchState *env, target_ulong addr, 1339 uint32_t cmpv, uint32_t newv, 1340 TCGMemOpIdx oi, uintptr_t retaddr); 1341 uint32_t helper_atomic_cmpxchgl_le_mmu(CPUArchState *env, target_ulong addr, 1342 uint32_t cmpv, uint32_t newv, 1343 TCGMemOpIdx oi, uintptr_t retaddr); 1344 uint64_t helper_atomic_cmpxchgq_le_mmu(CPUArchState *env, target_ulong addr, 1345 uint64_t cmpv, uint64_t newv, 1346 TCGMemOpIdx oi, uintptr_t retaddr); 1347 uint32_t helper_atomic_cmpxchgw_be_mmu(CPUArchState *env, target_ulong addr, 1348 uint32_t cmpv, uint32_t newv, 1349 TCGMemOpIdx oi, uintptr_t retaddr); 1350 uint32_t helper_atomic_cmpxchgl_be_mmu(CPUArchState *env, target_ulong addr, 1351 uint32_t cmpv, uint32_t newv, 1352 TCGMemOpIdx oi, uintptr_t retaddr); 1353 uint64_t helper_atomic_cmpxchgq_be_mmu(CPUArchState *env, target_ulong addr, 1354 uint64_t cmpv, uint64_t newv, 1355 TCGMemOpIdx oi, uintptr_t retaddr); 1356 1357 #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \ 1358 TYPE helper_atomic_ ## NAME ## SUFFIX ## _mmu \ 1359 (CPUArchState *env, target_ulong addr, TYPE val, \ 1360 TCGMemOpIdx oi, uintptr_t retaddr); 1361 1362 #ifdef CONFIG_ATOMIC64 1363 #define GEN_ATOMIC_HELPER_ALL(NAME) \ 1364 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \ 1365 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \ 1366 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \ 1367 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \ 1368 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \ 1369 GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \ 1370 GEN_ATOMIC_HELPER(NAME, uint64_t, q_be) 1371 #else 1372 #define GEN_ATOMIC_HELPER_ALL(NAME) \ 1373 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \ 1374 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \ 1375 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \ 1376 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \ 1377 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) 1378 #endif 1379 1380 GEN_ATOMIC_HELPER_ALL(fetch_add) 1381 GEN_ATOMIC_HELPER_ALL(fetch_sub) 1382 GEN_ATOMIC_HELPER_ALL(fetch_and) 1383 GEN_ATOMIC_HELPER_ALL(fetch_or) 1384 GEN_ATOMIC_HELPER_ALL(fetch_xor) 1385 GEN_ATOMIC_HELPER_ALL(fetch_smin) 1386 GEN_ATOMIC_HELPER_ALL(fetch_umin) 1387 GEN_ATOMIC_HELPER_ALL(fetch_smax) 1388 GEN_ATOMIC_HELPER_ALL(fetch_umax) 1389 1390 GEN_ATOMIC_HELPER_ALL(add_fetch) 1391 GEN_ATOMIC_HELPER_ALL(sub_fetch) 1392 GEN_ATOMIC_HELPER_ALL(and_fetch) 1393 GEN_ATOMIC_HELPER_ALL(or_fetch) 1394 GEN_ATOMIC_HELPER_ALL(xor_fetch) 1395 GEN_ATOMIC_HELPER_ALL(smin_fetch) 1396 GEN_ATOMIC_HELPER_ALL(umin_fetch) 1397 GEN_ATOMIC_HELPER_ALL(smax_fetch) 1398 GEN_ATOMIC_HELPER_ALL(umax_fetch) 1399 1400 GEN_ATOMIC_HELPER_ALL(xchg) 1401 1402 #undef GEN_ATOMIC_HELPER_ALL 1403 #undef GEN_ATOMIC_HELPER 1404 #endif /* CONFIG_SOFTMMU */ 1405 1406 /* 1407 * These aren't really a "proper" helpers because TCG cannot manage Int128. 1408 * However, use the same format as the others, for use by the backends. 1409 * 1410 * The cmpxchg functions are only defined if HAVE_CMPXCHG128; 1411 * the ld/st functions are only defined if HAVE_ATOMIC128, 1412 * as defined by <qemu/atomic128.h>. 1413 */ 1414 Int128 helper_atomic_cmpxchgo_le_mmu(CPUArchState *env, target_ulong addr, 1415 Int128 cmpv, Int128 newv, 1416 TCGMemOpIdx oi, uintptr_t retaddr); 1417 Int128 helper_atomic_cmpxchgo_be_mmu(CPUArchState *env, target_ulong addr, 1418 Int128 cmpv, Int128 newv, 1419 TCGMemOpIdx oi, uintptr_t retaddr); 1420 1421 Int128 helper_atomic_ldo_le_mmu(CPUArchState *env, target_ulong addr, 1422 TCGMemOpIdx oi, uintptr_t retaddr); 1423 Int128 helper_atomic_ldo_be_mmu(CPUArchState *env, target_ulong addr, 1424 TCGMemOpIdx oi, uintptr_t retaddr); 1425 void helper_atomic_sto_le_mmu(CPUArchState *env, target_ulong addr, Int128 val, 1426 TCGMemOpIdx oi, uintptr_t retaddr); 1427 void helper_atomic_sto_be_mmu(CPUArchState *env, target_ulong addr, Int128 val, 1428 TCGMemOpIdx oi, uintptr_t retaddr); 1429 1430 #ifdef CONFIG_DEBUG_TCG 1431 void tcg_assert_listed_vecop(TCGOpcode); 1432 #else 1433 static inline void tcg_assert_listed_vecop(TCGOpcode op) { } 1434 #endif 1435 1436 static inline const TCGOpcode *tcg_swap_vecop_list(const TCGOpcode *n) 1437 { 1438 #ifdef CONFIG_DEBUG_TCG 1439 const TCGOpcode *o = tcg_ctx->vecop_list; 1440 tcg_ctx->vecop_list = n; 1441 return o; 1442 #else 1443 return NULL; 1444 #endif 1445 } 1446 1447 bool tcg_can_emit_vecop_list(const TCGOpcode *, TCGType, unsigned); 1448 1449 #endif /* TCG_H */ 1450