xref: /openbmc/qemu/include/system/memory.h (revision e452053097371880910c744a5d42ae2df058a4a7)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef SYSTEM_MEMORY_H
15 #define SYSTEM_MEMORY_H
16 
17 #include "exec/cpu-common.h"
18 #include "exec/hwaddr.h"
19 #include "exec/memattrs.h"
20 #include "exec/memop.h"
21 #include "exec/ramlist.h"
22 #include "qemu/bswap.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/range.h"
26 #include "qemu/notify.h"
27 #include "qom/object.h"
28 #include "qemu/rcu.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "memory-region"
36 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
37                          TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
40 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
41 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
42                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
43 
44 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
45 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
46 typedef struct RamDiscardManager RamDiscardManager;
47 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
48                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
49 
50 #ifdef CONFIG_FUZZ
51 void fuzz_dma_read_cb(size_t addr,
52                       size_t len,
53                       MemoryRegion *mr);
54 #else
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)55 static inline void fuzz_dma_read_cb(size_t addr,
56                                     size_t len,
57                                     MemoryRegion *mr)
58 {
59     /* Do Nothing */
60 }
61 #endif
62 
63 /* Possible bits for global_dirty_log_{start|stop} */
64 
65 /* Dirty tracking enabled because migration is running */
66 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
67 
68 /* Dirty tracking enabled because measuring dirty rate */
69 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
70 
71 /* Dirty tracking enabled because dirty limit */
72 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
73 
74 #define GLOBAL_DIRTY_MASK  (0x7)
75 
76 extern unsigned int global_dirty_tracking;
77 
78 typedef struct MemoryRegionOps MemoryRegionOps;
79 
80 struct ReservedRegion {
81     Range range;
82     unsigned type;
83 };
84 
85 /**
86  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
87  *
88  * @mr: the region, or %NULL if empty
89  * @fv: the flat view of the address space the region is mapped in
90  * @offset_within_region: the beginning of the section, relative to @mr's start
91  * @size: the size of the section; will not exceed @mr's boundaries
92  * @offset_within_address_space: the address of the first byte of the section
93  *     relative to the region's address space
94  * @readonly: writes to this section are ignored
95  * @nonvolatile: this section is non-volatile
96  * @unmergeable: this section should not get merged with adjacent sections
97  */
98 struct MemoryRegionSection {
99     Int128 size;
100     MemoryRegion *mr;
101     FlatView *fv;
102     hwaddr offset_within_region;
103     hwaddr offset_within_address_space;
104     bool readonly;
105     bool nonvolatile;
106     bool unmergeable;
107 };
108 
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
110 
111 /*
112  * See address_space_translate:
113  *      - bit 0 : read
114  *      - bit 1 : write
115  *      - bit 2 : exec
116  *      - bit 3 : priv
117  *      - bit 4 : global
118  *      - bit 5 : untranslated only
119  */
120 typedef enum {
121     IOMMU_NONE = 0,
122     IOMMU_RO   = 1,
123     IOMMU_WO   = 2,
124     IOMMU_RW   = 3,
125     IOMMU_EXEC = 4,
126     IOMMU_PRIV = 8,
127     IOMMU_GLOBAL = 16,
128     IOMMU_UNTRANSLATED_ONLY = 32,
129 } IOMMUAccessFlags;
130 
131 #define IOMMU_ACCESS_FLAG(r, w)     (((r) ? IOMMU_RO : 0) | \
132                                     ((w) ? IOMMU_WO : 0))
133 #define IOMMU_ACCESS_FLAG_FULL(r, w, x, p, g, uo) \
134                                     (IOMMU_ACCESS_FLAG(r, w) | \
135                                     ((x) ? IOMMU_EXEC : 0) | \
136                                     ((p) ? IOMMU_PRIV : 0) | \
137                                     ((g) ? IOMMU_GLOBAL : 0) | \
138                                     ((uo) ? IOMMU_UNTRANSLATED_ONLY : 0))
139 
140 struct IOMMUTLBEntry {
141     AddressSpace    *target_as;
142     hwaddr           iova;
143     hwaddr           translated_addr;
144     hwaddr           addr_mask;  /* 0xfff = 4k translation */
145     IOMMUAccessFlags perm;
146     uint32_t         pasid;
147 };
148 
149 /*
150  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
151  * register with one or multiple IOMMU Notifier capability bit(s).
152  *
153  * Normally there're two use cases for the notifiers:
154  *
155  *   (1) When the device needs accurate synchronizations of the vIOMMU page
156  *       tables, it needs to register with both MAP|UNMAP notifies (which
157  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
158  *
159  *       Regarding to accurate synchronization, it's when the notified
160  *       device maintains a shadow page table and must be notified on each
161  *       guest MAP (page table entry creation) and UNMAP (invalidation)
162  *       events (e.g. VFIO). Both notifications must be accurate so that
163  *       the shadow page table is fully in sync with the guest view.
164  *
165  *   (2) When the device doesn't need accurate synchronizations of the
166  *       vIOMMU page tables, it needs to register only with UNMAP or
167  *       DEVIOTLB_UNMAP notifies.
168  *
169  *       It's when the device maintains a cache of IOMMU translations
170  *       (IOTLB) and is able to fill that cache by requesting translations
171  *       from the vIOMMU through a protocol similar to ATS (Address
172  *       Translation Service).
173  *
174  *       Note that in this mode the vIOMMU will not maintain a shadowed
175  *       page table for the address space, and the UNMAP messages can cover
176  *       more than the pages that used to get mapped.  The IOMMU notifiee
177  *       should be able to take care of over-sized invalidations.
178  */
179 typedef enum {
180     IOMMU_NOTIFIER_NONE = 0,
181     /* Notify cache invalidations */
182     IOMMU_NOTIFIER_UNMAP = 0x1,
183     /* Notify entry changes (newly created entries) */
184     IOMMU_NOTIFIER_MAP = 0x2,
185     /* Notify changes on device IOTLB entries */
186     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
187 } IOMMUNotifierFlag;
188 
189 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
190 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
191 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
192                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
193 
194 struct IOMMUNotifier;
195 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
196                             IOMMUTLBEntry *data);
197 
198 struct IOMMUNotifier {
199     IOMMUNotify notify;
200     IOMMUNotifierFlag notifier_flags;
201     /* Notify for address space range start <= addr <= end */
202     hwaddr start;
203     hwaddr end;
204     int iommu_idx;
205     void *opaque;
206     QLIST_ENTRY(IOMMUNotifier) node;
207 };
208 typedef struct IOMMUNotifier IOMMUNotifier;
209 
210 typedef struct IOMMUTLBEvent {
211     IOMMUNotifierFlag type;
212     IOMMUTLBEntry entry;
213 } IOMMUTLBEvent;
214 
215 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
216 #define RAM_PREALLOC   (1 << 0)
217 
218 /* RAM is mmap-ed with MAP_SHARED */
219 #define RAM_SHARED     (1 << 1)
220 
221 /* Only a portion of RAM (used_length) is actually used, and migrated.
222  * Resizing RAM while migrating can result in the migration being canceled.
223  */
224 #define RAM_RESIZEABLE (1 << 2)
225 
226 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
227  * zero the page and wake waiting processes.
228  * (Set during postcopy)
229  */
230 #define RAM_UF_ZEROPAGE (1 << 3)
231 
232 /* RAM can be migrated */
233 #define RAM_MIGRATABLE (1 << 4)
234 
235 /* RAM is a persistent kind memory */
236 #define RAM_PMEM (1 << 5)
237 
238 
239 /*
240  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
241  * support 'write-tracking' migration type.
242  * Implies ram_state->ram_wt_enabled.
243  */
244 #define RAM_UF_WRITEPROTECT (1 << 6)
245 
246 /*
247  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
248  * pages if applicable) is skipped: will bail out if not supported. When not
249  * set, the OS will do the reservation, if supported for the memory type.
