1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef SYSTEM_MEMORY_H 15 #define SYSTEM_MEMORY_H 16 17 #include "exec/cpu-common.h" 18 #include "exec/hwaddr.h" 19 #include "exec/memattrs.h" 20 #include "exec/memop.h" 21 #include "exec/ramlist.h" 22 #include "exec/tswap.h" 23 #include "qemu/bswap.h" 24 #include "qemu/queue.h" 25 #include "qemu/int128.h" 26 #include "qemu/range.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 Range range; 83 unsigned type; 84 }; 85 86 /** 87 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 88 * 89 * @mr: the region, or %NULL if empty 90 * @fv: the flat view of the address space the region is mapped in 91 * @offset_within_region: the beginning of the section, relative to @mr's start 92 * @size: the size of the section; will not exceed @mr's boundaries 93 * @offset_within_address_space: the address of the first byte of the section 94 * relative to the region's address space 95 * @readonly: writes to this section are ignored 96 * @nonvolatile: this section is non-volatile 97 * @unmergeable: this section should not get merged with adjacent sections 98 */ 99 struct MemoryRegionSection { 100 Int128 size; 101 MemoryRegion *mr; 102 FlatView *fv; 103 hwaddr offset_within_region; 104 hwaddr offset_within_address_space; 105 bool readonly; 106 bool nonvolatile; 107 bool unmergeable; 108 }; 109 110 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 111 112 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 113 typedef enum { 114 IOMMU_NONE = 0, 115 IOMMU_RO = 1, 116 IOMMU_WO = 2, 117 IOMMU_RW = 3, 118 } IOMMUAccessFlags; 119 120 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 121 122 struct IOMMUTLBEntry { 123 AddressSpace *target_as; 124 hwaddr iova; 125 hwaddr translated_addr; 126 hwaddr addr_mask; /* 0xfff = 4k translation */ 127 IOMMUAccessFlags perm; 128 }; 129 130 /* 131 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 132 * register with one or multiple IOMMU Notifier capability bit(s). 133 * 134 * Normally there're two use cases for the notifiers: 135 * 136 * (1) When the device needs accurate synchronizations of the vIOMMU page 137 * tables, it needs to register with both MAP|UNMAP notifies (which 138 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 139 * 140 * Regarding to accurate synchronization, it's when the notified 141 * device maintains a shadow page table and must be notified on each 142 * guest MAP (page table entry creation) and UNMAP (invalidation) 143 * events (e.g. VFIO). Both notifications must be accurate so that 144 * the shadow page table is fully in sync with the guest view. 145 * 146 * (2) When the device doesn't need accurate synchronizations of the 147 * vIOMMU page tables, it needs to register only with UNMAP or 148 * DEVIOTLB_UNMAP notifies. 149 * 150 * It's when the device maintains a cache of IOMMU translations 151 * (IOTLB) and is able to fill that cache by requesting translations 152 * from the vIOMMU through a protocol similar to ATS (Address 153 * Translation Service). 154 * 155 * Note that in this mode the vIOMMU will not maintain a shadowed 156 * page table for the address space, and the UNMAP messages can cover 157 * more than the pages that used to get mapped. The IOMMU notifiee 158 * should be able to take care of over-sized invalidations. 159 */ 160 typedef enum { 161 IOMMU_NOTIFIER_NONE = 0, 162 /* Notify cache invalidations */ 163 IOMMU_NOTIFIER_UNMAP = 0x1, 164 /* Notify entry changes (newly created entries) */ 165 IOMMU_NOTIFIER_MAP = 0x2, 166 /* Notify changes on device IOTLB entries */ 167 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 168 } IOMMUNotifierFlag; 169 170 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 171 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 172 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 173 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 174 175 struct IOMMUNotifier; 176 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 177 IOMMUTLBEntry *data); 178 179 struct IOMMUNotifier { 180 IOMMUNotify notify; 181 IOMMUNotifierFlag notifier_flags; 182 /* Notify for address space range start <= addr <= end */ 183 hwaddr start; 184 hwaddr end; 185 int iommu_idx; 186 void *opaque; 187 QLIST_ENTRY(IOMMUNotifier) node; 188 }; 189 typedef struct IOMMUNotifier IOMMUNotifier; 190 191 typedef struct IOMMUTLBEvent { 192 IOMMUNotifierFlag type; 193 IOMMUTLBEntry entry; 194 } IOMMUTLBEvent; 195 196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 197 #define RAM_PREALLOC (1 << 0) 198 199 /* RAM is mmap-ed with MAP_SHARED */ 200 #define RAM_SHARED (1 << 1) 201 202 /* Only a portion of RAM (used_length) is actually used, and migrated. 203 * Resizing RAM while migrating can result in the migration being canceled. 204 */ 205 #define RAM_RESIZEABLE (1 << 2) 206 207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 208 * zero the page and wake waiting processes. 209 * (Set during postcopy) 210 */ 211 #define RAM_UF_ZEROPAGE (1 << 3) 212 213 /* RAM can be migrated */ 214 #define RAM_MIGRATABLE (1 << 4) 215 216 /* RAM is a persistent kind memory */ 217 #define RAM_PMEM (1 << 5) 218 219 220 /* 221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 222 * support 'write-tracking' migration type. 223 * Implies ram_state->ram_wt_enabled. 224 */ 225 #define RAM_UF_WRITEPROTECT (1 << 6) 226 227 /* 228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 229 * pages if applicable) is skipped: will bail out if not supported. When not 230 * set, the OS will do the reservation, if supported for the memory type. 231 */ 232 #define RAM_NORESERVE (1 << 7) 233 234 /* RAM that isn't accessible through normal means. */ 235 #define RAM_PROTECTED (1 << 8) 236 237 /* RAM is an mmap-ed named file */ 238 #define RAM_NAMED_FILE (1 << 9) 239 240 /* RAM is mmap-ed read-only */ 241 #define RAM_READONLY (1 << 10) 242 243 /* RAM FD is opened read-only */ 244 #define RAM_READONLY_FD (1 << 11) 245 246 /* RAM can be private that has kvm guest memfd backend */ 247 #define RAM_GUEST_MEMFD (1 << 12) 248 249 /* 250 * In RAMBlock creation functions, if MAP_SHARED is 0 in the flags parameter, 251 * the implementation may still create a shared mapping if other conditions 252 * require it. Callers who specifically want a private mapping, eg objects 253 * specified by the user, must pass RAM_PRIVATE. 254 * After RAMBlock creation, MAP_SHARED in the block's flags indicates whether 255 * the block is shared or private, and MAP_PRIVATE is omitted. 256 */ 257 #define RAM_PRIVATE (1 << 13) 258 259 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 260 IOMMUNotifierFlag flags, 261 hwaddr start, hwaddr end, 262 int iommu_idx) 263 { 264 n->notify = fn; 265 n->notifier_flags = flags; 266 n->start = start; 267 n->end = end; 268 n->iommu_idx = iommu_idx; 269 } 270 271 /* 272 * Memory region callbacks 273 */ 274 struct MemoryRegionOps { 275 /* Read from the memory region. @addr is relative to @mr; @size is 276 * in bytes. */ 277 uint64_t (*read)(void *opaque, 278 hwaddr addr, 279 unsigned size); 280 /* Write to the memory region. @addr is relative to @mr; @size is 281 * in bytes. */ 282 void (*write)(void *opaque, 283 hwaddr addr, 284 uint64_t data, 285 unsigned size); 286 287 MemTxResult (*read_with_attrs)(void *opaque, 288 hwaddr addr, 289 uint64_t *data, 290 unsigned size, 291 MemTxAttrs attrs); 292 MemTxResult (*write_with_attrs)(void *opaque, 293 hwaddr addr, 294 uint64_t data, 295 unsigned size, 296 MemTxAttrs attrs); 297 298 enum device_endian endianness; 299 /* Guest-visible constraints: */ 300 struct { 301 /* If nonzero, specify bounds on access sizes beyond which a machine 302 * check is thrown. 303 */ 304 unsigned min_access_size; 305 unsigned max_access_size; 306 /* If true, unaligned accesses are supported. Otherwise unaligned 307 * accesses throw machine checks. 308 */ 309 bool unaligned; 310 /* 311 * If present, and returns #false, the transaction is not accepted 312 * by the device (and results in machine dependent behaviour such 313 * as a machine check exception). 314 */ 315 bool (*accepts)(void *opaque, hwaddr addr, 316 unsigned size, bool is_write, 317 MemTxAttrs attrs); 318 } valid; 319 /* Internal implementation constraints: */ 320 struct { 321 /* If nonzero, specifies the minimum size implemented. Smaller sizes 322 * will be rounded upwards and a partial result will be returned. 323 */ 324 unsigned min_access_size; 325 /* If nonzero, specifies the maximum size implemented. Larger sizes 326 * will be done as a series of accesses with smaller sizes. 327 */ 328 unsigned max_access_size; 329 /* If true, unaligned accesses are supported. Otherwise all accesses 330 * are converted to (possibly multiple) naturally aligned accesses. 331 */ 332 bool unaligned; 333 } impl; 334 }; 335 336 typedef struct MemoryRegionClass { 337 /* private */ 338 ObjectClass parent_class; 339 } MemoryRegionClass; 340 341 342 enum IOMMUMemoryRegionAttr { 343 IOMMU_ATTR_SPAPR_TCE_FD 344 }; 345 346 /* 347 * IOMMUMemoryRegionClass: 348 * 349 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 350 * and provide an implementation of at least the @translate method here 351 * to handle requests to the memory region. Other methods are optional. 352 * 353 * The IOMMU implementation must use the IOMMU notifier infrastructure 354 * to report whenever mappings are changed, by calling 355 * memory_region_notify_iommu() (or, if necessary, by calling 356 * memory_region_notify_iommu_one() for each registered notifier). 357 * 358 * Conceptually an IOMMU provides a mapping from input address 359 * to an output TLB entry. If the IOMMU is aware of memory transaction 360 * attributes and the output TLB entry depends on the transaction 361 * attributes, we represent this using IOMMU indexes. Each index 362 * selects a particular translation table that the IOMMU has: 363 * 364 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 365 * 366 * @translate takes an input address and an IOMMU index 367 * 368 * and the mapping returned can only depend on the input address and the 369 * IOMMU index. 370 * 371 * Most IOMMUs don't care about the transaction attributes and support 372 * only a single IOMMU index. A more complex IOMMU might have one index 373 * for secure transactions and one for non-secure transactions. 374 */ 375 struct IOMMUMemoryRegionClass { 376 /* private: */ 377 MemoryRegionClass parent_class; 378 379 /* public: */ 380 /** 381 * @translate: 382 * 383 * Return a TLB entry that contains a given address. 384 * 385 * The IOMMUAccessFlags indicated via @flag are optional and may 386 * be specified as IOMMU_NONE to indicate that the caller needs 387 * the full translation information for both reads and writes. If 388 * the access flags are specified then the IOMMU implementation 389 * may use this as an optimization, to stop doing a page table 390 * walk as soon as it knows that the requested permissions are not 391 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 392 * full page table walk and report the permissions in the returned 393 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 394 * return different mappings for reads and writes.) 395 * 396 * The returned information remains valid while the caller is 397 * holding the big QEMU lock or is inside an RCU critical section; 398 * if the caller wishes to cache the mapping beyond that it must 399 * register an IOMMU notifier so it can invalidate its cached 400 * information when the IOMMU mapping changes. 401 * 402 * @iommu: the IOMMUMemoryRegion 403 * 404 * @hwaddr: address to be translated within the memory region 405 * 406 * @flag: requested access permission 407 * 408 * @iommu_idx: IOMMU index for the translation 409 */ 410 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 411 IOMMUAccessFlags flag, int iommu_idx); 412 /** 413 * @get_min_page_size: 414 * 415 * Returns minimum supported page size in bytes. 416 * 417 * If this method is not provided then the minimum is assumed to 418 * be TARGET_PAGE_SIZE. 419 * 420 * @iommu: the IOMMUMemoryRegion 421 */ 422 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 423 /** 424 * @notify_flag_changed: 425 * 426 * Called when IOMMU Notifier flag changes (ie when the set of 427 * events which IOMMU users are requesting notification for changes). 428 * Optional method -- need not be provided if the IOMMU does not 429 * need to know exactly which events must be notified. 430 * 431 * @iommu: the IOMMUMemoryRegion 432 * 433 * @old_flags: events which previously needed to be notified 434 * 435 * @new_flags: events which now need to be notified 436 * 437 * Returns 0 on success, or a negative errno; in particular 438 * returns -EINVAL if the new flag bitmap is not supported by the 439 * IOMMU memory region. In case of failure, the error object 440 * must be created 441 */ 442 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 443 IOMMUNotifierFlag old_flags, 444 IOMMUNotifierFlag new_flags, 445 Error **errp); 446 /** 447 * @replay: 448 * 449 * Called to handle memory_region_iommu_replay(). 450 * 451 * The default implementation of memory_region_iommu_replay() is to 452 * call the IOMMU translate method for every page in the address space 453 * with flag == IOMMU_NONE and then call the notifier if translate 454 * returns a valid mapping. If this method is implemented then it 455 * overrides the default behaviour, and must provide the full semantics 456 * of memory_region_iommu_replay(), by calling @notifier for every 457 * translation present in the IOMMU. 458 * 459 * Optional method -- an IOMMU only needs to provide this method 460 * if the default is inefficient or produces undesirable side effects. 461 * 462 * Note: this is not related to record-and-replay functionality. 463 */ 464 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 465 466 /** 467 * @get_attr: 468 * 469 * Get IOMMU misc attributes. This is an optional method that 470 * can be used to allow users of the IOMMU to get implementation-specific 471 * information. The IOMMU implements this method to handle calls 472 * by IOMMU users to memory_region_iommu_get_attr() by filling in 473 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 474 * the IOMMU supports. If the method is unimplemented then 475 * memory_region_iommu_get_attr() will always return -EINVAL. 