250  */
251 #define RAM_NORESERVE (1 << 7)
252 
253 /* RAM that isn't accessible through normal means. */
254 #define RAM_PROTECTED (1 << 8)
255 
256 /* RAM is an mmap-ed named file */
257 #define RAM_NAMED_FILE (1 << 9)
258 
259 /* RAM is mmap-ed read-only */
260 #define RAM_READONLY (1 << 10)
261 
262 /* RAM FD is opened read-only */
263 #define RAM_READONLY_FD (1 << 11)
264 
265 /* RAM can be private that has kvm guest memfd backend */
266 #define RAM_GUEST_MEMFD   (1 << 12)
267 
268 /*
269  * In RAMBlock creation functions, if MAP_SHARED is 0 in the flags parameter,
270  * the implementation may still create a shared mapping if other conditions
271  * require it.  Callers who specifically want a private mapping, eg objects
272  * specified by the user, must pass RAM_PRIVATE.
273  * After RAMBlock creation, MAP_SHARED in the block's flags indicates whether
274  * the block is shared or private, and MAP_PRIVATE is omitted.
275  */
276 #define RAM_PRIVATE (1 << 13)
277 
iommu_notifier_init(IOMMUNotifier * n,IOMMUNotify fn,IOMMUNotifierFlag flags,hwaddr start,hwaddr end,int iommu_idx)278 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
279                                        IOMMUNotifierFlag flags,
280                                        hwaddr start, hwaddr end,
281                                        int iommu_idx)
282 {
283     n->notify = fn;
284     n->notifier_flags = flags;
285     n->start = start;
286     n->end = end;
287     n->iommu_idx = iommu_idx;
288 }
289 
290 /*
291  * Memory region callbacks
292  */
293 struct MemoryRegionOps {
294     /* Read from the memory region. @addr is relative to @mr; @size is
295      * in bytes. */
296     uint64_t (*read)(void *opaque,
297                      hwaddr addr,
298                      unsigned size);
299     /* Write to the memory region. @addr is relative to @mr; @size is
300      * in bytes. */
301     void (*write)(void *opaque,
302                   hwaddr addr,
303                   uint64_t data,
304                   unsigned size);
305 
306     MemTxResult (*read_with_attrs)(void *opaque,
307                                    hwaddr addr,
308                                    uint64_t *data,
309                                    unsigned size,
310                                    MemTxAttrs attrs);
311     MemTxResult (*write_with_attrs)(void *opaque,
312                                     hwaddr addr,
313                                     uint64_t data,
314                                     unsigned size,
315                                     MemTxAttrs attrs);
316 
317     enum device_endian endianness;
318     /* Guest-visible constraints: */
319     struct {
320         /* If nonzero, specify bounds on access sizes beyond which a machine
321          * check is thrown.
322          */
323         unsigned min_access_size;
324         unsigned max_access_size;
325         /* If true, unaligned accesses are supported.  Otherwise unaligned
326          * accesses throw machine checks.
327          */
328          bool unaligned;
329         /*
330          * If present, and returns #false, the transaction is not accepted
331          * by the device (and results in machine dependent behaviour such
332          * as a machine check exception).
333          */
334         bool (*accepts)(void *opaque, hwaddr addr,
335                         unsigned size, bool is_write,
336                         MemTxAttrs attrs);
337     } valid;
338     /* Internal implementation constraints: */
339     struct {
340         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
341          * will be rounded upwards and a partial result will be returned.
342          */
343         unsigned min_access_size;
344         /* If nonzero, specifies the maximum size implemented.  Larger sizes
345          * will be done as a series of accesses with smaller sizes.
346          */
347         unsigned max_access_size;
348         /* If true, unaligned accesses are supported.  Otherwise all accesses
349          * are converted to (possibly multiple) naturally aligned accesses.
350          */
351         bool unaligned;
352     } impl;
353 };
354 
355 typedef struct MemoryRegionClass {
356     /* private */
357     ObjectClass parent_class;
358 } MemoryRegionClass;
359 
360 
361 enum IOMMUMemoryRegionAttr {
362     IOMMU_ATTR_SPAPR_TCE_FD
363 };
364 
365 /*
366  * IOMMUMemoryRegionClass:
367  *
368  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
369  * and provide an implementation of at least the @translate method here
370  * to handle requests to the memory region. Other methods are optional.
371  *
372  * The IOMMU implementation must use the IOMMU notifier infrastructure
373  * to report whenever mappings are changed, by calling
374  * memory_region_notify_iommu() (or, if necessary, by calling
375  * memory_region_notify_iommu_one() for each registered notifier).
376  *
377  * Conceptually an IOMMU provides a mapping from input address
378  * to an output TLB entry. If the IOMMU is aware of memory transaction
379  * attributes and the output TLB entry depends on the transaction
380  * attributes, we represent this using IOMMU indexes. Each index
381  * selects a particular translation table that the IOMMU has:
382  *
383  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
384  *
385  *   @translate takes an input address and an IOMMU index
386  *
387  * and the mapping returned can only depend on the input address and the
388  * IOMMU index.
389  *
390  * Most IOMMUs don't care about the transaction attributes and support
391  * only a single IOMMU index. A more complex IOMMU might have one index
392  * for secure transactions and one for non-secure transactions.
393  */
394 struct IOMMUMemoryRegionClass {
395     /* private: */
396     MemoryRegionClass parent_class;
397 
398     /* public: */
399     /**
400      * @translate:
401      *
402      * Return a TLB entry that contains a given address.
403      *
404      * The IOMMUAccessFlags indicated via @flag are optional and may
405      * be specified as IOMMU_NONE to indicate that the caller needs
406      * the full translation information for both reads and writes. If
407      * the access flags are specified then the IOMMU implementation
408      * may use this as an optimization, to stop doing a page table
409      * walk as soon as it knows that the requested permissions are not
410      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
411      * full page table walk and report the permissions in the returned
412      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
413      * return different mappings for reads and writes.)
414      *
415      * The returned information remains valid while the caller is
416      * holding the big QEMU lock or is inside an RCU critical section;
417      * if the caller wishes to cache the mapping beyond that it must
418      * register an IOMMU notifier so it can invalidate its cached
419      * information when the IOMMU mapping changes.
420      *
421      * @iommu: the IOMMUMemoryRegion
422      *
423      * @hwaddr: address to be translated within the memory region
424      *
425      * @flag: requested access permission
426      *
427      * @iommu_idx: IOMMU index for the translation
428      */
429     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
430                                IOMMUAccessFlags flag, int iommu_idx);
431     /**
432      * @get_min_page_size:
433      *
434      * Returns minimum supported page size in bytes.
435      *
436      * If this method is not provided then the minimum is assumed to
437      * be TARGET_PAGE_SIZE.
438      *
439      * @iommu: the IOMMUMemoryRegion
440      */
441     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
442     /**
443      * @notify_flag_changed:
444      *
445      * Called when IOMMU Notifier flag changes (ie when the set of
446      * events which IOMMU users are requesting notification for changes).
447      * Optional method -- need not be provided if the IOMMU does not
448      * need to know exactly which events must be notified.
449      *
450      * @iommu: the IOMMUMemoryRegion
451      *
452      * @old_flags: events which previously needed to be notified
453      *
454      * @new_flags: events which now need to be notified
455      *
456      * Returns 0 on success, or a negative errno; in particular
457      * returns -EINVAL if the new flag bitmap is not supported by the
458      * IOMMU memory region. In case of failure, the error object
459      * must be created
460      */
461     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
462                                IOMMUNotifierFlag old_flags,
463                                IOMMUNotifierFlag new_flags,
464                                Error **errp);
465     /**
466      * @replay:
467      *
468      * Called to handle memory_region_iommu_replay().
469      *
470      * The default implementation of memory_region_iommu_replay() is to
471      * call the IOMMU translate method for every page in the address space
472      * with flag == IOMMU_NONE and then call the notifier if translate
473      * returns a valid mapping. If this method is implemented then it
474      * overrides the default behaviour, and must provide the full semantics
475      * of memory_region_iommu_replay(), by calling @notifier for every
476      * translation present in the IOMMU.
477      *
478      * Optional method -- an IOMMU only needs to provide this method
479      * if the default is inefficient or produces undesirable side effects.
480      *
481      * Note: this is not related to record-and-replay functionality.
482      */
483     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
484 
485     /**
486      * @get_attr:
487      *
488      * Get IOMMU misc attributes. This is an optional method that
489      * can be used to allow users of the IOMMU to get implementation-specific
490      * information. The IOMMU implements this method to handle calls
491      * by IOMMU users to memory_region_iommu_get_attr() by filling in
492      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
493      * the IOMMU supports. If the method is unimplemented then
494      * memory_region_iommu_get_attr() will always return -EINVAL.
495      *
496      * @iommu: the IOMMUMemoryRegion
497      *
498      * @attr: attribute being queried
499      *
500      * @data: memory to fill in with the attribute data
501      *
502      * Returns 0 on success, or a negative errno; in particular
503      * returns -EINVAL for unrecognized or unimplemented attribute types.
504      */
505     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
506                     void *data);
507 
508     /**
509      * @attrs_to_index:
510      *
511      * Return the IOMMU index to use for a given set of transaction attributes.
512      *
513      * Optional method: if an IOMMU only supports a single IOMMU index then
514      * the default implementation of memory_region_iommu_attrs_to_index()
515      * will return 0.
516      *
517      * The indexes supported by an IOMMU must be contiguous, starting at 0.
518      *
519      * @iommu: the IOMMUMemoryRegion
520      * @attrs: memory transaction attributes
521      */
522     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
523 
524     /**
525      * @num_indexes:
526      *
527      * Return the number of IOMMU indexes this IOMMU supports.
528      *
529      * Optional method: if this method is not provided, then
530      * memory_region_iommu_num_indexes() will return 1, indicating that
531      * only a single IOMMU index is supported.
532      *
533      * @iommu: the IOMMUMemoryRegion
534      */
535     int (*num_indexes)(IOMMUMemoryRegion *iommu);
536 };
537 
538 typedef struct RamDiscardListener RamDiscardListener;
539 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
540                                  MemoryRegionSection *section);
541 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
542                                  MemoryRegionSection *section);
543 
544 struct RamDiscardListener {
545     /*
546      * @notify_populate:
547      *
548      * Notification that previously discarded memory is about to get populated.
549      * Listeners are able to object. If any listener objects, already
550      * successfully notified listeners are notified about a discard again.
551      *
552      * @rdl: the #RamDiscardListener getting notified
553      * @section: the #MemoryRegionSection to get populated. The section
554      *           is aligned within the memory region to the minimum granularity
555      *           unless it would exceed the registered section.
556      *
557      * Returns 0 on success. If the notification is rejected by the listener,
558      * an error is returned.
559      */
560     NotifyRamPopulate notify_populate;
561 
562     /*
563      * @notify_discard:
564      *
565      * Notification that previously populated memory was discarded successfully
566      * and listeners should drop all references to such memory and prevent
567      * new population (e.g., unmap).
568      *
569      * @rdl: the #RamDiscardListener getting notified
570      * @section: the #MemoryRegionSection to get populated. The section
571      *           is aligned within the memory region to the minimum granularity
572      *           unless it would exceed the registered section.
573      */
574     NotifyRamDiscard notify_discard;
575 
576     /*
577      * @double_discard_supported:
578      *
579      * The listener suppors getting @notify_discard notifications that span
580      * already discarded parts.
581      */
582     bool double_discard_supported;
583 
584     MemoryRegionSection *section;
585     QLIST_ENTRY(RamDiscardListener) next;
586 };
587 
ram_discard_listener_init(RamDiscardListener * rdl,NotifyRamPopulate populate_fn,NotifyRamDiscard discard_fn,bool double_discard_supported)588 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
589                                              NotifyRamPopulate populate_fn,
590                                              NotifyRamDiscard discard_fn,
591                                              bool double_discard_supported)
592 {
593     rdl->notify_populate = populate_fn;
594     rdl->notify_discard = discard_fn;
595     rdl->double_discard_supported = double_discard_supported;
596 }
597 
598 /**
599  * typedef ReplayRamDiscardState:
600  *
601  * The callback handler for #RamDiscardManagerClass.replay_populated/
602  * #RamDiscardManagerClass.replay_discarded to invoke on populated/discarded
603  * parts.
604  *
605  * @section: the #MemoryRegionSection of populated/discarded part
606  * @opaque: pointer to forward to the callback
607  *
608  * Returns 0 on success, or a negative error if failed.
609  */
610 typedef int (*ReplayRamDiscardState)(MemoryRegionSection *section,
611                                      void *opaque);
612 
613 /*
614  * RamDiscardManagerClass:
615  *
616  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
617  * regions are currently populated to be used/accessed by the VM, notifying
618  * after parts were discarded (freeing up memory) and before parts will be
619  * populated (consuming memory), to be used/accessed by the VM.
620  *
621  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
622  * #MemoryRegion isn't mapped into an address space yet (either directly
623  * or via an alias); it cannot change while the #MemoryRegion is
624  * mapped into an address space.
625  *
626  * The #RamDiscardManager is intended to be used by technologies that are
627  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
628  * memory inside a #MemoryRegion), and require proper coordination to only
629  * map the currently populated parts, to hinder parts that are expected to
630  * remain discarded from silently getting populated and consuming memory.
631  * Technologies that support discarding of RAM don't have to bother and can
632  * simply map the whole #MemoryRegion.
633  *
634  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
635  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
636  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
637  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
638  * properly coordinate with listeners before memory is plugged (populated),
639  * and after memory is unplugged (discarded).
640  *
641  * Listeners are called in multiples of the minimum granularity (unless it
642  * would exceed the registered range) and changes are aligned to the minimum
643  * granularity within the #MemoryRegion. Listeners have to prepare for memory
644  * becoming discarded in a different granularity than it was populated and the
645  * other way around.
646  */
647 struct RamDiscardManagerClass {
648     /* private */
649     InterfaceClass parent_class;
650 
651     /* public */
652 
653     /**
654      * @get_min_granularity:
655      *
656      * Get the minimum granularity in which listeners will get notified
657      * about changes within the #MemoryRegion via the #RamDiscardManager.
658      *
659      * @rdm: the #RamDiscardManager
660      * @mr: the #MemoryRegion
661      *
662      * Returns the minimum granularity.
663      */
664     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
665                                     const MemoryRegion *mr);
666 
667     /**
668      * @is_populated:
669      *
670      * Check whether the given #MemoryRegionSection is completely populated
671      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
672      * There are no alignment requirements.
673      *
674      * @rdm: the #RamDiscardManager
675      * @section: the #MemoryRegionSection
676      *
677      * Returns whether the given range is completely populated.
678      */
679     bool (*is_populated)(const RamDiscardManager *rdm,
680                          const MemoryRegionSection *section);
681 
682     /**
683      * @replay_populated:
684      *
685      * Call the #ReplayRamDiscardState callback for all populated parts within
686      * the #MemoryRegionSection via the #RamDiscardManager.
687      *
688      * In case any call fails, no further calls are made.
689      *
690      * @rdm: the #RamDiscardManager
691      * @section: the #MemoryRegionSection
692      * @replay_fn: the #ReplayRamDiscardState callback
693      * @opaque: pointer to forward to the callback
694      *
695      * Returns 0 on success, or a negative error if any notification failed.
696      */
697     int (*replay_populated)(const RamDiscardManager *rdm,
698                             MemoryRegionSection *section,
699                             ReplayRamDiscardState replay_fn, void *opaque);
700 
701     /**
702      * @replay_discarded:
703      *
704      * Call the #ReplayRamDiscardState callback for all discarded parts within
705      * the #MemoryRegionSection via the #RamDiscardManager.