476 * 477 * @iommu: the IOMMUMemoryRegion 478 * 479 * @attr: attribute being queried 480 * 481 * @data: memory to fill in with the attribute data 482 * 483 * Returns 0 on success, or a negative errno; in particular 484 * returns -EINVAL for unrecognized or unimplemented attribute types. 485 */ 486 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 487 void *data); 488 489 /** 490 * @attrs_to_index: 491 * 492 * Return the IOMMU index to use for a given set of transaction attributes. 493 * 494 * Optional method: if an IOMMU only supports a single IOMMU index then 495 * the default implementation of memory_region_iommu_attrs_to_index() 496 * will return 0. 497 * 498 * The indexes supported by an IOMMU must be contiguous, starting at 0. 499 * 500 * @iommu: the IOMMUMemoryRegion 501 * @attrs: memory transaction attributes 502 */ 503 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 504 505 /** 506 * @num_indexes: 507 * 508 * Return the number of IOMMU indexes this IOMMU supports. 509 * 510 * Optional method: if this method is not provided, then 511 * memory_region_iommu_num_indexes() will return 1, indicating that 512 * only a single IOMMU index is supported. 513 * 514 * @iommu: the IOMMUMemoryRegion 515 */ 516 int (*num_indexes)(IOMMUMemoryRegion *iommu); 517 }; 518 519 typedef struct RamDiscardListener RamDiscardListener; 520 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 521 MemoryRegionSection *section); 522 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 523 MemoryRegionSection *section); 524 525 struct RamDiscardListener { 526 /* 527 * @notify_populate: 528 * 529 * Notification that previously discarded memory is about to get populated. 530 * Listeners are able to object. If any listener objects, already 531 * successfully notified listeners are notified about a discard again. 532 * 533 * @rdl: the #RamDiscardListener getting notified 534 * @section: the #MemoryRegionSection to get populated. The section 535 * is aligned within the memory region to the minimum granularity 536 * unless it would exceed the registered section. 537 * 538 * Returns 0 on success. If the notification is rejected by the listener, 539 * an error is returned. 540 */ 541 NotifyRamPopulate notify_populate; 542 543 /* 544 * @notify_discard: 545 * 546 * Notification that previously populated memory was discarded successfully 547 * and listeners should drop all references to such memory and prevent 548 * new population (e.g., unmap). 549 * 550 * @rdl: the #RamDiscardListener getting notified 551 * @section: the #MemoryRegionSection to get populated. The section 552 * is aligned within the memory region to the minimum granularity 553 * unless it would exceed the registered section. 554 */ 555 NotifyRamDiscard notify_discard; 556 557 /* 558 * @double_discard_supported: 559 * 560 * The listener suppors getting @notify_discard notifications that span 561 * already discarded parts. 562 */ 563 bool double_discard_supported; 564 565 MemoryRegionSection *section; 566 QLIST_ENTRY(RamDiscardListener) next; 567 }; 568 569 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 570 NotifyRamPopulate populate_fn, 571 NotifyRamDiscard discard_fn, 572 bool double_discard_supported) 573 { 574 rdl->notify_populate = populate_fn; 575 rdl->notify_discard = discard_fn; 576 rdl->double_discard_supported = double_discard_supported; 577 } 578 579 /** 580 * typedef ReplayRamDiscardState: 581 * 582 * The callback handler for #RamDiscardManagerClass.replay_populated/ 583 * #RamDiscardManagerClass.replay_discarded to invoke on populated/discarded 584 * parts. 585 * 586 * @section: the #MemoryRegionSection of populated/discarded part 587 * @opaque: pointer to forward to the callback 588 * 589 * Returns 0 on success, or a negative error if failed. 590 */ 591 typedef int (*ReplayRamDiscardState)(MemoryRegionSection *section, 592 void *opaque); 593 594 /* 595 * RamDiscardManagerClass: 596 * 597 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 598 * regions are currently populated to be used/accessed by the VM, notifying 599 * after parts were discarded (freeing up memory) and before parts will be 600 * populated (consuming memory), to be used/accessed by the VM. 601 * 602 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 603 * #MemoryRegion isn't mapped into an address space yet (either directly 604 * or via an alias); it cannot change while the #MemoryRegion is 605 * mapped into an address space. 606 * 607 * The #RamDiscardManager is intended to be used by technologies that are 608 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 609 * memory inside a #MemoryRegion), and require proper coordination to only 610 * map the currently populated parts, to hinder parts that are expected to 611 * remain discarded from silently getting populated and consuming memory. 612 * Technologies that support discarding of RAM don't have to bother and can 613 * simply map the whole #MemoryRegion. 614 * 615 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 616 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 617 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 618 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 619 * properly coordinate with listeners before memory is plugged (populated), 620 * and after memory is unplugged (discarded). 621 * 622 * Listeners are called in multiples of the minimum granularity (unless it 623 * would exceed the registered range) and changes are aligned to the minimum 624 * granularity within the #MemoryRegion. Listeners have to prepare for memory 625 * becoming discarded in a different granularity than it was populated and the 626 * other way around. 627 */ 628 struct RamDiscardManagerClass { 629 /* private */ 630 InterfaceClass parent_class; 631 632 /* public */ 633 634 /** 635 * @get_min_granularity: 636 * 637 * Get the minimum granularity in which listeners will get notified 638 * about changes within the #MemoryRegion via the #RamDiscardManager. 639 * 640 * @rdm: the #RamDiscardManager 641 * @mr: the #MemoryRegion 642 * 643 * Returns the minimum granularity. 644 */ 645 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 646 const MemoryRegion *mr); 647 648 /** 649 * @is_populated: 650 * 651 * Check whether the given #MemoryRegionSection is completely populated 652 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 653 * There are no alignment requirements. 654 * 655 * @rdm: the #RamDiscardManager 656 * @section: the #MemoryRegionSection 657 * 658 * Returns whether the given range is completely populated. 659 */ 660 bool (*is_populated)(const RamDiscardManager *rdm, 661 const MemoryRegionSection *section); 662 663 /** 664 * @replay_populated: 665 * 666 * Call the #ReplayRamDiscardState callback for all populated parts within 667 * the #MemoryRegionSection via the #RamDiscardManager. 668 * 669 * In case any call fails, no further calls are made. 670 * 671 * @rdm: the #RamDiscardManager 672 * @section: the #MemoryRegionSection 673 * @replay_fn: the #ReplayRamDiscardState callback 674 * @opaque: pointer to forward to the callback 675 * 676 * Returns 0 on success, or a negative error if any notification failed. 677 */ 678 int (*replay_populated)(const RamDiscardManager *rdm, 679 MemoryRegionSection *section, 680 ReplayRamDiscardState replay_fn, void *opaque); 681 682 /** 683 * @replay_discarded: 684 * 685 * Call the #ReplayRamDiscardState callback for all discarded parts within 686 * the #MemoryRegionSection via the #RamDiscardManager. 687 * 688 * @rdm: the #RamDiscardManager 689 * @section: the #MemoryRegionSection 690 * @replay_fn: the #ReplayRamDiscardState callback 691 * @opaque: pointer to forward to the callback 692 * 693 * Returns 0 on success, or a negative error if any notification failed. 694 */ 695 int (*replay_discarded)(const RamDiscardManager *rdm, 696 MemoryRegionSection *section, 697 ReplayRamDiscardState replay_fn, void *opaque); 698 699 /** 700 * @register_listener: 701 * 702 * Register a #RamDiscardListener for the given #MemoryRegionSection and 703 * immediately notify the #RamDiscardListener about all populated parts 704 * within the #MemoryRegionSection via the #RamDiscardManager. 705 * 706 * In case any notification fails, no further notifications are triggered 707 * and an error is logged. 708 * 709 * @rdm: the #RamDiscardManager 710 * @rdl: the #RamDiscardListener 711 * @section: the #MemoryRegionSection 712 */ 713 void (*register_listener)(RamDiscardManager *rdm, 714 RamDiscardListener *rdl, 715 MemoryRegionSection *section); 716 717 /** 718 * @unregister_listener: 719 * 720 * Unregister a previously registered #RamDiscardListener via the 721 * #RamDiscardManager after notifying the #RamDiscardListener about all 722 * populated parts becoming unpopulated within the registered 723 * #MemoryRegionSection. 724 * 725 * @rdm: the #RamDiscardManager 726 * @rdl: the #RamDiscardListener 727 */ 728 void (*unregister_listener)(RamDiscardManager *rdm, 729 RamDiscardListener *rdl); 730 }; 731 732 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 733 const MemoryRegion *mr); 734 735 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 736 const MemoryRegionSection *section); 737 738 /** 739 * ram_discard_manager_replay_populated: 740 * 741 * A wrapper to call the #RamDiscardManagerClass.replay_populated callback 742 * of the #RamDiscardManager. 743 * 744 * @rdm: the #RamDiscardManager 745 * @section: the #MemoryRegionSection 746 * @replay_fn: the #ReplayRamDiscardState callback 747 * @opaque: pointer to forward to the callback 748 * 749 * Returns 0 on success, or a negative error if any notification failed. 750 */ 751 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 752 MemoryRegionSection *section, 753 ReplayRamDiscardState replay_fn, 754 void *opaque); 755 756 /** 757 * ram_discard_manager_replay_discarded: 758 * 759 * A wrapper to call the #RamDiscardManagerClass.replay_discarded callback 760 * of the #RamDiscardManager. 761 * 762 * @rdm: the #RamDiscardManager 763 * @section: the #MemoryRegionSection 764 * @replay_fn: the #ReplayRamDiscardState callback 765 * @opaque: pointer to forward to the callback 766 * 767 * Returns 0 on success, or a negative error if any notification failed. 768 */ 769 int ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 770 MemoryRegionSection *section, 771 ReplayRamDiscardState replay_fn, 772 void *opaque); 773 774 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 775 RamDiscardListener *rdl, 776 MemoryRegionSection *section); 777 778 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 779 RamDiscardListener *rdl); 780 781 /** 782 * memory_translate_iotlb: Extract addresses from a TLB entry. 783 * Called with rcu_read_lock held. 784 * 785 * @iotlb: pointer to an #IOMMUTLBEntry 786 * @xlat_p: return the offset of the entry from the start of the returned 787 * MemoryRegion. 788 * @errp: pointer to Error*, to store an error if it happens. 789 * 790 * Return: On success, return the MemoryRegion containing the @iotlb translated 791 * addr. The MemoryRegion must not be accessed after rcu_read_unlock. 792 * On failure, return NULL, setting @errp with error. 793 */ 794 MemoryRegion *memory_translate_iotlb(IOMMUTLBEntry *iotlb, hwaddr *xlat_p, 795 Error **errp); 796 797 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 798 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 799 800 /** MemoryRegion: 801 * 802 * A struct representing a memory region. 803 */ 804 struct MemoryRegion { 805 Object parent_obj; 806 807 /* private: */ 808 809 /* The following fields should fit in a cache line */ 810 bool romd_mode; 811 bool ram; 812 bool subpage; 813 bool readonly; /* For RAM regions */ 814 bool nonvolatile; 815 bool rom_device; 816 bool flush_coalesced_mmio; 817 bool unmergeable; 818 uint8_t dirty_log_mask; 819 bool is_iommu; 820 RAMBlock *ram_block; 821 Object *owner; 822 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 823 DeviceState *dev; 824 825 const MemoryRegionOps *ops; 826 void *opaque; 827 MemoryRegion *container; 828 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 829 Int128 size; 830 hwaddr addr; 831 void (*destructor)(MemoryRegion *mr); 832 uint64_t align; 833 bool terminates; 834 bool ram_device; 835 bool enabled; 836 uint8_t vga_logging_count; 837 MemoryRegion *alias; 838 hwaddr alias_offset; 839 int32_t priority; 840 QTAILQ_HEAD(, MemoryRegion) subregions; 841 QTAILQ_ENTRY(MemoryRegion) subregions_link; 842 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 843 const char *name; 844 unsigned ioeventfd_nb; 845 MemoryRegionIoeventfd *ioeventfds; 846 RamDiscardManager *rdm; /* Only for RAM */ 847 848 /* For devices designed to perform re-entrant IO into their own IO MRs */ 849 bool disable_reentrancy_guard; 850 }; 851 852 struct IOMMUMemoryRegion { 853 MemoryRegion parent_obj; 854 855 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 856 IOMMUNotifierFlag iommu_notify_flags; 857 }; 858 859 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 860 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 861 862 #define MEMORY_LISTENER_PRIORITY_MIN 0 863 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 864 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 865 866 /** 867 * struct MemoryListener: callbacks structure for updates to the physical memory map 868 * 869 * Allows a component to adjust to changes in the guest-visible memory map. 870 * Use with memory_listener_register() and memory_listener_unregister(). 871 */ 872 struct MemoryListener { 873 /** 874 * @begin: 875 * 876 * Called at the beginning of an address space update transaction. 877 * Followed by calls to #MemoryListener.region_add(), 878 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 879 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 880 * increasing address order. 881 * 882 * @listener: The #MemoryListener. 883 */ 884 void (*begin)(MemoryListener *listener); 885 886 /** 887 * @commit: 888 * 889 * Called at the end of an address space update transaction, 890 * after the last call to #MemoryListener.region_add(), 891 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 892 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 893 * 894 * @listener: The #MemoryListener. 895 */ 896 void (*commit)(MemoryListener *listener); 897 898 /** 899 * @region_add: 900 * 901 * Called during an address space update transaction, 902 * for a section of the address space that is new in this address space 903 * space since the last transaction. 904 * 905 * @listener: The #MemoryListener. 906 * @section: The new #MemoryRegionSection. 907 */ 908 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 909 910 /** 911 * @region_del: 912 * 913 * Called during an address space update transaction, 914 * for a section of the address space that has disappeared in the address 915 * space since the last transaction. 916 * 917 * @listener: The #MemoryListener. 918 * @section: The old #MemoryRegionSection. 919 */ 920 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 921 922 /** 923 * @region_nop: 924 * 925 * Called during an address space update transaction, 926 * for a section of the address space that is in the same place in the address 927 * space as in the last transaction. 928 * 929 * @listener: The #MemoryListener. 930 * @section: The #MemoryRegionSection. 931 */ 932 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 933 934 /** 935 * @log_start: 936 * 937 * Called during an address space update transaction, after 938 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 939 * #MemoryListener.region_nop(), if dirty memory logging clients have 940 * become active since the last transaction. 941 * 942 * @listener: The #MemoryListener. 943 * @section: The #MemoryRegionSection. 944 * @old: A bitmap of dirty memory logging clients that were active in 945 * the previous transaction. 946 * @new: A bitmap of dirty memory logging clients that are active in 947 * the current transaction. 948 */ 949 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 950 int old_val, int new_val); 951 952 /** 953 * @log_stop: 954 * 955 * Called during an address space update transaction, after 956 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 957 * #MemoryListener.region_nop() and possibly after 958 * #MemoryListener.log_start(), if dirty memory logging clients have 959 * become inactive since the last transaction. 960 * 961 * @listener: The #MemoryListener. 962 * @section: The #MemoryRegionSection. 963 * @old: A bitmap of dirty memory logging clients that were active in 964 * the previous transaction. 965 * @new: A bitmap of dirty memory logging clients that are active in 966 * the current transaction. 967 */ 968 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 969 int old_val, int new_val); 970 971 /** 972 * @log_sync: 973 * 974 * Called by memory_region_snapshot_and_clear_dirty() and 975 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 976 * copy of the dirty memory bitmap for a #MemoryRegionSection. 977 * 978 * @listener: The #MemoryListener. 979 * @section: The #MemoryRegionSection. 980 */ 981 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 982 983 /** 984 * @log_sync_global: 985 * 986 * This is the global version of @log_sync when the listener does 987 * not have a way to synchronize the log with finer granularity. 988 * When the listener registers with @log_sync_global defined, then 989 * its @log_sync must be NULL. Vice versa. 990 * 991 * @listener: The #MemoryListener. 992 * @last_stage: The last stage to synchronize the log during migration. 993 * The caller should guarantee that the synchronization with true for 994 * @last_stage is triggered for once after all VCPUs have been stopped. 995 */ 996 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 997 998 /** 999 * @log_clear: 1000 * 1001 * Called before reading the dirty memory bitmap for a 1002 * #MemoryRegionSection. 1003 * 1004 * @listener: The #MemoryListener. 1005 * @section: The #MemoryRegionSection. 1006 */ 1007 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 1008 1009 /** 1010 * @log_global_start: 1011 * 1012 * Called by memory_global_dirty_log_start(), which 1013 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 1014 * the address space. #MemoryListener.log_global_start() is also 1015 * called when a #MemoryListener is added, if global dirty logging is 1016 * active at that time. 1017 * 1018 * @listener: The #MemoryListener. 1019 * @errp: pointer to Error*, to store an error if it happens. 1020 * 1021 * Return: true on success, else false setting @errp with error. 1022 */ 1023 bool (*log_global_start)(MemoryListener *listener, Error **errp); 1024 1025 /** 1026 * @log_global_stop: 1027 * 1028 * Called by memory_global_dirty_log_stop(), which 1029 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 1030 * the address space. 1031 * 1032 * @listener: The #MemoryListener. 1033 */ 1034 void (*log_global_stop)(MemoryListener *listener); 1035 1036 /** 1037 * @log_global_after_sync: 1038 * 1039 * Called after reading the dirty memory bitmap 1040 * for any #MemoryRegionSection. 1041 * 1042 * @listener: The #MemoryListener. 1043 */ 1044 void (*log_global_after_sync)(MemoryListener *listener); 1045 1046 /** 1047 * @eventfd_add: 1048 * 1049 * Called during an address space update transaction, 1050 * for a section of the address space that has had a new ioeventfd 1051 * registration since the last transaction. 1052 * 1053 * @listener: The #MemoryListener. 1054 * @section: The new #MemoryRegionSection. 1055 * @match_data: The @match_data parameter for the new ioeventfd. 1056 * @data: The @data parameter for the new ioeventfd. 1057 * @e: The #EventNotifier parameter for the new ioeventfd. 1058 */ 1059 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1060 bool match_data, uint64_t data, EventNotifier *e); 1061 1062 /** 1063 * @eventfd_del: 1064 * 1065 * Called during an address space update transaction, 1066 * for a section of the address space that has dropped an ioeventfd 1067 * registration since the last transaction. 1068 * 1069 * @listener: The #MemoryListener. 1070 * @section: The new #MemoryRegionSection. 1071 * @match_data: The @match_data parameter for the dropped ioeventfd. 1072 * @data: The @data parameter for the dropped ioeventfd. 1073 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1074 */ 1075 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1076 bool match_data, uint64_t data, EventNotifier *e); 1077 1078 /** 1079 * @coalesced_io_add: 1080 * 1081 * Called during an address space update transaction, 1082 * for a section of the address space that has had a new coalesced 1083 * MMIO range registration since the last transaction. 1084 * 1085 * @listener: The #MemoryListener. 1086 * @section: The new #MemoryRegionSection. 1087 * @addr: The starting address for the coalesced MMIO range. 1088 * @len: The length of the coalesced MMIO range. 1089 */ 1090 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1091 hwaddr addr, hwaddr len); 1092 1093 /** 1094 * @coalesced_io_del: 1095 * 1096 * Called during an address space update transaction, 1097 * for a section of the address space that has dropped a coalesced 1098 * MMIO range since the last transaction. 1099 * 1100 * @listener: The #MemoryListener. 1101 * @section: The new #MemoryRegionSection. 1102 * @addr: The starting address for the coalesced MMIO range. 1103 * @len: The length of the coalesced MMIO range. 1104 */ 1105 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1106 hwaddr addr, hwaddr len); 1107 /** 1108 * @priority: 1109 * 1110 * Govern the order in which memory listeners are invoked. Lower priorities 1111 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1112 * or "stop" callbacks. 1113 */ 1114 unsigned priority; 1115 1116 /** 1117 * @name: 1118 * 1119 * Name of the listener. It can be used in contexts where we'd like to 1120 * identify one memory listener with the rest. 1121 */ 1122 const char *name; 1123 1124 /* private: */ 1125 AddressSpace *address_space; 1126 QTAILQ_ENTRY(MemoryListener) link; 1127 QTAILQ_ENTRY(MemoryListener) link_as; 1128 }; 1129 1130 typedef struct AddressSpaceMapClient { 1131 QEMUBH *bh; 1132 QLIST_ENTRY(AddressSpaceMapClient) link; 1133 } AddressSpaceMapClient; 1134 1135 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096) 1136 1137 /** 1138 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1139 */ 1140 struct AddressSpace { 1141 /* private: */ 1142 struct rcu_head rcu; 1143 char *name; 1144 MemoryRegion *root; 1145 1146 /* Accessed via RCU. */ 1147 struct FlatView *current_map; 1148 1149 int ioeventfd_nb; 1150 int ioeventfd_notifiers; 1151 struct MemoryRegionIoeventfd *ioeventfds; 1152 QTAILQ_HEAD(, MemoryListener) listeners; 1153 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1154 1155 /* 1156 * Maximum DMA bounce buffer size used for indirect memory map requests. 1157 * This limits the total size of bounce buffer allocations made for 1158 * DMA requests to indirect memory regions within this AddressSpace. DMA 1159 * requests that exceed the limit (e.g. due to overly large requested size 1160 * or concurrent DMA requests having claimed too much buffer space) will be 1161 * rejected and left to the caller to handle. 1162 */ 1163 size_t max_bounce_buffer_size; 1164 /* Total size of bounce buffers currently allocated, atomically accessed */ 1165 size_t bounce_buffer_size; 1166 /* List of callbacks to invoke when buffers free up */ 1167 QemuMutex map_client_list_lock; 1168 QLIST_HEAD(, AddressSpaceMapClient) map_client_list; 1169 }; 1170 1171 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1172 typedef struct FlatRange FlatRange; 1173 1174 /* Flattened global view of current active memory hierarchy. Kept in sorted 1175 * order. 1176 */ 1177 struct FlatView { 1178 struct rcu_head rcu; 1179 unsigned ref; 1180 FlatRange *ranges; 1181 unsigned nr; 1182 unsigned nr_allocated; 1183 struct AddressSpaceDispatch *dispatch; 1184 MemoryRegion *root; 1185 }; 1186 1187 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1188 { 1189 return qatomic_rcu_read(&as->current_map); 1190 } 1191 1192 /** 1193 * typedef flatview_cb: callback for flatview_for_each_range() 1194 * 1195 * @start: start address of the range within the FlatView 1196 * @len: length of the range in bytes 1197 * @mr: MemoryRegion covering this range 1198 * @offset_in_region: offset of the first byte of the range within @mr 1199 * @opaque: data pointer passed to flatview_for_each_range() 1200 * 1201 * Returns: true to stop the iteration, false to keep going. 1202 */ 1203 typedef bool (*flatview_cb)(Int128 start, 1204 Int128 len, 1205 const MemoryRegion *mr, 1206 hwaddr offset_in_region, 1207 void *opaque); 1208 1209 /** 1210 * flatview_for_each_range: Iterate through a FlatView 1211 * @fv: the FlatView to iterate through 1212 * @cb: function to call for each range 1213 * @opaque: opaque data pointer to pass to @cb 1214 * 1215 * A FlatView is made up of a list of non-overlapping ranges, each of 1216 * which is a slice of a MemoryRegion. This function iterates through 1217 * each range in @fv, calling @cb. The callback function can terminate 1218 * iteration early by returning 'true'. 1219 */ 1220 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1221 1222 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1223 MemoryRegionSection *b) 1224 { 1225 return a->mr == b->mr && 1226 a->fv == b->fv && 1227 a->offset_within_region == b->offset_within_region && 1228 a->offset_within_address_space == b->offset_within_address_space && 1229 int128_eq(a->size, b->size) && 1230 a->readonly == b->readonly && 1231 a->nonvolatile == b->nonvolatile; 1232 } 1233 1234 /** 1235 * memory_region_section_new_copy: Copy a memory region section 1236 * 1237 * Allocate memory for a new copy, copy the memory region section, and 1238 * properly take a reference on all relevant members. 1239 * 1240 * @s: the #MemoryRegionSection to copy 1241 */ 1242 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1243 1244 /** 1245 * memory_region_section_free_copy: Free a copied memory region section 1246 * 1247 * Free a copy of a memory section created via memory_region_section_new_copy(). 1248 * properly dropping references on all relevant members. 1249 * 1250 * @s: the #MemoryRegionSection to copy 1251 */ 1252 void memory_region_section_free_copy(MemoryRegionSection *s); 1253 1254 /** 1255 * memory_region_section_intersect_range: Adjust the memory section to cover 1256 * the intersection with the given range. 1257 * 1258 * @s: the #MemoryRegionSection to be adjusted 1259 * @offset: the offset of the given range in the memory region 1260 * @size: the size of the given range 1261 * 1262 * Returns false if the intersection is empty, otherwise returns true. 1263 */ 1264 static inline bool memory_region_section_intersect_range(MemoryRegionSection *s, 1265 uint64_t offset, 1266 uint64_t size) 1267 { 1268 uint64_t start = MAX(s->offset_within_region, offset); 1269 Int128 end = int128_min(int128_add(int128_make64(s->offset_within_region), 1270 s->size), 1271 int128_add(int128_make64(offset), 1272 int128_make64(size))); 1273 1274 if (int128_le(end, int128_make64(start))) { 1275 return false; 1276 } 1277 1278 s->offset_within_address_space += start - s->offset_within_region; 1279 s->offset_within_region = start; 1280 s->size = int128_sub(end, int128_make64(start)); 1281 return true; 1282 } 1283 1284 /** 1285 * memory_region_init: Initialize a memory region 1286 * 1287 * The region typically acts as a container for other memory regions. Use 1288 * memory_region_add_subregion() to add subregions. 1289 * 1290 * @mr: the #MemoryRegion to be initialized 1291 * @owner: the object that tracks the region's reference count 1292 * @name: used for debugging; not visible to the user or ABI 1293 * @size: size of the region; any subregions beyond this size will be clipped 1294 */ 1295 void memory_region_init(MemoryRegion *mr, 1296 Object *owner, 1297 const char *name, 1298 uint64_t size); 1299 1300 /** 1301 * memory_region_ref: Add 1 to a memory region's reference count 1302 * 1303 * Whenever memory regions are accessed outside the BQL, they need to be 1304 * preserved against hot-unplug. MemoryRegions actually do not have their 1305 * own reference count; they piggyback on a QOM object, their "owner". 1306 * This function adds a reference to the owner. 1307 * 1308 * All MemoryRegions must have an owner if they can disappear, even if the 1309 * device they belong to operates exclusively under the BQL. This is because 1310 * the region could be returned at any time by memory_region_find, and this 1311 * is usually under guest control. 