706      *
707      * @rdm: the #RamDiscardManager
708      * @section: the #MemoryRegionSection
709      * @replay_fn: the #ReplayRamDiscardState callback
710      * @opaque: pointer to forward to the callback
711      *
712      * Returns 0 on success, or a negative error if any notification failed.
713      */
714     int (*replay_discarded)(const RamDiscardManager *rdm,
715                             MemoryRegionSection *section,
716                             ReplayRamDiscardState replay_fn, void *opaque);
717 
718     /**
719      * @register_listener:
720      *
721      * Register a #RamDiscardListener for the given #MemoryRegionSection and
722      * immediately notify the #RamDiscardListener about all populated parts
723      * within the #MemoryRegionSection via the #RamDiscardManager.
724      *
725      * In case any notification fails, no further notifications are triggered
726      * and an error is logged.
727      *
728      * @rdm: the #RamDiscardManager
729      * @rdl: the #RamDiscardListener
730      * @section: the #MemoryRegionSection
731      */
732     void (*register_listener)(RamDiscardManager *rdm,
733                               RamDiscardListener *rdl,
734                               MemoryRegionSection *section);
735 
736     /**
737      * @unregister_listener:
738      *
739      * Unregister a previously registered #RamDiscardListener via the
740      * #RamDiscardManager after notifying the #RamDiscardListener about all
741      * populated parts becoming unpopulated within the registered
742      * #MemoryRegionSection.
743      *
744      * @rdm: the #RamDiscardManager
745      * @rdl: the #RamDiscardListener
746      */
747     void (*unregister_listener)(RamDiscardManager *rdm,
748                                 RamDiscardListener *rdl);
749 };
750 
751 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
752                                                  const MemoryRegion *mr);
753 
754 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
755                                       const MemoryRegionSection *section);
756 
757 /**
758  * ram_discard_manager_replay_populated:
759  *
760  * A wrapper to call the #RamDiscardManagerClass.replay_populated callback
761  * of the #RamDiscardManager.
762  *
763  * @rdm: the #RamDiscardManager
764  * @section: the #MemoryRegionSection
765  * @replay_fn: the #ReplayRamDiscardState callback
766  * @opaque: pointer to forward to the callback
767  *
768  * Returns 0 on success, or a negative error if any notification failed.
769  */
770 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
771                                          MemoryRegionSection *section,
772                                          ReplayRamDiscardState replay_fn,
773                                          void *opaque);
774 
775 /**
776  * ram_discard_manager_replay_discarded:
777  *
778  * A wrapper to call the #RamDiscardManagerClass.replay_discarded callback
779  * of the #RamDiscardManager.
780  *
781  * @rdm: the #RamDiscardManager
782  * @section: the #MemoryRegionSection
783  * @replay_fn: the #ReplayRamDiscardState callback
784  * @opaque: pointer to forward to the callback
785  *
786  * Returns 0 on success, or a negative error if any notification failed.
787  */
788 int ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
789                                          MemoryRegionSection *section,
790                                          ReplayRamDiscardState replay_fn,
791                                          void *opaque);
792 
793 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
794                                            RamDiscardListener *rdl,
795                                            MemoryRegionSection *section);
796 
797 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
798                                              RamDiscardListener *rdl);
799 
800 /**
801  * memory_translate_iotlb: Extract addresses from a TLB entry.
802  *                         Called with rcu_read_lock held.
803  *
804  * @iotlb: pointer to an #IOMMUTLBEntry
805  * @xlat_p: return the offset of the entry from the start of the returned
806  *          MemoryRegion.
807  * @errp: pointer to Error*, to store an error if it happens.
808  *
809  * Return: On success, return the MemoryRegion containing the @iotlb translated
810  *         addr.  The MemoryRegion must not be accessed after rcu_read_unlock.
811  *         On failure, return NULL, setting @errp with error.
812  */
813 MemoryRegion *memory_translate_iotlb(IOMMUTLBEntry *iotlb, hwaddr *xlat_p,
814                                      Error **errp);
815 
816 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
817 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
818 
819 /** MemoryRegion:
820  *
821  * A struct representing a memory region.
822  */
823 struct MemoryRegion {
824     Object parent_obj;
825 
826     /* private: */
827 
828     /* The following fields should fit in a cache line */
829     bool romd_mode;
830     bool ram;
831     bool subpage;
832     bool readonly; /* For RAM regions */
833     bool nonvolatile;
834     bool rom_device;
835     bool flush_coalesced_mmio;
836     bool unmergeable;
837     uint8_t dirty_log_mask;
838     bool is_iommu;
839     RAMBlock *ram_block;
840     Object *owner;
841     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
842     DeviceState *dev;
843 
844     const MemoryRegionOps *ops;
845     void *opaque;
846     MemoryRegion *container;
847     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
848     Int128 size;
849     hwaddr addr;
850     void (*destructor)(MemoryRegion *mr);
851     uint64_t align;
852     bool terminates;
853     bool ram_device;
854     bool enabled;
855     uint8_t vga_logging_count;
856     MemoryRegion *alias;
857     hwaddr alias_offset;
858     int32_t priority;
859     QTAILQ_HEAD(, MemoryRegion) subregions;
860     QTAILQ_ENTRY(MemoryRegion) subregions_link;
861     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
862     const char *name;
863     unsigned ioeventfd_nb;
864     MemoryRegionIoeventfd *ioeventfds;
865     RamDiscardManager *rdm; /* Only for RAM */
866 
867     /* For devices designed to perform re-entrant IO into their own IO MRs */
868     bool disable_reentrancy_guard;
869 };
870 
871 struct IOMMUMemoryRegion {
872     MemoryRegion parent_obj;
873 
874     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
875     IOMMUNotifierFlag iommu_notify_flags;
876 };
877 
878 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
879     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
880 
881 #define MEMORY_LISTENER_PRIORITY_MIN            0
882 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
883 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
884 
885 /**
886  * struct MemoryListener: callbacks structure for updates to the physical memory map
887  *
888  * Allows a component to adjust to changes in the guest-visible memory map.
889  * Use with memory_listener_register() and memory_listener_unregister().
890  */
891 struct MemoryListener {
892     /**
893      * @begin:
894      *
895      * Called at the beginning of an address space update transaction.
896      * Followed by calls to #MemoryListener.region_add(),
897      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
898      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
899      * increasing address order.
900      *
901      * @listener: The #MemoryListener.
902      */
903     void (*begin)(MemoryListener *listener);
904 
905     /**
906      * @commit:
907      *
908      * Called at the end of an address space update transaction,
909      * after the last call to #MemoryListener.region_add(),
910      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
911      * #MemoryListener.log_start() and #MemoryListener.log_stop().
912      *
913      * @listener: The #MemoryListener.
914      */
915     void (*commit)(MemoryListener *listener);
916 
917     /**
918      * @region_add:
919      *
920      * Called during an address space update transaction,
921      * for a section of the address space that is new in this address space
922      * space since the last transaction.
923      *
924      * @listener: The #MemoryListener.
925      * @section: The new #MemoryRegionSection.
926      */
927     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
928 
929     /**
930      * @region_del:
931      *
932      * Called during an address space update transaction,
933      * for a section of the address space that has disappeared in the address
934      * space since the last transaction.
935      *
936      * @listener: The #MemoryListener.
937      * @section: The old #MemoryRegionSection.
938      */
939     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
940 
941     /**
942      * @region_nop:
943      *
944      * Called during an address space update transaction,
945      * for a section of the address space that is in the same place in the address
946      * space as in the last transaction.
947      *
948      * @listener: The #MemoryListener.
949      * @section: The #MemoryRegionSection.
950      */
951     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
952 
953     /**
954      * @log_start:
955      *
956      * Called during an address space update transaction, after
957      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
958      * #MemoryListener.region_nop(), if dirty memory logging clients have
959      * become active since the last transaction.
960      *
961      * @listener: The #MemoryListener.
962      * @section: The #MemoryRegionSection.
963      * @old: A bitmap of dirty memory logging clients that were active in
964      * the previous transaction.