1312 * 1313 * @mr: the #MemoryRegion 1314 */ 1315 void memory_region_ref(MemoryRegion *mr); 1316 1317 /** 1318 * memory_region_unref: Remove 1 to a memory region's reference count 1319 * 1320 * Whenever memory regions are accessed outside the BQL, they need to be 1321 * preserved against hot-unplug. MemoryRegions actually do not have their 1322 * own reference count; they piggyback on a QOM object, their "owner". 1323 * This function removes a reference to the owner and possibly destroys it. 1324 * 1325 * @mr: the #MemoryRegion 1326 */ 1327 void memory_region_unref(MemoryRegion *mr); 1328 1329 /** 1330 * memory_region_init_io: Initialize an I/O memory region. 1331 * 1332 * Accesses into the region will cause the callbacks in @ops to be called. 1333 * if @size is nonzero, subregions will be clipped to @size. 1334 * 1335 * @mr: the #MemoryRegion to be initialized. 1336 * @owner: the object that tracks the region's reference count 1337 * @ops: a structure containing read and write callbacks to be used when 1338 * I/O is performed on the region. 1339 * @opaque: passed to the read and write callbacks of the @ops structure. 1340 * @name: used for debugging; not visible to the user or ABI 1341 * @size: size of the region. 1342 */ 1343 void memory_region_init_io(MemoryRegion *mr, 1344 Object *owner, 1345 const MemoryRegionOps *ops, 1346 void *opaque, 1347 const char *name, 1348 uint64_t size); 1349 1350 /** 1351 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1352 * into the region will modify memory 1353 * directly. 1354 * 1355 * @mr: the #MemoryRegion to be initialized. 1356 * @owner: the object that tracks the region's reference count 1357 * @name: Region name, becomes part of RAMBlock name used in migration stream 1358 * must be unique within any device 1359 * @size: size of the region. 1360 * @errp: pointer to Error*, to store an error if it happens. 1361 * 1362 * Note that this function does not do anything to cause the data in the 1363 * RAM memory region to be migrated; that is the responsibility of the caller. 1364 * 1365 * Return: true on success, else false setting @errp with error. 1366 */ 1367 bool memory_region_init_ram_nomigrate(MemoryRegion *mr, 1368 Object *owner, 1369 const char *name, 1370 uint64_t size, 1371 Error **errp); 1372 1373 /** 1374 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1375 * Accesses into the region will 1376 * modify memory directly. 1377 * 1378 * @mr: the #MemoryRegion to be initialized. 1379 * @owner: the object that tracks the region's reference count 1380 * @name: Region name, becomes part of RAMBlock name used in migration stream 1381 * must be unique within any device 1382 * @size: size of the region. 1383 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE, 1384 * RAM_GUEST_MEMFD. 1385 * @errp: pointer to Error*, to store an error if it happens. 1386 * 1387 * Note that this function does not do anything to cause the data in the 1388 * RAM memory region to be migrated; that is the responsibility of the caller. 1389 * 1390 * Return: true on success, else false setting @errp with error. 1391 */ 1392 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1393 Object *owner, 1394 const char *name, 1395 uint64_t size, 1396 uint32_t ram_flags, 1397 Error **errp); 1398 1399 /** 1400 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1401 * RAM. Accesses into the region will 1402 * modify memory directly. Only an initial 1403 * portion of this RAM is actually used. 1404 * Changing the size while migrating 1405 * can result in the migration being 1406 * canceled. 1407 * 1408 * @mr: the #MemoryRegion to be initialized. 1409 * @owner: the object that tracks the region's reference count 1410 * @name: Region name, becomes part of RAMBlock name used in migration stream 1411 * must be unique within any device 1412 * @size: used size of the region. 1413 * @max_size: max size of the region. 1414 * @resized: callback to notify owner about used size change. 1415 * @errp: pointer to Error*, to store an error if it happens. 1416 * 1417 * Note that this function does not do anything to cause the data in the 1418 * RAM memory region to be migrated; that is the responsibility of the caller. 1419 * 1420 * Return: true on success, else false setting @errp with error. 1421 */ 1422 bool memory_region_init_resizeable_ram(MemoryRegion *mr, 1423 Object *owner, 1424 const char *name, 1425 uint64_t size, 1426 uint64_t max_size, 1427 void (*resized)(const char*, 1428 uint64_t length, 1429 void *host), 1430 Error **errp); 1431 #ifdef CONFIG_POSIX 1432 1433 /** 1434 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1435 * mmap-ed backend. 1436 * 1437 * @mr: the #MemoryRegion to be initialized. 1438 * @owner: the object that tracks the region's reference count 1439 * @name: Region name, becomes part of RAMBlock name used in migration stream 1440 * must be unique within any device 1441 * @size: size of the region. 1442 * @align: alignment of the region base address; if 0, the default alignment 1443 * (getpagesize()) will be used. 1444 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1445 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1446 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1447 * @path: the path in which to allocate the RAM. 1448 * @offset: offset within the file referenced by path 1449 * @errp: pointer to Error*, to store an error if it happens. 1450 * 1451 * Note that this function does not do anything to cause the data in the 1452 * RAM memory region to be migrated; that is the responsibility of the caller. 1453 * 1454 * Return: true on success, else false setting @errp with error. 1455 */ 1456 bool memory_region_init_ram_from_file(MemoryRegion *mr, 1457 Object *owner, 1458 const char *name, 1459 uint64_t size, 1460 uint64_t align, 1461 uint32_t ram_flags, 1462 const char *path, 1463 ram_addr_t offset, 1464 Error **errp); 1465 1466 /** 1467 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1468 * mmap-ed backend. 1469 * 1470 * @mr: the #MemoryRegion to be initialized. 1471 * @owner: the object that tracks the region's reference count 1472 * @name: the name of the region. 1473 * @size: size of the region. 1474 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1475 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1476 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1477 * @fd: the fd to mmap. 1478 * @offset: offset within the file referenced by fd 1479 * @errp: pointer to Error*, to store an error if it happens. 1480 * 1481 * Note that this function does not do anything to cause the data in the 1482 * RAM memory region to be migrated; that is the responsibility of the caller. 1483 * 1484 * Return: true on success, else false setting @errp with error. 1485 */ 1486 bool memory_region_init_ram_from_fd(MemoryRegion *mr, 1487 Object *owner, 1488 const char *name, 1489 uint64_t size, 1490 uint32_t ram_flags, 1491 int fd, 1492 ram_addr_t offset, 1493 Error **errp); 1494 #endif 1495 1496 /** 1497 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1498 * user-provided pointer. Accesses into the 1499 * region will modify memory directly. 1500 * 1501 * @mr: the #MemoryRegion to be initialized. 1502 * @owner: the object that tracks the region's reference count 1503 * @name: Region name, becomes part of RAMBlock name used in migration stream 1504 * must be unique within any device 1505 * @size: size of the region. 1506 * @ptr: memory to be mapped; must contain at least @size bytes. 1507 * 1508 * Note that this function does not do anything to cause the data in the 1509 * RAM memory region to be migrated; that is the responsibility of the caller. 1510 */ 1511 void memory_region_init_ram_ptr(MemoryRegion *mr, 1512 Object *owner, 1513 const char *name, 1514 uint64_t size, 1515 void *ptr); 1516 1517 /** 1518 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1519 * a user-provided pointer. 1520 * 1521 * A RAM device represents a mapping to a physical device, such as to a PCI 1522 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1523 * into the VM address space and access to the region will modify memory 1524 * directly. However, the memory region should not be included in a memory 1525 * dump (device may not be enabled/mapped at the time of the dump), and 1526 * operations incompatible with manipulating MMIO should be avoided. Replaces 1527 * skip_dump flag. 1528 * 1529 * @mr: the #MemoryRegion to be initialized. 1530 * @owner: the object that tracks the region's reference count 1531 * @name: the name of the region. 1532 * @size: size of the region. 1533 * @ptr: memory to be mapped; must contain at least @size bytes. 1534 * 1535 * Note that this function does not do anything to cause the data in the 1536 * RAM memory region to be migrated; that is the responsibility of the caller. 1537 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1538 */ 1539 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1540 Object *owner, 1541 const char *name, 1542 uint64_t size, 1543 void *ptr); 1544 1545 /** 1546 * memory_region_init_alias: Initialize a memory region that aliases all or a 1547 * part of another memory region. 1548 * 1549 * @mr: the #MemoryRegion to be initialized. 1550 * @owner: the object that tracks the region's reference count 1551 * @name: used for debugging; not visible to the user or ABI 1552 * @orig: the region to be referenced; @mr will be equivalent to 1553 * @orig between @offset and @offset + @size - 1. 1554 * @offset: start of the section in @orig to be referenced. 1555 * @size: size of the region. 1556 */ 1557 void memory_region_init_alias(MemoryRegion *mr, 1558 Object *owner, 1559 const char *name, 1560 MemoryRegion *orig, 1561 hwaddr offset, 1562 uint64_t size); 1563 1564 /** 1565 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1566 * 1567 * This has the same effect as calling memory_region_init_ram_nomigrate() 1568 * and then marking the resulting region read-only with 1569 * memory_region_set_readonly(). 1570 * 1571 * Note that this function does not do anything to cause the data in the 1572 * RAM side of the memory region to be migrated; that is the responsibility 1573 * of the caller. 1574 * 1575 * @mr: the #MemoryRegion to be initialized. 1576 * @owner: the object that tracks the region's reference count 1577 * @name: Region name, becomes part of RAMBlock name used in migration stream 1578 * must be unique within any device 1579 * @size: size of the region. 1580 * @errp: pointer to Error*, to store an error if it happens. 1581 * 1582 * Return: true on success, else false setting @errp with error. 1583 */ 1584 bool memory_region_init_rom_nomigrate(MemoryRegion *mr, 1585 Object *owner, 1586 const char *name, 1587 uint64_t size, 1588 Error **errp); 1589 1590 /** 1591 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1592 * Writes are handled via callbacks. 1593 * 1594 * Note that this function does not do anything to cause the data in the 1595 * RAM side of the memory region to be migrated; that is the responsibility 1596 * of the caller. 1597 * 1598 * @mr: the #MemoryRegion to be initialized. 1599 * @owner: the object that tracks the region's reference count 1600 * @ops: callbacks for write access handling (must not be NULL). 1601 * @opaque: passed to the read and write callbacks of the @ops structure. 1602 * @name: Region name, becomes part of RAMBlock name used in migration stream 1603 * must be unique within any device 1604 * @size: size of the region. 1605 * @errp: pointer to Error*, to store an error if it happens. 1606 * 1607 * Return: true on success, else false setting @errp with error. 1608 */ 1609 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1610 Object *owner, 1611 const MemoryRegionOps *ops, 1612 void *opaque, 1613 const char *name, 1614 uint64_t size, 1615 Error **errp); 1616 1617 /** 1618 * memory_region_init_iommu: Initialize a memory region of a custom type 1619 * that translates addresses 1620 * 1621 * An IOMMU region translates addresses and forwards accesses to a target 1622 * memory region. 1623 * 1624 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1625 * @_iommu_mr should be a pointer to enough memory for an instance of 1626 * that subclass, @instance_size is the size of that subclass, and 1627 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1628 * instance of the subclass, and its methods will then be called to handle 1629 * accesses to the memory region. See the documentation of 1630 * #IOMMUMemoryRegionClass for further details. 1631 * 1632 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1633 * @instance_size: the IOMMUMemoryRegion subclass instance size 1634 * @mrtypename: the type name of the #IOMMUMemoryRegion 1635 * @owner: the object that tracks the region's reference count 1636 * @name: used for debugging; not visible to the user or ABI 1637 * @size: size of the region. 1638 */ 1639 void memory_region_init_iommu(void *_iommu_mr, 1640 size_t instance_size, 1641 const char *mrtypename, 1642 Object *owner, 1643 const char *name, 1644 uint64_t size); 1645 1646 /** 1647 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1648 * region will modify memory directly. 1649 * 1650 * @mr: the #MemoryRegion to be initialized 1651 * @owner: the object that tracks the region's reference count (must be 1652 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1653 * @name: name of the memory region 1654 * @size: size of the region in bytes 1655 * @errp: pointer to Error*, to store an error if it happens. 1656 * 1657 * This function allocates RAM for a board model or device, and 1658 * arranges for it to be migrated (by calling vmstate_register_ram() 1659 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1660 * @owner is NULL). 1661 * 1662 * TODO: Currently we restrict @owner to being either NULL (for 1663 * global RAM regions with no owner) or devices, so that we can 1664 * give the RAM block a unique name for migration purposes. 1665 * We should lift this restriction and allow arbitrary Objects. 1666 * If you pass a non-NULL non-device @owner then we will assert. 1667 * 1668 * Return: true on success, else false setting @errp with error. 1669 */ 1670 bool memory_region_init_ram(MemoryRegion *mr, 1671 Object *owner, 1672 const char *name, 1673 uint64_t size, 1674 Error **errp); 1675 1676 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr, 1677 Object *owner, 1678 const char *name, 1679 uint64_t size, 1680 Error **errp); 1681 1682 /** 1683 * memory_region_init_rom: Initialize a ROM memory region. 