965      * @new: A bitmap of dirty memory logging clients that are active in
966      * the current transaction.
967      */
968     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
969                       int old_val, int new_val);
970 
971     /**
972      * @log_stop:
973      *
974      * Called during an address space update transaction, after
975      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
976      * #MemoryListener.region_nop() and possibly after
977      * #MemoryListener.log_start(), if dirty memory logging clients have
978      * become inactive since the last transaction.
979      *
980      * @listener: The #MemoryListener.
981      * @section: The #MemoryRegionSection.
982      * @old: A bitmap of dirty memory logging clients that were active in
983      * the previous transaction.
984      * @new: A bitmap of dirty memory logging clients that are active in
985      * the current transaction.
986      */
987     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
988                      int old_val, int new_val);
989 
990     /**
991      * @log_sync:
992      *
993      * Called by memory_region_snapshot_and_clear_dirty() and
994      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
995      * copy of the dirty memory bitmap for a #MemoryRegionSection.
996      *
997      * @listener: The #MemoryListener.
998      * @section: The #MemoryRegionSection.
999      */
1000     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
1001 
1002     /**
1003      * @log_sync_global:
1004      *
1005      * This is the global version of @log_sync when the listener does
1006      * not have a way to synchronize the log with finer granularity.
1007      * When the listener registers with @log_sync_global defined, then
1008      * its @log_sync must be NULL.  Vice versa.
1009      *
1010      * @listener: The #MemoryListener.
1011      * @last_stage: The last stage to synchronize the log during migration.
1012      * The caller should guarantee that the synchronization with true for
1013      * @last_stage is triggered for once after all VCPUs have been stopped.
1014      */
1015     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
1016 
1017     /**
1018      * @log_clear:
1019      *
1020      * Called before reading the dirty memory bitmap for a
1021      * #MemoryRegionSection.
1022      *
1023      * @listener: The #MemoryListener.
1024      * @section: The #MemoryRegionSection.
1025      */
1026     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
1027 
1028     /**
1029      * @log_global_start:
1030      *
1031      * Called by memory_global_dirty_log_start(), which
1032      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
1033      * the address space.  #MemoryListener.log_global_start() is also
1034      * called when a #MemoryListener is added, if global dirty logging is
1035      * active at that time.
1036      *
1037      * @listener: The #MemoryListener.
1038      * @errp: pointer to Error*, to store an error if it happens.
1039      *
1040      * Return: true on success, else false setting @errp with error.
1041      */
1042     bool (*log_global_start)(MemoryListener *listener, Error **errp);
1043 
1044     /**
1045      * @log_global_stop:
1046      *
1047      * Called by memory_global_dirty_log_stop(), which
1048      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1049      * the address space.
1050      *
1051      * @listener: The #MemoryListener.
1052      */
1053     void (*log_global_stop)(MemoryListener *listener);
1054 
1055     /**
1056      * @log_global_after_sync:
1057      *
1058      * Called after reading the dirty memory bitmap
1059      * for any #MemoryRegionSection.
1060      *
1061      * @listener: The #MemoryListener.
1062      */
1063     void (*log_global_after_sync)(MemoryListener *listener);
1064 
1065     /**
1066      * @eventfd_add:
1067      *
1068      * Called during an address space update transaction,
1069      * for a section of the address space that has had a new ioeventfd
1070      * registration since the last transaction.
1071      *
1072      * @listener: The #MemoryListener.
1073      * @section: The new #MemoryRegionSection.
1074      * @match_data: The @match_data parameter for the new ioeventfd.
1075      * @data: The @data parameter for the new ioeventfd.
1076      * @e: The #EventNotifier parameter for the new ioeventfd.
1077      */
1078     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1079                         bool match_data, uint64_t data, EventNotifier *e);
1080 
1081     /**
1082      * @eventfd_del:
1083      *
1084      * Called during an address space update transaction,
1085      * for a section of the address space that has dropped an ioeventfd
1086      * registration since the last transaction.
1087      *
1088      * @listener: The #MemoryListener.
1089      * @section: The new #MemoryRegionSection.
1090      * @match_data: The @match_data parameter for the dropped ioeventfd.
1091      * @data: The @data parameter for the dropped ioeventfd.
1092      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1093      */
1094     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1095                         bool match_data, uint64_t data, EventNotifier *e);
1096 
1097     /**
1098      * @coalesced_io_add:
1099      *
1100      * Called during an address space update transaction,
1101      * for a section of the address space that has had a new coalesced
1102      * MMIO range registration since the last transaction.
1103      *
1104      * @listener: The #MemoryListener.
1105      * @section: The new #MemoryRegionSection.
1106      * @addr: The starting address for the coalesced MMIO range.
1107      * @len: The length of the coalesced MMIO range.
1108      */
1109     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1110                                hwaddr addr, hwaddr len);
1111 
1112     /**
1113      * @coalesced_io_del:
1114      *
1115      * Called during an address space update transaction,
1116      * for a section of the address space that has dropped a coalesced
1117      * MMIO range since the last transaction.
1118      *
1119      * @listener: The #MemoryListener.
1120      * @section: The new #MemoryRegionSection.
1121      * @addr: The starting address for the coalesced MMIO range.
1122      * @len: The length of the coalesced MMIO range.
1123      */
1124     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1125                                hwaddr addr, hwaddr len);
1126     /**
1127      * @priority:
1128      *
1129      * Govern the order in which memory listeners are invoked. Lower priorities
1130      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1131      * or "stop" callbacks.
1132      */
1133     unsigned priority;
1134 
1135     /**
1136      * @name:
1137      *
1138      * Name of the listener.  It can be used in contexts where we'd like to
1139      * identify one memory listener with the rest.
1140      */
1141     const char *name;
1142 
1143     /* private: */
1144     AddressSpace *address_space;
1145     QTAILQ_ENTRY(MemoryListener) link;
1146     QTAILQ_ENTRY(MemoryListener) link_as;
1147 };
1148 
1149 typedef struct AddressSpaceMapClient {
1150     QEMUBH *bh;
1151     QLIST_ENTRY(AddressSpaceMapClient) link;
1152 } AddressSpaceMapClient;
1153 
1154 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096)
1155 
1156 /**
1157  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1158  */
1159 struct AddressSpace {
1160     /* private: */
1161     struct rcu_head rcu;
1162     char *name;
1163     MemoryRegion *root;
1164 
1165     /* Accessed via RCU.  */
1166     struct FlatView *current_map;
1167 
1168     int ioeventfd_nb;
1169     int ioeventfd_notifiers;
1170     struct MemoryRegionIoeventfd *ioeventfds;
1171     QTAILQ_HEAD(, MemoryListener) listeners;
1172     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1173 
1174     /*
1175      * Maximum DMA bounce buffer size used for indirect memory map requests.
1176      * This limits the total size of bounce buffer allocations made for
1177      * DMA requests to indirect memory regions within this AddressSpace. DMA
1178      * requests that exceed the limit (e.g. due to overly large requested size
1179      * or concurrent DMA requests having claimed too much buffer space) will be
1180      * rejected and left to the caller to handle.
1181      */
1182     size_t max_bounce_buffer_size;
1183     /* Total size of bounce buffers currently allocated, atomically accessed */
1184     size_t bounce_buffer_size;
1185     /* List of callbacks to invoke when buffers free up */
1186     QemuMutex map_client_list_lock;
1187     QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1188 };
1189 
1190 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1191 typedef struct FlatRange FlatRange;
1192 
1193 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1194  * order.
1195  */
1196 struct FlatView {
1197     struct rcu_head rcu;
1198     unsigned ref;
1199     FlatRange *ranges;
1200     unsigned nr;
1201     unsigned nr_allocated;
1202     struct AddressSpaceDispatch *dispatch;
1203     MemoryRegion *root;
1204 };
1205 
address_space_to_flatview(AddressSpace * as)1206 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1207 {
1208     return qatomic_rcu_read(&as->current_map);
1209 }
1210 
1211 /**
1212  * typedef flatview_cb: callback for flatview_for_each_range()
1213  *
1214  * @start: start address of the range within the FlatView
1215  * @len: length of the range in bytes
1216  * @mr: MemoryRegion covering this range
1217  * @offset_in_region: offset of the first byte of the range within @mr
1218  * @opaque: data pointer passed to flatview_for_each_range()
1219  *
1220  * Returns: true to stop the iteration, false to keep going.
1221  */
1222 typedef bool (*flatview_cb)(Int128 start,
1223                             Int128 len,
1224                             const MemoryRegion *mr,
1225                             hwaddr offset_in_region,
1226                             void *opaque);
1227 
1228 /**
1229  * flatview_for_each_range: Iterate through a FlatView
1230  * @fv: the FlatView to iterate through
1231  * @cb: function to call for each range
1232  * @opaque: opaque data pointer to pass to @cb
1233  *
1234  * A FlatView is made up of a list of non-overlapping ranges, each of
1235  * which is a slice of a MemoryRegion. This function iterates through
1236  * each range in @fv, calling @cb. The callback function can terminate
1237  * iteration early by returning 'true'.
1238  */
1239 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1240 
MemoryRegionSection_eq(MemoryRegionSection * a,MemoryRegionSection * b)1241 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1242                                           MemoryRegionSection *b)
1243 {
1244     return a->mr == b->mr &&
1245            a->fv == b->fv &&
1246            a->offset_within_region == b->offset_within_region &&
1247            a->offset_within_address_space == b->offset_within_address_space &&
1248            int128_eq(a->size, b->size) &&
1249            a->readonly == b->readonly &&
1250            a->nonvolatile == b->nonvolatile;
1251 }
1252 
1253 /**
1254  * memory_region_section_new_copy: Copy a memory region section
1255  *
1256  * Allocate memory for a new copy, copy the memory region section, and
1257  * properly take a reference on all relevant members.
1258  *
1259  * @s: the #MemoryRegionSection to copy
1260  */
1261 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1262 
1263 /**
1264  * memory_region_section_free_copy: Free a copied memory region section
1265  *
1266  * Free a copy of a memory section created via memory_region_section_new_copy().
1267  * properly dropping references on all relevant members.
1268  *
1269  * @s: the #MemoryRegionSection to copy
1270  */
1271 void memory_region_section_free_copy(MemoryRegionSection *s);
1272 
1273 /**
1274  * memory_region_section_intersect_range: Adjust the memory section to cover
1275  * the intersection with the given range.
1276  *
1277  * @s: the #MemoryRegionSection to be adjusted
1278  * @offset: the offset of the given range in the memory region
1279  * @size: the size of the given range
1280  *
1281  * Returns false if the intersection is empty, otherwise returns true.
1282  */
memory_region_section_intersect_range(MemoryRegionSection * s,uint64_t offset,uint64_t size)1283 static inline bool memory_region_section_intersect_range(MemoryRegionSection *s,
1284                                                          uint64_t offset,
1285                                                          uint64_t size)
1286 {
1287     uint64_t start = MAX(s->offset_within_region, offset);
1288     Int128 end = int128_min(int128_add(int128_make64(s->offset_within_region),
1289                                        s->size),
1290                             int128_add(int128_make64(offset),
1291                                        int128_make64(size)));
1292 
1293     if (int128_le(end, int128_make64(start))) {
1294         return false;
1295     }
1296 
1297     s->offset_within_address_space += start - s->offset_within_region;
1298     s->offset_within_region = start;
1299     s->size = int128_sub(end, int128_make64(start));
1300     return true;
1301 }
1302 
1303 /**
1304  * memory_region_init: Initialize a memory region
1305  *
1306  * The region typically acts as a container for other memory regions.  Use
1307  * memory_region_add_subregion() to add subregions.
1308  *
1309  * @mr: the #MemoryRegion to be initialized
1310  * @owner: the object that tracks the region's reference count
1311  * @name: used for debugging; not visible to the user or ABI
1312  * @size: size of the region; any subregions beyond this size will be clipped
1313  */
1314 void memory_region_init(MemoryRegion *mr,
1315                         Object *owner,
1316                         const char *name,
1317                         uint64_t size);
1318 
1319 /**
1320  * memory_region_ref: Add 1 to a memory region's reference count
1321  *
1322  * Whenever memory regions are accessed outside the BQL, they need to be
1323  * preserved against hot-unplug.  MemoryRegions actually do not have their
1324  * own reference count; they piggyback on a QOM object, their "owner".
1325  * This function adds a reference to the owner.
1326  *
1327  * All MemoryRegions must have an owner if they can disappear, even if the
1328  * device they belong to operates exclusively under the BQL.  This is because
1329  * the region could be returned at any time by memory_region_find, and this
1330  * is usually under guest control.
1331  *
1332  * @mr: the #MemoryRegion
1333  */
1334 void memory_region_ref(MemoryRegion *mr);
1335 
1336 /**
1337  * memory_region_unref: Remove 1 to a memory region's reference count
1338  *
1339  * Whenever memory regions are accessed outside the BQL, they need to be
1340  * preserved against hot-unplug.  MemoryRegions actually do not have their
1341  * own reference count; they piggyback on a QOM object, their "owner".
1342  * This function removes a reference to the owner and possibly destroys it.
1343  *
1344  * @mr: the #MemoryRegion
1345  */
1346 void memory_region_unref(MemoryRegion *mr);
1347 
1348 /**
1349  * memory_region_init_io: Initialize an I/O memory region.
1350  *
1351  * Accesses into the region will cause the callbacks in @ops to be called.
1352  * if @size is nonzero, subregions will be clipped to @size.
1353  *
1354  * @mr: the #MemoryRegion to be initialized.
1355  * @owner: the object that tracks the region's reference count
1356  * @ops: a structure containing read and write callbacks to be used when
1357  *       I/O is performed on the region.
1358  * @opaque: passed to the read and write callbacks of the @ops structure.
1359  * @name: used for debugging; not visible to the user or ABI
1360  * @size: size of the region.
1361  */
1362 void memory_region_init_io(MemoryRegion *mr,
1363                            Object *owner,
1364                            const MemoryRegionOps *ops,
1365                            void *opaque,
1366                            const char *name,
1367                            uint64_t size);
1368 
1369 /**
1370  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1371  *                                    into the region will modify memory
1372  *                                    directly.
1373  *
1374  * @mr: the #MemoryRegion to be initialized.
1375  * @owner: the object that tracks the region's reference count
1376  * @name: Region name, becomes part of RAMBlock name used in migration stream
1377  *        must be unique within any device
1378  * @size: size of the region.
1379  * @errp: pointer to Error*, to store an error if it happens.
1380  *
1381  * Note that this function does not do anything to cause the data in the
1382  * RAM memory region to be migrated; that is the responsibility of the caller.
1383  *
1384  * Return: true on success, else false setting @errp with error.
1385  */
1386 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1387                                       Object *owner,
1388                                       const char *name,
1389                                       uint64_t size,
1390                                       Error **errp);
1391 
1392 /**
1393  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1394  *                                          Accesses into the region will
1395  *                                          modify memory directly.
1396  *
1397  * @mr: the #MemoryRegion to be initialized.
1398  * @owner: the object that tracks the region's reference count
1399  * @name: Region name, becomes part of RAMBlock name used in migration stream
1400  *        must be unique within any device
1401  * @size: size of the region.
1402  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1403  *             RAM_GUEST_MEMFD.
1404  * @errp: pointer to Error*, to store an error if it happens.
1405  *
1406  * Note that this function does not do anything to cause the data in the
1407  * RAM memory region to be migrated; that is the responsibility of the caller.
1408  *
1409  * Return: true on success, else false setting @errp with error.
1410  */
1411 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1412                                             Object *owner,
1413                                             const char *name,
1414                                             uint64_t size,
1415                                             uint32_t ram_flags,
1416                                             Error **errp);
1417 
1418 /**
1419  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1420  *                                     RAM.  Accesses into the region will
1421  *                                     modify memory directly.  Only an initial
1422  *                                     portion of this RAM is actually used.