1684 * 1685 * This has the same effect as calling memory_region_init_ram() 1686 * and then marking the resulting region read-only with 1687 * memory_region_set_readonly(). This includes arranging for the 1688 * contents to be migrated. 1689 * 1690 * TODO: Currently we restrict @owner to being either NULL (for 1691 * global RAM regions with no owner) or devices, so that we can 1692 * give the RAM block a unique name for migration purposes. 1693 * We should lift this restriction and allow arbitrary Objects. 1694 * If you pass a non-NULL non-device @owner then we will assert. 1695 * 1696 * @mr: the #MemoryRegion to be initialized. 1697 * @owner: the object that tracks the region's reference count 1698 * @name: Region name, becomes part of RAMBlock name used in migration stream 1699 * must be unique within any device 1700 * @size: size of the region. 1701 * @errp: pointer to Error*, to store an error if it happens. 1702 * 1703 * Return: true on success, else false setting @errp with error. 1704 */ 1705 bool memory_region_init_rom(MemoryRegion *mr, 1706 Object *owner, 1707 const char *name, 1708 uint64_t size, 1709 Error **errp); 1710 1711 /** 1712 * memory_region_init_rom_device: Initialize a ROM memory region. 1713 * Writes are handled via callbacks. 1714 * 1715 * This function initializes a memory region backed by RAM for reads 1716 * and callbacks for writes, and arranges for the RAM backing to 1717 * be migrated (by calling vmstate_register_ram() 1718 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1719 * @owner is NULL). 1720 * 1721 * TODO: Currently we restrict @owner to being either NULL (for 1722 * global RAM regions with no owner) or devices, so that we can 1723 * give the RAM block a unique name for migration purposes. 1724 * We should lift this restriction and allow arbitrary Objects. 1725 * If you pass a non-NULL non-device @owner then we will assert. 1726 * 1727 * @mr: the #MemoryRegion to be initialized. 1728 * @owner: the object that tracks the region's reference count 1729 * @ops: callbacks for write access handling (must not be NULL). 1730 * @opaque: passed to the read and write callbacks of the @ops structure. 1731 * @name: Region name, becomes part of RAMBlock name used in migration stream 1732 * must be unique within any device 1733 * @size: size of the region. 1734 * @errp: pointer to Error*, to store an error if it happens. 1735 * 1736 * Return: true on success, else false setting @errp with error. 1737 */ 1738 bool memory_region_init_rom_device(MemoryRegion *mr, 1739 Object *owner, 1740 const MemoryRegionOps *ops, 1741 void *opaque, 1742 const char *name, 1743 uint64_t size, 1744 Error **errp); 1745 1746 1747 /** 1748 * memory_region_owner: get a memory region's owner. 1749 * 1750 * @mr: the memory region being queried. 1751 */ 1752 Object *memory_region_owner(MemoryRegion *mr); 1753 1754 /** 1755 * memory_region_size: get a memory region's size. 1756 * 1757 * @mr: the memory region being queried. 1758 */ 1759 uint64_t memory_region_size(MemoryRegion *mr); 1760 1761 /** 1762 * memory_region_is_ram: check whether a memory region is random access 1763 * 1764 * Returns %true if a memory region is random access. 1765 * 1766 * @mr: the memory region being queried 1767 */ 1768 static inline bool memory_region_is_ram(MemoryRegion *mr) 1769 { 1770 return mr->ram; 1771 } 1772 1773 /** 1774 * memory_region_is_ram_device: check whether a memory region is a ram device 1775 * 1776 * Returns %true if a memory region is a device backed ram region 1777 * 1778 * @mr: the memory region being queried 1779 */ 1780 bool memory_region_is_ram_device(MemoryRegion *mr); 1781 1782 /** 1783 * memory_region_is_romd: check whether a memory region is in ROMD mode 1784 * 1785 * Returns %true if a memory region is a ROM device and currently set to allow 1786 * direct reads. 1787 * 1788 * @mr: the memory region being queried 1789 */ 1790 static inline bool memory_region_is_romd(MemoryRegion *mr) 1791 { 1792 return mr->rom_device && mr->romd_mode; 1793 } 1794 1795 /** 1796 * memory_region_is_protected: check whether a memory region is protected 1797 * 1798 * Returns %true if a memory region is protected RAM and cannot be accessed 1799 * via standard mechanisms, e.g. DMA. 1800 * 1801 * @mr: the memory region being queried 1802 */ 1803 bool memory_region_is_protected(MemoryRegion *mr); 1804 1805 /** 1806 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd 1807 * associated 1808 * 1809 * Returns %true if a memory region's ram_block has valid guest_memfd assigned. 1810 * 1811 * @mr: the memory region being queried 1812 */ 1813 bool memory_region_has_guest_memfd(MemoryRegion *mr); 1814 1815 /** 1816 * memory_region_get_iommu: check whether a memory region is an iommu 1817 * 1818 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1819 * otherwise NULL. 1820 * 1821 * @mr: the memory region being queried 1822 */ 1823 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1824 { 1825 if (mr->alias) { 1826 return memory_region_get_iommu(mr->alias); 1827 } 1828 if (mr->is_iommu) { 1829 return (IOMMUMemoryRegion *) mr; 1830 } 1831 return NULL; 1832 } 1833 1834 /** 1835 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1836 * if an iommu or NULL if not 1837 * 1838 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1839 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1840 * 1841 * @iommu_mr: the memory region being queried 1842 */ 1843 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1844 IOMMUMemoryRegion *iommu_mr) 1845 { 1846 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1847 } 1848 1849 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1850 1851 /** 1852 * memory_region_iommu_get_min_page_size: get minimum supported page size 1853 * for an iommu 1854 * 1855 * Returns minimum supported page size for an iommu. 1856 * 1857 * @iommu_mr: the memory region being queried 1858 */ 1859 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1860 1861 /** 1862 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1863 * 1864 * Note: for any IOMMU implementation, an in-place mapping change 1865 * should be notified with an UNMAP followed by a MAP. 1866 * 1867 * @iommu_mr: the memory region that was changed 1868 * @iommu_idx: the IOMMU index for the translation table which has changed 1869 * @event: TLB event with the new entry in the IOMMU translation table. 1870 * The entry replaces all old entries for the same virtual I/O address 1871 * range. 1872 */ 1873 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1874 int iommu_idx, 1875 const IOMMUTLBEvent event); 1876 1877 /** 1878 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1879 * entry to a single notifier 1880 * 1881 * This works just like memory_region_notify_iommu(), but it only 1882 * notifies a specific notifier, not all of them. 1883 * 1884 * @notifier: the notifier to be notified 1885 * @event: TLB event with the new entry in the IOMMU translation table. 1886 * The entry replaces all old entries for the same virtual I/O address 1887 * range. 1888 */ 1889 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1890 const IOMMUTLBEvent *event); 1891 1892 /** 1893 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1894 * translation that covers the 1895 * range of a notifier 1896 * 1897 * @notifier: the notifier to be notified 1898 */ 1899 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1900 1901 1902 /** 1903 * memory_region_register_iommu_notifier: register a notifier for changes to 1904 * IOMMU translation entries. 1905 * 1906 * Returns 0 on success, or a negative errno otherwise. In particular, 1907 * -EINVAL indicates that at least one of the attributes of the notifier 1908 * is not supported (flag/range) by the IOMMU memory region. In case of error 1909 * the error object must be created. 1910 * 1911 * @mr: the memory region to observe 1912 * @n: the IOMMUNotifier to be added; the notify callback receives a 1913 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1914 * ceases to be valid on exit from the notifier. 1915 * @errp: pointer to Error*, to store an error if it happens. 1916 */ 1917 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1918 IOMMUNotifier *n, Error **errp); 1919 1920 /** 1921 * memory_region_iommu_replay: replay existing IOMMU translations to 1922 * a notifier with the minimum page granularity returned by 1923 * mr->iommu_ops->get_page_size(). 1924 * 1925 * Note: this is not related to record-and-replay functionality. 1926 * 1927 * @iommu_mr: the memory region to observe 1928 * @n: the notifier to which to replay iommu mappings 1929 */ 1930 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1931 1932 /** 1933 * memory_region_unregister_iommu_notifier: unregister a notifier for 1934 * changes to IOMMU translation entries. 1935 * 1936 * @mr: the memory region which was observed and for which notify_stopped() 1937 * needs to be called 1938 * @n: the notifier to be removed. 1939 */ 1940 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1941 IOMMUNotifier *n); 1942 1943 /** 1944 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1945 * defined on the IOMMU. 1946 * 1947 * Returns 0 on success, or a negative errno otherwise. In particular, 1948 * -EINVAL indicates that the IOMMU does not support the requested 1949 * attribute. 1950 * 1951 * @iommu_mr: the memory region 1952 * @attr: the requested attribute 1953 * @data: a pointer to the requested attribute data 1954 */ 1955 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1956 enum IOMMUMemoryRegionAttr attr, 1957 void *data); 1958 1959 /** 1960 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1961 * use for translations with the given memory transaction attributes. 1962 * 1963 * @iommu_mr: the memory region 1964 * @attrs: the memory transaction attributes 1965 */ 1966 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1967 MemTxAttrs attrs); 1968 1969 /** 1970 * memory_region_iommu_num_indexes: return the total number of IOMMU 1971 * indexes that this IOMMU supports. 1972 * 1973 * @iommu_mr: the memory region 1974 */ 1975 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1976 1977 /** 1978 * memory_region_name: get a memory region's name 1979 * 1980 * Returns the string that was used to initialize the memory region. 1981 * 1982 * @mr: the memory region being queried 1983 */ 1984 const char *memory_region_name(const MemoryRegion *mr); 1985 1986 /** 1987 * memory_region_is_logging: return whether a memory region is logging writes 1988 * 1989 * Returns %true if the memory region is logging writes for the given client 1990 * 1991 * @mr: the memory region being queried 1992 * @client: the client being queried 1993 */ 1994 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1995 1996 /** 1997 * memory_region_get_dirty_log_mask: return the clients for which a 1998 * memory region is logging writes. 1999 * 2000 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 2001 * are the bit indices. 2002 * 2003 * @mr: the memory region being queried 2004 */ 2005 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 2006 2007 /** 2008 * memory_region_is_rom: check whether a memory region is ROM 2009 * 2010 * Returns %true if a memory region is read-only memory. 2011 * 2012 * @mr: the memory region being queried 2013 */ 2014 static inline bool memory_region_is_rom(MemoryRegion *mr) 2015 { 2016 return mr->ram && mr->readonly; 2017 } 2018 2019 /** 2020 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 2021 * 2022 * Returns %true is a memory region is non-volatile memory. 2023 * 2024 * @mr: the memory region being queried 2025 */ 2026 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 2027 { 2028 return mr->nonvolatile; 2029 } 2030 2031 /** 2032 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 2033 * 2034 * Returns a file descriptor backing a file-based RAM memory region, 2035 * or -1 if the region is not a file-based RAM memory region. 2036 * 2037 * @mr: the RAM or alias memory region being queried. 2038 */ 2039 int memory_region_get_fd(MemoryRegion *mr); 2040 2041 /** 2042 * memory_region_from_host: Convert a pointer into a RAM memory region 2043 * and an offset within it. 2044 * 2045 * Given a host pointer inside a RAM memory region (created with 2046 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 2047 * the MemoryRegion and the offset within it. 2048 * 2049 * Use with care; by the time this function returns, the returned pointer is 2050 * not protected by RCU anymore. If the caller is not within an RCU critical 2051 * section and does not hold the BQL, it must have other means of 2052 * protecting the pointer, such as a reference to the region that includes 2053 * the incoming ram_addr_t. 2054 * 2055 * @ptr: the host pointer to be converted 2056 * @offset: the offset within memory region 2057 */ 2058 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 2059 2060 /** 2061 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 2062 * 2063 * Returns a host pointer to a RAM memory region (created with 2064 * memory_region_init_ram() or memory_region_init_ram_ptr()). 2065 * 2066 * Use with care; by the time this function returns, the returned pointer is 2067 * not protected by RCU anymore. If the caller is not within an RCU critical 2068 * section and does not hold the BQL, it must have other means of 2069 * protecting the pointer, such as a reference to the region that includes 2070 * the incoming ram_addr_t. 2071 * 2072 * @mr: the memory region being queried. 2073 */ 2074 void *memory_region_get_ram_ptr(MemoryRegion *mr); 2075 2076 /* memory_region_ram_resize: Resize a RAM region. 2077 * 2078 * Resizing RAM while migrating can result in the migration being canceled. 2079 * Care has to be taken if the guest might have already detected the memory. 2080 * 2081 * @mr: a memory region created with @memory_region_init_resizeable_ram. 2082 * @newsize: the new size the region 2083 * @errp: pointer to Error*, to store an error if it happens. 2084 */ 2085 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 2086 Error **errp); 2087 2088 /** 2089 * memory_region_msync: Synchronize selected address range of 2090 * a memory mapped region 2091 * 2092 * @mr: the memory region to be msync 2093 * @addr: the initial address of the range to be sync 2094 * @size: the size of the range to be sync 2095 */ 2096 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 2097 2098 /** 2099 * memory_region_writeback: Trigger cache writeback for 2100 * selected address range 2101 * 2102 * @mr: the memory region to be updated 2103 * @addr: the initial address of the range to be written back 2104 * @size: the size of the range to be written back 2105 */ 2106 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 2107 2108 /** 2109 * memory_region_set_log: Turn dirty logging on or off for a region. 