1423  *                                     Changing the size while migrating
1424  *                                     can result in the migration being
1425  *                                     canceled.
1426  *
1427  * @mr: the #MemoryRegion to be initialized.
1428  * @owner: the object that tracks the region's reference count
1429  * @name: Region name, becomes part of RAMBlock name used in migration stream
1430  *        must be unique within any device
1431  * @size: used size of the region.
1432  * @max_size: max size of the region.
1433  * @resized: callback to notify owner about used size change.
1434  * @errp: pointer to Error*, to store an error if it happens.
1435  *
1436  * Note that this function does not do anything to cause the data in the
1437  * RAM memory region to be migrated; that is the responsibility of the caller.
1438  *
1439  * Return: true on success, else false setting @errp with error.
1440  */
1441 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1442                                        Object *owner,
1443                                        const char *name,
1444                                        uint64_t size,
1445                                        uint64_t max_size,
1446                                        void (*resized)(const char*,
1447                                                        uint64_t length,
1448                                                        void *host),
1449                                        Error **errp);
1450 #ifdef CONFIG_POSIX
1451 
1452 /**
1453  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1454  *                                    mmap-ed backend.
1455  *
1456  * @mr: the #MemoryRegion to be initialized.
1457  * @owner: the object that tracks the region's reference count
1458  * @name: Region name, becomes part of RAMBlock name used in migration stream
1459  *        must be unique within any device
1460  * @size: size of the region.
1461  * @align: alignment of the region base address; if 0, the default alignment
1462  *         (getpagesize()) will be used.
1463  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1464  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1465  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1466  * @path: the path in which to allocate the RAM.
1467  * @offset: offset within the file referenced by path
1468  * @errp: pointer to Error*, to store an error if it happens.
1469  *
1470  * Note that this function does not do anything to cause the data in the
1471  * RAM memory region to be migrated; that is the responsibility of the caller.
1472  *
1473  * Return: true on success, else false setting @errp with error.
1474  */
1475 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1476                                       Object *owner,
1477                                       const char *name,
1478                                       uint64_t size,
1479                                       uint64_t align,
1480                                       uint32_t ram_flags,
1481                                       const char *path,
1482                                       ram_addr_t offset,
1483                                       Error **errp);
1484 
1485 /**
1486  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1487  *                                  mmap-ed backend.
1488  *
1489  * @mr: the #MemoryRegion to be initialized.
1490  * @owner: the object that tracks the region's reference count
1491  * @name: the name of the region.
1492  * @size: size of the region.
1493  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1494  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1495  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1496  * @fd: the fd to mmap.
1497  * @offset: offset within the file referenced by fd
1498  * @errp: pointer to Error*, to store an error if it happens.
1499  *
1500  * Note that this function does not do anything to cause the data in the
1501  * RAM memory region to be migrated; that is the responsibility of the caller.
1502  *
1503  * Return: true on success, else false setting @errp with error.
1504  */
1505 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1506                                     Object *owner,
1507                                     const char *name,
1508                                     uint64_t size,
1509                                     uint32_t ram_flags,
1510                                     int fd,
1511                                     ram_addr_t offset,
1512                                     Error **errp);
1513 #endif
1514 
1515 /**
1516  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1517  *                              user-provided pointer.  Accesses into the
1518  *                              region will modify memory directly.
1519  *
1520  * @mr: the #MemoryRegion to be initialized.
1521  * @owner: the object that tracks the region's reference count
1522  * @name: Region name, becomes part of RAMBlock name used in migration stream
1523  *        must be unique within any device
1524  * @size: size of the region.
1525  * @ptr: memory to be mapped; must contain at least @size bytes.
1526  *
1527  * Note that this function does not do anything to cause the data in the
1528  * RAM memory region to be migrated; that is the responsibility of the caller.
1529  */
1530 void memory_region_init_ram_ptr(MemoryRegion *mr,
1531                                 Object *owner,
1532                                 const char *name,
1533                                 uint64_t size,
1534                                 void *ptr);
1535 
1536 /**
1537  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1538  *                                     a user-provided pointer.
1539  *
1540  * A RAM device represents a mapping to a physical device, such as to a PCI
1541  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1542  * into the VM address space and access to the region will modify memory
1543  * directly.  However, the memory region should not be included in a memory
1544  * dump (device may not be enabled/mapped at the time of the dump), and
1545  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1546  * skip_dump flag.
1547  *
1548  * @mr: the #MemoryRegion to be initialized.
1549  * @owner: the object that tracks the region's reference count
1550  * @name: the name of the region.
1551  * @size: size of the region.
1552  * @ptr: memory to be mapped; must contain at least @size bytes.
1553  *
1554  * Note that this function does not do anything to cause the data in the
1555  * RAM memory region to be migrated; that is the responsibility of the caller.
1556  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1557  */
1558 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1559                                        Object *owner,
1560                                        const char *name,
1561                                        uint64_t size,
1562                                        void *ptr);
1563 
1564 /**
1565  * memory_region_init_alias: Initialize a memory region that aliases all or a
1566  *                           part of another memory region.
1567  *
1568  * @mr: the #MemoryRegion to be initialized.
1569  * @owner: the object that tracks the region's reference count
1570  * @name: used for debugging; not visible to the user or ABI
1571  * @orig: the region to be referenced; @mr will be equivalent to
1572  *        @orig between @offset and @offset + @size - 1.
1573  * @offset: start of the section in @orig to be referenced.
1574  * @size: size of the region.
1575  */
1576 void memory_region_init_alias(MemoryRegion *mr,
1577                               Object *owner,
1578                               const char *name,
1579                               MemoryRegion *orig,
1580                               hwaddr offset,
1581                               uint64_t size);
1582 
1583 /**
1584  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1585  *
1586  * This has the same effect as calling memory_region_init_ram_nomigrate()
1587  * and then marking the resulting region read-only with
1588  * memory_region_set_readonly().
1589  *
1590  * Note that this function does not do anything to cause the data in the
1591  * RAM side of the memory region to be migrated; that is the responsibility
1592  * of the caller.
1593  *
1594  * @mr: the #MemoryRegion to be initialized.
1595  * @owner: the object that tracks the region's reference count
1596  * @name: Region name, becomes part of RAMBlock name used in migration stream
1597  *        must be unique within any device
1598  * @size: size of the region.
1599  * @errp: pointer to Error*, to store an error if it happens.
1600  *
1601  * Return: true on success, else false setting @errp with error.
1602  */
1603 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1604                                       Object *owner,
1605                                       const char *name,
1606                                       uint64_t size,
1607                                       Error **errp);
1608 
1609 /**
1610  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1611  *                                 Writes are handled via callbacks.
1612  *
1613  * Note that this function does not do anything to cause the data in the
1614  * RAM side of the memory region to be migrated; that is the responsibility
1615  * of the caller.
1616  *
1617  * @mr: the #MemoryRegion to be initialized.
1618  * @owner: the object that tracks the region's reference count
1619  * @ops: callbacks for write access handling (must not be NULL).
1620  * @opaque: passed to the read and write callbacks of the @ops structure.
1621  * @name: Region name, becomes part of RAMBlock name used in migration stream
1622  *        must be unique within any device
1623  * @size: size of the region.
1624  * @errp: pointer to Error*, to store an error if it happens.
1625  *
1626  * Return: true on success, else false setting @errp with error.
1627  */
1628 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1629                                              Object *owner,
1630                                              const MemoryRegionOps *ops,
1631                                              void *opaque,
1632                                              const char *name,
1633                                              uint64_t size,
1634                                              Error **errp);
1635 
1636 /**
1637  * memory_region_init_iommu: Initialize a memory region of a custom type
1638  * that translates addresses
1639  *
1640  * An IOMMU region translates addresses and forwards accesses to a target
1641  * memory region.