2110 * 2111 * Turns dirty logging on or off for a specified client (display, migration). 2112 * Only meaningful for RAM regions. 2113 * 2114 * @mr: the memory region being updated. 2115 * @log: whether dirty logging is to be enabled or disabled. 2116 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 2117 */ 2118 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 2119 2120 /** 2121 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 2122 * 2123 * Marks a range of bytes as dirty, after it has been dirtied outside 2124 * guest code. 2125 * 2126 * @mr: the memory region being dirtied. 2127 * @addr: the address (relative to the start of the region) being dirtied. 2128 * @size: size of the range being dirtied. 2129 */ 2130 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2131 hwaddr size); 2132 2133 /** 2134 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2135 * 2136 * This function is called when the caller wants to clear the remote 2137 * dirty bitmap of a memory range within the memory region. This can 2138 * be used by e.g. KVM to manually clear dirty log when 2139 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2140 * kernel. 2141 * 2142 * @mr: the memory region to clear the dirty log upon 2143 * @start: start address offset within the memory region 2144 * @len: length of the memory region to clear dirty bitmap 2145 */ 2146 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2147 hwaddr len); 2148 2149 /** 2150 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2151 * bitmap and clear it. 2152 * 2153 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2154 * returns the snapshot. The snapshot can then be used to query dirty 2155 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2156 * querying the same page multiple times, which is especially useful for 2157 * display updates where the scanlines often are not page aligned. 2158 * 2159 * The dirty bitmap region which gets copied into the snapshot (and 2160 * cleared afterwards) can be larger than requested. The boundaries 2161 * are rounded up/down so complete bitmap longs (covering 64 pages on 2162 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2163 * isn't a problem for display updates as the extra pages are outside 2164 * the visible area, and in case the visible area changes a full 2165 * display redraw is due anyway. Should other use cases for this 2166 * function emerge we might have to revisit this implementation 2167 * detail. 2168 * 2169 * Use g_free to release DirtyBitmapSnapshot. 2170 * 2171 * @mr: the memory region being queried. 2172 * @addr: the address (relative to the start of the region) being queried. 2173 * @size: the size of the range being queried. 2174 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2175 */ 2176 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2177 hwaddr addr, 2178 hwaddr size, 2179 unsigned client); 2180 2181 /** 2182 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2183 * in the specified dirty bitmap snapshot. 2184 * 2185 * @mr: the memory region being queried. 2186 * @snap: the dirty bitmap snapshot 2187 * @addr: the address (relative to the start of the region) being queried. 2188 * @size: the size of the range being queried. 2189 */ 2190 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2191 DirtyBitmapSnapshot *snap, 2192 hwaddr addr, hwaddr size); 2193 2194 /** 2195 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2196 * client. 2197 * 2198 * Marks a range of pages as no longer dirty. 2199 * 2200 * @mr: the region being updated. 2201 * @addr: the start of the subrange being cleaned. 2202 * @size: the size of the subrange being cleaned. 2203 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2204 * %DIRTY_MEMORY_VGA. 2205 */ 2206 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2207 hwaddr size, unsigned client); 2208 2209 /** 2210 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2211 * TBs (for self-modifying code). 2212 * 2213 * The MemoryRegionOps->write() callback of a ROM device must use this function 2214 * to mark byte ranges that have been modified internally, such as by directly 2215 * accessing the memory returned by memory_region_get_ram_ptr(). 2216 * 2217 * This function marks the range dirty and invalidates TBs so that TCG can 2218 * detect self-modifying code. 2219 * 2220 * @mr: the region being flushed. 2221 * @addr: the start, relative to the start of the region, of the range being 2222 * flushed. 2223 * @size: the size, in bytes, of the range being flushed. 2224 */ 2225 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2226 2227 /** 2228 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2229 * 2230 * Allows a memory region to be marked as read-only (turning it into a ROM). 2231 * only useful on RAM regions. 2232 * 2233 * @mr: the region being updated. 2234 * @readonly: whether the region is to be ROM or RAM. 2235 */ 2236 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2237 2238 /** 2239 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2240 * 2241 * Allows a memory region to be marked as non-volatile. 2242 * only useful on RAM regions. 2243 * 2244 * @mr: the region being updated. 2245 * @nonvolatile: whether the region is to be non-volatile. 2246 */ 2247 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2248 2249 /** 2250 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2251 * 2252 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2253 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2254 * device is mapped to guest memory and satisfies read access directly. 2255 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2256 * Writes are always handled by the #MemoryRegion.write function. 2257 * 2258 * @mr: the memory region to be updated 2259 * @romd_mode: %true to put the region into ROMD mode 2260 */ 2261 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2262 2263 /** 2264 * memory_region_set_coalescing: Enable memory coalescing for the region. 2265 * 2266 * Enabled writes to a region to be queued for later processing. MMIO ->write 2267 * callbacks may be delayed until a non-coalesced MMIO is issued. 2268 * Only useful for IO regions. Roughly similar to write-combining hardware. 2269 * 2270 * @mr: the memory region to be write coalesced 2271 */ 2272 void memory_region_set_coalescing(MemoryRegion *mr); 2273 2274 /** 2275 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2276 * a region. 2277 * 2278 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2279 * Multiple calls can be issued coalesced disjoint ranges. 2280 * 2281 * @mr: the memory region to be updated. 2282 * @offset: the start of the range within the region to be coalesced. 2283 * @size: the size of the subrange to be coalesced. 2284 */ 2285 void memory_region_add_coalescing(MemoryRegion *mr, 2286 hwaddr offset, 2287 uint64_t size); 2288 2289 /** 2290 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2291 * 2292 * Disables any coalescing caused by memory_region_set_coalescing() or 2293 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2294 * hardware. 2295 * 2296 * @mr: the memory region to be updated. 2297 */ 2298 void memory_region_clear_coalescing(MemoryRegion *mr); 2299 2300 /** 2301 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2302 * accesses. 2303 * 2304 * Ensure that pending coalesced MMIO request are flushed before the memory 2305 * region is accessed. This property is automatically enabled for all regions 2306 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2307 * 2308 * @mr: the memory region to be updated. 2309 */ 2310 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2311 2312 /** 2313 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2314 * accesses. 2315 * 2316 * Clear the automatic coalesced MMIO flushing enabled via 2317 * memory_region_set_flush_coalesced. Note that this service has no effect on 2318 * memory regions that have MMIO coalescing enabled for themselves. For them, 2319 * automatic flushing will stop once coalescing is disabled. 2320 * 2321 * @mr: the memory region to be updated. 2322 */ 2323 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2324 2325 /** 2326 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2327 * is written to a location. 2328 * 2329 * Marks a word in an IO region (initialized with memory_region_init_io()) 2330 * as a trigger for an eventfd event. The I/O callback will not be called. 2331 * The caller must be prepared to handle failure (that is, take the required 2332 * action if the callback _is_ called). 2333 * 2334 * @mr: the memory region being updated. 2335 * @addr: the address within @mr that is to be monitored 2336 * @size: the size of the access to trigger the eventfd 2337 * @match_data: whether to match against @data, instead of just @addr 2338 * @data: the data to match against the guest write 2339 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2340 **/ 2341 void memory_region_add_eventfd(MemoryRegion *mr, 2342 hwaddr addr, 2343 unsigned size, 2344 bool match_data, 2345 uint64_t data, 2346 EventNotifier *e); 2347 2348 /** 2349 * memory_region_del_eventfd: Cancel an eventfd. 2350 * 2351 * Cancels an eventfd trigger requested by a previous 2352 * memory_region_add_eventfd() call. 2353 * 2354 * @mr: the memory region being updated. 2355 * @addr: the address within @mr that is to be monitored 2356 * @size: the size of the access to trigger the eventfd 2357 * @match_data: whether to match against @data, instead of just @addr 2358 * @data: the data to match against the guest write 2359 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2360 */ 2361 void memory_region_del_eventfd(MemoryRegion *mr, 2362 hwaddr addr, 2363 unsigned size, 2364 bool match_data, 2365 uint64_t data, 2366 EventNotifier *e); 2367 2368 /** 2369 * memory_region_add_subregion: Add a subregion to a container. 2370 * 2371 * Adds a subregion at @offset. The subregion may not overlap with other 2372 * subregions (except for those explicitly marked as overlapping). A region 2373 * may only be added once as a subregion (unless removed with 2374 * memory_region_del_subregion()); use memory_region_init_alias() if you 2375 * want a region to be a subregion in multiple locations. 2376 * 2377 * @mr: the region to contain the new subregion; must be a container 2378 * initialized with memory_region_init(). 2379 * @offset: the offset relative to @mr where @subregion is added. 2380 * @subregion: the subregion to be added. 2381 */ 2382 void memory_region_add_subregion(MemoryRegion *mr, 2383 hwaddr offset, 2384 MemoryRegion *subregion); 2385 /** 2386 * memory_region_add_subregion_overlap: Add a subregion to a container 2387 * with overlap. 2388 * 2389 * Adds a subregion at @offset. The subregion may overlap with other 2390 * subregions. Conflicts are resolved by having a higher @priority hide a 2391 * lower @priority. Subregions without priority are taken as @priority 0. 2392 * A region may only be added once as a subregion (unless removed with 2393 * memory_region_del_subregion()); use memory_region_init_alias() if you 2394 * want a region to be a subregion in multiple locations. 2395 * 2396 * @mr: the region to contain the new subregion; must be a container 2397 * initialized with memory_region_init(). 2398 * @offset: the offset relative to @mr where @subregion is added. 2399 * @subregion: the subregion to be added. 2400 * @priority: used for resolving overlaps; highest priority wins. 2401 */ 2402 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2403 hwaddr offset, 2404 MemoryRegion *subregion, 2405 int priority); 2406 2407 /** 2408 * memory_region_get_ram_addr: Get the ram address associated with a memory 2409 * region 2410 * 2411 * @mr: the region to be queried 2412 */ 2413 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2414 2415 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2416 /** 2417 * memory_region_del_subregion: Remove a subregion. 2418 * 2419 * Removes a subregion from its container. 2420 * 2421 * @mr: the container to be updated. 2422 * @subregion: the region being removed; must be a current subregion of @mr. 2423 */ 2424 void memory_region_del_subregion(MemoryRegion *mr, 2425 MemoryRegion *subregion); 2426 2427 /* 2428 * memory_region_set_enabled: dynamically enable or disable a region 2429 * 2430 * Enables or disables a memory region. A disabled memory region 2431 * ignores all accesses to itself and its subregions. It does not 2432 * obscure sibling subregions with lower priority - it simply behaves as 2433 * if it was removed from the hierarchy. 2434 * 2435 * Regions default to being enabled. 2436 * 2437 * @mr: the region to be updated 2438 * @enabled: whether to enable or disable the region 2439 */ 2440 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2441 2442 /* 2443 * memory_region_set_address: dynamically update the address of a region 2444 * 2445 * Dynamically updates the address of a region, relative to its container. 2446 * May be used on regions are currently part of a memory hierarchy. 2447 * 2448 * @mr: the region to be updated 2449 * @addr: new address, relative to container region 2450 */ 2451 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2452 2453 /* 2454 * memory_region_set_size: dynamically update the size of a region. 2455 * 2456 * Dynamically updates the size of a region. 2457 * 2458 * @mr: the region to be updated 2459 * @size: used size of the region. 2460 */ 2461 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2462 2463 /* 2464 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2465 * 2466 * Dynamically updates the offset into the target region that an alias points 2467 * to, as if the fourth argument to memory_region_init_alias() has changed. 2468 * 2469 * @mr: the #MemoryRegion to be updated; should be an alias. 2470 * @offset: the new offset into the target memory region 2471 */ 2472 void memory_region_set_alias_offset(MemoryRegion *mr, 2473 hwaddr offset); 2474 2475 /* 2476 * memory_region_set_unmergeable: Set a memory region unmergeable 2477 * 2478 * Mark a memory region unmergeable, resulting in the memory region (or 2479 * everything contained in a memory region container) not getting merged when 2480 * simplifying the address space and notifying memory listeners. Consequently, 2481 * memory listeners will never get notified about ranges that are larger than 2482 * the original memory regions. 2483 * 2484 * This is primarily useful when multiple aliases to a RAM memory region are 2485 * mapped into a memory region container, and updates (e.g., enable/disable or 2486 * map/unmap) of individual memory region aliases are not supposed to affect 2487 * other memory regions in the same container. 2488 * 2489 * @mr: the #MemoryRegion to be updated 2490 * @unmergeable: whether to mark the #MemoryRegion unmergeable 2491 */ 2492 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); 2493 2494 /** 2495 * memory_region_present: checks if an address relative to a @container 2496 * translates into #MemoryRegion within @container 2497 * 2498 * Answer whether a #MemoryRegion within @container covers the address 2499 * @addr. 2500 * 2501 * @container: a #MemoryRegion within which @addr is a relative address 2502 * @addr: the area within @container to be searched 2503 */ 2504 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2505 2506 /** 2507 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2508 * into another memory region, which does not necessarily imply that it is 2509 * mapped into an address space. 2510 * 2511 * @mr: a #MemoryRegion which should be checked if it's mapped 2512 */ 2513 bool memory_region_is_mapped(MemoryRegion *mr); 2514 2515 /** 2516 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2517 * #MemoryRegion 2518 * 2519 * The #RamDiscardManager cannot change while a memory region is mapped. 2520 * 2521 * @mr: the #MemoryRegion 2522 */ 2523 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2524 2525 /** 2526 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2527 * #RamDiscardManager assigned 2528 * 2529 * @mr: the #MemoryRegion 2530 */ 2531 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2532 { 2533 return !!memory_region_get_ram_discard_manager(mr); 2534 } 2535 2536 /** 2537 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2538 * #MemoryRegion 2539 * 2540 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2541 * that does not cover RAM, or a #MemoryRegion that already has a 2542 * #RamDiscardManager assigned. Return 0 if the rdm is set successfully. 2543 * 2544 * @mr: the #MemoryRegion 2545 * @rdm: #RamDiscardManager to set 2546 */ 2547 int memory_region_set_ram_discard_manager(MemoryRegion *mr, 2548 RamDiscardManager *rdm); 2549 2550 /** 2551 * memory_region_find: translate an address/size relative to a 2552 * MemoryRegion into a #MemoryRegionSection. 2553 * 2554 * Locates the first #MemoryRegion within @mr that overlaps the range 2555 * given by @addr and @size. 2556 * 2557 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2558 * It will have the following characteristics: 2559 * - @size = 0 iff no overlap was found 2560 * - @mr is non-%NULL iff an overlap was found 2561 * 2562 * Remember that in the return value the @offset_within_region is 2563 * relative to the returned region (in the .@mr field), not to the 2564 * @mr argument. 2565 * 2566 * Similarly, the .@offset_within_address_space is relative to the 2567 * address space that contains both regions, the passed and the 2568 * returned one. However, in the special case where the @mr argument 2569 * has no container (and thus is the root of the address space), the 2570 * following will hold: 2571 * - @offset_within_address_space >= @addr 2572 * - @offset_within_address_space + .@size <= @addr + @size 2573 * 2574 * @mr: a MemoryRegion within which @addr is a relative address 2575 * @addr: start of the area within @as to be searched 2576 * @size: size of the area to be searched 2577 */ 2578 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2579 hwaddr addr, uint64_t size); 2580 2581 /** 2582 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2583 * 2584 * Synchronizes the dirty page log for all address spaces. 2585 * 2586 * @last_stage: whether this is the last stage of live migration 2587 */ 2588 void memory_global_dirty_log_sync(bool last_stage); 2589 2590 /** 2591 * memory_global_after_dirty_log_sync: synchronize the dirty log for all memory 2592 * 2593 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2594 * This function must be called after the dirty log bitmap is cleared, and 2595 * before dirty guest memory pages are read. If you are using 2596 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2597 * care of doing this. 2598 */ 2599 void memory_global_after_dirty_log_sync(void); 2600 2601 /** 2602 * memory_region_transaction_begin: Start a transaction. 2603 * 2604 * During a transaction, changes will be accumulated and made visible 2605 * only when the transaction ends (is committed). 2606 */ 2607 void memory_region_transaction_begin(void); 2608 2609 /** 2610 * memory_region_transaction_commit: Commit a transaction and make changes 2611 * visible to the guest. 2612 */ 2613 void memory_region_transaction_commit(void); 2614 2615 /** 2616 * memory_listener_register: register callbacks to be called when memory 2617 * sections are mapped or unmapped into an address 2618 * space 2619 * 2620 * @listener: an object containing the callbacks to be called 2621 * @filter: if non-%NULL, only regions in this address space will be observed 2622 */ 2623 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2624 2625 /** 2626 * memory_listener_unregister: undo the effect of memory_listener_register() 2627 * 2628 * @listener: an object containing the callbacks to be removed 2629 */ 2630 void memory_listener_unregister(MemoryListener *listener); 2631 2632 /** 2633 * memory_global_dirty_log_start: begin dirty logging for all regions 2634 * 2635 * @flags: purpose of starting dirty log, migration or dirty rate 2636 * @errp: pointer to Error*, to store an error if it happens. 2637 * 2638 * Return: true on success, else false setting @errp with error. 2639 */ 2640 bool memory_global_dirty_log_start(unsigned int flags, Error **errp); 2641 2642 /** 2643 * memory_global_dirty_log_stop: end dirty logging for all regions 2644 * 2645 * @flags: purpose of stopping dirty log, migration or dirty rate 2646 */ 2647 void memory_global_dirty_log_stop(unsigned int flags); 2648 2649 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2650 2651 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2652 unsigned size, bool is_write, 2653 MemTxAttrs attrs); 2654 2655 /** 2656 * memory_region_dispatch_read: perform a read directly to the specified 2657 * MemoryRegion. 2658 * 2659 * @mr: #MemoryRegion to access 2660 * @addr: address within that region 2661 * @pval: pointer to uint64_t which the data is written to 2662 * @op: size, sign, and endianness of the memory operation 2663 * @attrs: memory transaction attributes to use for the access 2664 */ 2665 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2666 hwaddr addr, 2667 uint64_t *pval, 2668 MemOp op, 2669 MemTxAttrs attrs); 2670 /** 2671 * memory_region_dispatch_write: perform a write directly to the specified 2672 * MemoryRegion. 2673 * 2674 * @mr: #MemoryRegion to access 2675 * @addr: address within that region 2676 * @data: data to write 2677 * @op: size, sign, and endianness of the memory operation 2678 * @attrs: memory transaction attributes to use for the access 2679 */ 2680 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2681 hwaddr addr, 2682 uint64_t data, 2683 MemOp op, 2684 MemTxAttrs attrs); 2685 2686 /** 2687 * address_space_init: initializes an address space 2688 * 2689 * @as: an uninitialized #AddressSpace 2690 * @root: a #MemoryRegion that routes addresses for the address space 2691 * @name: an address space name. The name is only used for debugging 2692 * output. 2693 */ 2694 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2695 2696 /** 2697 * address_space_destroy: destroy an address space 2698 * 2699 * Releases all resources associated with an address space. After an address space 2700 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2701 * as well. 2702 * 2703 * @as: address space to be destroyed 2704 */ 2705 void address_space_destroy(AddressSpace *as); 2706 2707 /** 2708 * address_space_remove_listeners: unregister all listeners of an address space 2709 * 2710 * Removes all callbacks previously registered with memory_listener_register() 2711 * for @as. 2712 * 2713 * @as: an initialized #AddressSpace 2714 */ 2715 void address_space_remove_listeners(AddressSpace *as); 2716 2717 /** 2718 * address_space_rw: read from or write to an address space. 2719 * 2720 * Return a MemTxResult indicating whether the operation succeeded 2721 * or failed (eg unassigned memory, device rejected the transaction, 2722 * IOMMU fault). 2723 * 2724 * @as: #AddressSpace to be accessed 2725 * @addr: address within that address space 2726 * @attrs: memory transaction attributes 2727 * @buf: buffer with the data transferred 2728 * @len: the number of bytes to read or write 2729 * @is_write: indicates the transfer direction 2730 */ 2731 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2732 MemTxAttrs attrs, void *buf, 2733 hwaddr len, bool is_write); 2734 2735 /** 2736 * address_space_write: write to address space. 2737 * 2738 * Return a MemTxResult indicating whether the operation succeeded 2739 * or failed (eg unassigned memory, device rejected the transaction, 2740 * IOMMU fault). 2741 * 2742 * @as: #AddressSpace to be accessed 2743 * @addr: address within that address space 2744 * @attrs: memory transaction attributes 2745 * @buf: buffer with the data transferred 2746 * @len: the number of bytes to write 2747 */ 2748 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2749 MemTxAttrs attrs, 2750 const void *buf, hwaddr len); 2751 2752 /** 2753 * address_space_write_rom: write to address space, including ROM. 2754 * 2755 * This function writes to the specified address space, but will 2756 * write data to both ROM and RAM. This is used for non-guest 2757 * writes like writes from the gdb debug stub or initial loading 2758 * of ROM contents. 2759 * 2760 * Note that portions of the write which attempt to write data to 2761 * a device will be silently ignored -- only real RAM and ROM will 2762 * be written to. 2763 * 2764 * Return a MemTxResult indicating whether the operation succeeded 2765 * or failed (eg unassigned memory, device rejected the transaction, 2766 * IOMMU fault). 2767 * 2768 * @as: #AddressSpace to be accessed 2769 * @addr: address within that address space 2770 * @attrs: memory transaction attributes 2771 * @buf: buffer with the data transferred 2772 * @len: the number of bytes to write 2773 */ 2774 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2775 MemTxAttrs attrs, 2776 const void *buf, hwaddr len); 2777 2778 /* address_space_ld*: load from an address space 2779 * address_space_st*: store to an address space 2780 * 2781 * These functions perform a load or store of the byte, word, 2782 * longword or quad to the specified address within the AddressSpace. 2783 * The _le suffixed functions treat the data as little endian; 2784 * _be indicates big endian; no suffix indicates "same endianness 2785 * as guest CPU". 2786 * 2787 * The "guest CPU endianness" accessors are deprecated for use outside 2788 * target-* code; devices should be CPU-agnostic and use either the LE 2789 * or the BE accessors. 2790 * 2791 * @as #AddressSpace to be accessed 2792 * @addr: address within that address space 2793 * @val: data value, for stores 2794 * @attrs: memory transaction attributes 2795 * @result: location to write the success/failure of the transaction; 2796 * if NULL, this information is discarded 2797 */ 2798 2799 #define SUFFIX 2800 #define ARG1 as 2801 #define ARG1_DECL AddressSpace *as 2802 #include "exec/memory_ldst.h.inc" 2803 2804 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) 2805 { 2806 address_space_stl_notdirty(as, addr, val, 2807 MEMTXATTRS_UNSPECIFIED, NULL); 2808 } 2809 2810 #define SUFFIX 2811 #define ARG1 as 2812 #define ARG1_DECL AddressSpace *as 2813 #include "exec/memory_ldst_phys.h.inc" 2814 2815 struct MemoryRegionCache { 2816 uint8_t *ptr; 2817 hwaddr xlat; 2818 hwaddr len; 2819 FlatView *fv; 2820 MemoryRegionSection mrs; 2821 bool is_write; 2822 }; 2823 2824 /* address_space_ld*_cached: load from a cached #MemoryRegion 2825 * address_space_st*_cached: store into a cached #MemoryRegion 2826 * 2827 * These functions perform a load or store of the byte, word, 2828 * longword or quad to the specified address. The address is 2829 * a physical address in the AddressSpace, but it must lie within 2830 * a #MemoryRegion that was mapped with address_space_cache_init. 2831 * 2832 * The _le suffixed functions treat the data as little endian; 2833 * _be indicates big endian; no suffix indicates "same endianness 2834 * as guest CPU". 2835 * 2836 * The "guest CPU endianness" accessors are deprecated for use outside 2837 * target-* code; devices should be CPU-agnostic and use either the LE 2838 * or the BE accessors. 2839 * 2840 * @cache: previously initialized #MemoryRegionCache to be accessed 2841 * @addr: address within the address space 2842 * @val: data value, for stores 2843 * @attrs: memory transaction attributes 2844 * @result: location to write the success/failure of the transaction; 2845 * if NULL, this information is discarded 2846 */ 2847 2848 #define SUFFIX _cached_slow 2849 #define ARG1 cache 2850 #define ARG1_DECL MemoryRegionCache *cache 2851 #include "exec/memory_ldst.h.inc" 2852 2853 /* Inline fast path for direct RAM access. */ 2854 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2855 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2856 { 2857 assert(addr < cache->len); 2858 if (likely(cache->ptr)) { 2859 return ldub_p(cache->ptr + addr); 2860 } else { 2861 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2862 } 2863 } 2864 2865 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2866 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2867 { 2868 assert(addr < cache->len); 2869 if (likely(cache->ptr)) { 2870 stb_p(cache->ptr + addr, val); 2871 } else { 2872 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2873 } 2874 } 2875 2876 #define ENDIANNESS 2877 #include "exec/memory_ldst_cached.h.inc" 2878 2879 #define ENDIANNESS _le 2880 #include "exec/memory_ldst_cached.h.inc" 2881 2882 #define ENDIANNESS _be 2883 #include "exec/memory_ldst_cached.h.inc" 2884 2885 #define SUFFIX _cached 2886 #define ARG1 cache 2887 #define ARG1_DECL MemoryRegionCache *cache 2888 #include "exec/memory_ldst_phys.h.inc" 2889 2890 /* address_space_cache_init: prepare for repeated access to a physical 2891 * memory region 2892 * 2893 * @cache: #MemoryRegionCache to be filled 2894 * @as: #AddressSpace to be accessed 2895 * @addr: address within that address space 2896 * @len: length of buffer 2897 * @is_write: indicates the transfer direction 2898 * 2899 * Will only work with RAM, and may map a subset of the requested range by 2900 * returning a value that is less than @len. On failure, return a negative 2901 * errno value. 2902 * 2903 * Because it only works with RAM, this function can be used for 2904 * read-modify-write operations. In this case, is_write should be %true. 2905 * 2906 * Note that addresses passed to the address_space_*_cached functions 2907 * are relative to @addr. 2908 */ 2909 int64_t address_space_cache_init(MemoryRegionCache *cache, 2910 AddressSpace *as, 2911 hwaddr addr, 2912 hwaddr len, 2913 bool is_write); 2914 2915 /** 2916 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache 2917 * 2918 * @cache: The #MemoryRegionCache to operate on. 2919 * 2920 * Initializes #MemoryRegionCache structure without memory region attached. 2921 * Cache initialized this way can only be safely destroyed, but not used. 2922 */ 2923 static inline void address_space_cache_init_empty(MemoryRegionCache *cache) 2924 { 2925 cache->mrs.mr = NULL; 2926 /* There is no real need to initialize fv, but it makes Coverity happy. */ 2927 cache->fv = NULL; 2928 } 2929 2930 /** 2931 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2932 * 2933 * @cache: The #MemoryRegionCache to operate on. 2934 * @addr: The first physical address that was written, relative to the 2935 * address that was passed to @address_space_cache_init. 2936 * @access_len: The number of bytes that were written starting at @addr. 2937 */ 2938 void address_space_cache_invalidate(MemoryRegionCache *cache, 2939 hwaddr addr, 2940 hwaddr access_len); 2941 2942 /** 2943 * address_space_cache_destroy: free a #MemoryRegionCache 2944 * 2945 * @cache: The #MemoryRegionCache whose memory should be released. 2946 */ 2947 void address_space_cache_destroy(MemoryRegionCache *cache); 2948 2949 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2950 * entry. Should be called from an RCU critical section. 2951 */ 2952 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2953 bool is_write, MemTxAttrs attrs); 2954 2955 /* address_space_translate: translate an address range into an address space 2956 * into a MemoryRegion and an address range into that section. Should be 2957 * called from an RCU critical section, to avoid that the last reference 2958 * to the returned region disappears after address_space_translate returns. 2959 * 2960 * @fv: #FlatView to be accessed 2961 * @addr: address within that address space 2962 * @xlat: pointer to address within the returned memory region section's 2963 * #MemoryRegion. 2964 * @len: pointer to length 2965 * @is_write: indicates the transfer direction 2966 * @attrs: memory attributes 2967 */ 2968 MemoryRegion *flatview_translate(FlatView *fv, 2969 hwaddr addr, hwaddr *xlat, 2970 hwaddr *len, bool is_write, 2971 MemTxAttrs attrs); 2972 2973 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2974 hwaddr addr, hwaddr *xlat, 2975 hwaddr *len, bool is_write, 2976 MemTxAttrs attrs) 2977 { 2978 return flatview_translate(address_space_to_flatview(as), 2979 addr, xlat, len, is_write, attrs); 2980 } 2981 2982 /* address_space_access_valid: check for validity of accessing an address 2983 * space range 2984 * 2985 * Check whether memory is assigned to the given address space range, and 2986 * access is permitted by any IOMMU regions that are active for the address 2987 * space. 2988 * 2989 * For now, addr and len should be aligned to a page size. This limitation 2990 * will be lifted in the future. 2991 * 2992 * @as: #AddressSpace to be accessed 2993 * @addr: address within that address space 2994 * @len: length of the area to be checked 2995 * @is_write: indicates the transfer direction 2996 * @attrs: memory attributes 2997 */ 2998 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2999 bool is_write, MemTxAttrs attrs); 3000 3001 /* address_space_map: map a physical memory region into a host virtual address 3002 * 3003 * May map a subset of the requested range, given by and returned in @plen. 3004 * May return %NULL and set *@plen to zero(0), if resources needed to perform 3005 * the mapping are exhausted. 3006 * Use only for reads OR writes - not for read-modify-write operations. 3007 * Use address_space_register_map_client() to know when retrying the map 3008 * operation is likely to succeed. 3009 * 3010 * @as: #AddressSpace to be accessed 3011 * @addr: address within that address space 3012 * @plen: pointer to length of buffer; updated on return 3013 * @is_write: indicates the transfer direction 3014 * @attrs: memory attributes 3015 */ 3016 void *address_space_map(AddressSpace *as, hwaddr addr, 3017 hwaddr *plen, bool is_write, MemTxAttrs attrs); 3018 3019 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 3020 * 3021 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 3022 * the amount of memory that was actually read or written by the caller. 3023 * 3024 * @as: #AddressSpace used 3025 * @buffer: host pointer as returned by address_space_map() 3026 * @len: buffer length as returned by address_space_map() 3027 * @access_len: amount of data actually transferred 3028 * @is_write: indicates the transfer direction 3029 */ 3030 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3031 bool is_write, hwaddr access_len); 3032 3033 /* 3034 * address_space_register_map_client: Register a callback to invoke when 3035 * resources for address_space_map() are available again. 3036 * 3037 * address_space_map may fail when there are not enough resources available, 3038 * such as when bounce buffer memory would exceed the limit. The callback can 3039 * be used to retry the address_space_map operation. Note that the callback 3040 * gets automatically removed after firing. 3041 * 3042 * @as: #AddressSpace to be accessed 3043 * @bh: callback to invoke when address_space_map() retry is appropriate 3044 */ 3045 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh); 3046 3047 /* 3048 * address_space_unregister_map_client: Unregister a callback that has 3049 * previously been registered and not fired yet. 3050 * 3051 * @as: #AddressSpace to be accessed 3052 * @bh: callback to unregister 3053 */ 3054 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh); 3055 3056 /* Internal functions, part of the implementation of address_space_read. */ 3057 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 3058 MemTxAttrs attrs, void *buf, hwaddr len); 3059 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 3060 MemTxAttrs attrs, void *buf, 3061 hwaddr len, hwaddr addr1, hwaddr l, 3062 MemoryRegion *mr); 3063 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 3064 3065 /* Internal functions, part of the implementation of address_space_read_cached 3066 * and address_space_write_cached. */ 3067 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 3068 hwaddr addr, void *buf, hwaddr len); 3069 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 3070 hwaddr addr, const void *buf, 3071 hwaddr len); 3072 3073 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 3074 bool prepare_mmio_access(MemoryRegion *mr); 3075 3076 static inline bool memory_region_supports_direct_access(MemoryRegion *mr) 3077 { 3078 /* ROM DEVICE regions only allow direct access if in ROMD mode. */ 3079 if (memory_region_is_romd(mr)) { 3080 return true; 3081 } 3082 if (!memory_region_is_ram(mr)) { 3083 return false; 3084 } 3085 /* 3086 * RAM DEVICE regions can be accessed directly using memcpy, but it might 3087 * be MMIO and access using mempy can be wrong (e.g., using instructions not 3088 * intended for MMIO access). So we treat this as IO. 3089 */ 3090 return !memory_region_is_ram_device(mr); 3091 } 3092 3093 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write, 3094 MemTxAttrs attrs) 3095 { 3096 if (!memory_region_supports_direct_access(mr)) { 3097 return false; 3098 } 3099 /* Debug access can write to ROM. */ 3100 if (is_write && !attrs.debug) { 3101 return !mr->readonly && !mr->rom_device; 3102 } 3103 return true; 3104 } 3105 3106 /** 3107 * address_space_read: read from an address space. 3108 * 3109 * Return a MemTxResult indicating whether the operation succeeded 3110 * or failed (eg unassigned memory, device rejected the transaction, 3111 * IOMMU fault). Called within RCU critical section. 3112 * 3113 * @as: #AddressSpace to be accessed 3114 * @addr: address within that address space 3115 * @attrs: memory transaction attributes 3116 * @buf: buffer with the data transferred 3117 * @len: length of the data transferred 3118 */ 3119 static inline __attribute__((__always_inline__)) 3120 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 3121 MemTxAttrs attrs, void *buf, 3122 hwaddr len) 3123 { 3124 MemTxResult result = MEMTX_OK; 3125 hwaddr l, addr1; 3126 void *ptr; 3127 MemoryRegion *mr; 3128 FlatView *fv; 3129 3130 if (__builtin_constant_p(len)) { 3131 if (len) { 3132 RCU_READ_LOCK_GUARD(); 3133 fv = address_space_to_flatview(as); 3134 l = len; 3135 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 3136 if (len == l && memory_access_is_direct(mr, false, attrs)) { 3137 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3138 memcpy(buf, ptr, len); 3139 } else { 3140 result = flatview_read_continue(fv, addr, attrs, buf, len, 3141 addr1, l, mr); 3142 } 3143 } 3144 } else { 3145 result = address_space_read_full(as, addr, attrs, buf, len); 3146 } 3147 return result; 3148 } 3149 3150 /** 3151 * address_space_read_cached: read from a cached RAM region 3152 * 3153 * @cache: Cached region to be addressed 3154 * @addr: address relative to the base of the RAM region 3155 * @buf: buffer with the data transferred 3156 * @len: length of the data transferred 3157 */ 3158 static inline MemTxResult 3159 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 3160 void *buf, hwaddr len) 3161 { 3162 assert(addr < cache->len && len <= cache->len - addr); 3163 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 3164 if (likely(cache->ptr)) { 3165 memcpy(buf, cache->ptr + addr, len); 3166 return MEMTX_OK; 3167 } else { 3168 return address_space_read_cached_slow(cache, addr, buf, len); 3169 } 3170 } 3171 3172 /** 3173 * address_space_write_cached: write to a cached RAM region 3174 * 3175 * @cache: Cached region to be addressed 3176 * @addr: address relative to the base of the RAM region 3177 * @buf: buffer with the data transferred 3178 * @len: length of the data transferred 3179 */ 3180 static inline MemTxResult 3181 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 3182 const void *buf, hwaddr len) 3183 { 3184 assert(addr < cache->len && len <= cache->len - addr); 3185 if (likely(cache->ptr)) { 3186 memcpy(cache->ptr + addr, buf, len); 3187 return MEMTX_OK; 3188 } else { 3189 return address_space_write_cached_slow(cache, addr, buf, len); 3190 } 3191 } 3192 3193 /** 3194 * address_space_set: Fill address space with a constant byte. 3195 * 3196 * Return a MemTxResult indicating whether the operation succeeded 3197 * or failed (eg unassigned memory, device rejected the transaction, 3198 * IOMMU fault). 3199 * 3200 * @as: #AddressSpace to be accessed 3201 * @addr: address within that address space 3202 * @c: constant byte to fill the memory 3203 * @len: the number of bytes to fill with the constant byte 3204 * @attrs: memory transaction attributes 3205 */ 3206 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3207 uint8_t c, hwaddr len, MemTxAttrs attrs); 3208 3209 /* 3210 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3211 * to manage the actual amount of memory consumed by the VM (then, the memory 3212 * provided by RAM blocks might be bigger than the desired memory consumption). 3213 * This *must* be set if: 3214 * - Discarding parts of a RAM blocks does not result in the change being 3215 * reflected in the VM and the pages getting freed. 3216 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3217 * discards blindly. 3218 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3219 * encrypted VMs). 3220 * Technologies that only temporarily pin the current working set of a 3221 * driver are fine, because we don't expect such pages to be discarded 3222 * (esp. based on guest action like balloon inflation). 3223 * 3224 * This is *not* to be used to protect from concurrent discards (esp., 3225 * postcopy). 3226 * 3227 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3228 * discards to work reliably is active. 3229 */ 3230 int ram_block_discard_disable(bool state); 3231 3232 /* 3233 * See ram_block_discard_disable(): only disable uncoordinated discards, 3234 * keeping coordinated discards (via the RamDiscardManager) enabled. 3235 */ 3236 int ram_block_uncoordinated_discard_disable(bool state); 3237 3238 /* 3239 * Inhibit technologies that disable discarding of pages in RAM blocks. 3240 * 3241 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3242 * broken. 3243 */ 3244 int ram_block_discard_require(bool state); 3245 3246 /* 3247 * See ram_block_discard_require(): only inhibit technologies that disable 3248 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with 3249 * technologies that only inhibit uncoordinated discards (via the 3250 * RamDiscardManager). 3251 */ 3252 int ram_block_coordinated_discard_require(bool state); 3253 3254 /* 3255 * Test if any discarding of memory in ram blocks is disabled. 3256 */ 3257 bool ram_block_discard_is_disabled(void); 3258 3259 /* 3260 * Test if any discarding of memory in ram blocks is required to work reliably. 3261 */ 3262 bool ram_block_discard_is_required(void); 3263 3264 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp); 3265 void ram_block_del_cpr_blocker(RAMBlock *rb); 3266 3267 #endif 3268