1642  *
1643  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1644  * @_iommu_mr should be a pointer to enough memory for an instance of
1645  * that subclass, @instance_size is the size of that subclass, and
1646  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1647  * instance of the subclass, and its methods will then be called to handle
1648  * accesses to the memory region. See the documentation of
1649  * #IOMMUMemoryRegionClass for further details.
1650  *
1651  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1652  * @instance_size: the IOMMUMemoryRegion subclass instance size
1653  * @mrtypename: the type name of the #IOMMUMemoryRegion
1654  * @owner: the object that tracks the region's reference count
1655  * @name: used for debugging; not visible to the user or ABI
1656  * @size: size of the region.
1657  */
1658 void memory_region_init_iommu(void *_iommu_mr,
1659                               size_t instance_size,
1660                               const char *mrtypename,
1661                               Object *owner,
1662                               const char *name,
1663                               uint64_t size);
1664 
1665 /**
1666  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1667  *                          region will modify memory directly.
1668  *
1669  * @mr: the #MemoryRegion to be initialized
1670  * @owner: the object that tracks the region's reference count (must be
1671  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1672  * @name: name of the memory region
1673  * @size: size of the region in bytes
1674  * @errp: pointer to Error*, to store an error if it happens.
1675  *
1676  * This function allocates RAM for a board model or device, and
1677  * arranges for it to be migrated (by calling vmstate_register_ram()
1678  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1679  * @owner is NULL).
1680  *
1681  * TODO: Currently we restrict @owner to being either NULL (for
1682  * global RAM regions with no owner) or devices, so that we can
1683  * give the RAM block a unique name for migration purposes.
1684  * We should lift this restriction and allow arbitrary Objects.
1685  * If you pass a non-NULL non-device @owner then we will assert.
1686  *
1687  * Return: true on success, else false setting @errp with error.
1688  */
1689 bool memory_region_init_ram(MemoryRegion *mr,
1690                             Object *owner,
1691                             const char *name,
1692                             uint64_t size,
1693                             Error **errp);
1694 
1695 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
1696                                         Object *owner,
1697                                         const char *name,
1698                                         uint64_t size,
1699                                         Error **errp);
1700 
1701 /**
1702  * memory_region_init_rom: Initialize a ROM memory region.
1703  *
1704  * This has the same effect as calling memory_region_init_ram()
1705  * and then marking the resulting region read-only with
1706  * memory_region_set_readonly(). This includes arranging for the
1707  * contents to be migrated.
1708  *
1709  * TODO: Currently we restrict @owner to being either NULL (for
1710  * global RAM regions with no owner) or devices, so that we can
1711  * give the RAM block a unique name for migration purposes.
1712  * We should lift this restriction and allow arbitrary Objects.
1713  * If you pass a non-NULL non-device @owner then we will assert.
1714  *
1715  * @mr: the #MemoryRegion to be initialized.
1716  * @owner: the object that tracks the region's reference count
1717  * @name: Region name, becomes part of RAMBlock name used in migration stream
1718  *        must be unique within any device
1719  * @size: size of the region.
1720  * @errp: pointer to Error*, to store an error if it happens.
1721  *
1722  * Return: true on success, else false setting @errp with error.
1723  */
1724 bool memory_region_init_rom(MemoryRegion *mr,
1725                             Object *owner,
1726                             const char *name,
1727                             uint64_t size,
1728                             Error **errp);
1729 
1730 /**
1731  * memory_region_init_rom_device:  Initialize a ROM memory region.
1732  *                                 Writes are handled via callbacks.
1733  *
1734  * This function initializes a memory region backed by RAM for reads
1735  * and callbacks for writes, and arranges for the RAM backing to
1736  * be migrated (by calling vmstate_register_ram()
1737  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1738  * @owner is NULL).
1739  *
1740  * TODO: Currently we restrict @owner to being either NULL (for
1741  * global RAM regions with no owner) or devices, so that we can
1742  * give the RAM block a unique name for migration purposes.
1743  * We should lift this restriction and allow arbitrary Objects.
1744  * If you pass a non-NULL non-device @owner then we will assert.
1745  *
1746  * @mr: the #MemoryRegion to be initialized.
1747  * @owner: the object that tracks the region's reference count
1748  * @ops: callbacks for write access handling (must not be NULL).
1749  * @opaque: passed to the read and write callbacks of the @ops structure.
1750  * @name: Region name, becomes part of RAMBlock name used in migration stream
1751  *        must be unique within any device
1752  * @size: size of the region.
1753  * @errp: pointer to Error*, to store an error if it happens.
1754  *
1755  * Return: true on success, else false setting @errp with error.
1756  */
1757 bool memory_region_init_rom_device(MemoryRegion *mr,
1758                                    Object *owner,
1759                                    const MemoryRegionOps *ops,
1760                                    void *opaque,
1761                                    const char *name,
1762                                    uint64_t size,
1763                                    Error **errp);
1764 
1765 
1766 /**
1767  * memory_region_owner: get a memory region's owner.
1768  *
1769  * @mr: the memory region being queried.
1770  */
1771 Object *memory_region_owner(MemoryRegion *mr);
1772 
1773 /**
1774  * memory_region_size: get a memory region's size.
1775  *
1776  * @mr: the memory region being queried.
1777  */
1778 uint64_t memory_region_size(MemoryRegion *mr);
1779 
1780 /**
1781  * memory_region_is_ram: check whether a memory region is random access
1782  *
1783  * Returns %true if a memory region is random access.
1784  *
1785  * @mr: the memory region being queried
1786  */
memory_region_is_ram(MemoryRegion * mr)1787 static inline bool memory_region_is_ram(MemoryRegion *mr)
1788 {
1789     return mr->ram;
1790 }
1791 
1792 /**
1793  * memory_region_is_ram_device: check whether a memory region is a ram device
1794  *
1795  * Returns %true if a memory region is a device backed ram region
1796  *
1797  * @mr: the memory region being queried
1798  */
1799 bool memory_region_is_ram_device(MemoryRegion *mr);
1800 
1801 /**
1802  * memory_region_is_romd: check whether a memory region is in ROMD mode
1803  *
1804  * Returns %true if a memory region is a ROM device and currently set to allow
1805  * direct reads.
1806  *
1807  * @mr: the memory region being queried
1808  */
memory_region_is_romd(MemoryRegion * mr)1809 static inline bool memory_region_is_romd(MemoryRegion *mr)
1810 {
1811     return mr->rom_device && mr->romd_mode;
1812 }
1813 
1814 /**
1815  * memory_region_is_protected: check whether a memory region is protected
1816  *
1817  * Returns %true if a memory region is protected RAM and cannot be accessed
1818  * via standard mechanisms, e.g. DMA.
1819  *
1820  * @mr: the memory region being queried
1821  */
1822 bool memory_region_is_protected(MemoryRegion *mr);
1823 
1824 /**
1825  * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1826  *     associated
1827  *
1828  * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1829  *
1830  * @mr: the memory region being queried
1831  */
1832 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1833 
1834 /**
1835  * memory_region_get_iommu: check whether a memory region is an iommu
1836  *
1837  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1838  * otherwise NULL.
1839  *
1840  * @mr: the memory region being queried
1841  */
memory_region_get_iommu(MemoryRegion * mr)1842 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1843 {
1844     if (mr->alias) {
1845         return memory_region_get_iommu(mr->alias);
1846     }
1847     if (mr->is_iommu) {
1848         return (IOMMUMemoryRegion *) mr;
1849     }
1850     return NULL;
1851 }
1852 
1853 /**
1854  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1855  *   if an iommu or NULL if not
1856  *
1857  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1858  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1859  *
1860  * @iommu_mr: the memory region being queried
1861  */
memory_region_get_iommu_class_nocheck(IOMMUMemoryRegion * iommu_mr)1862 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1863         IOMMUMemoryRegion *iommu_mr)
1864 {
1865     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1866 }
1867 
1868 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1869 
1870 /**
1871  * memory_region_iommu_get_min_page_size: get minimum supported page size
1872  * for an iommu
1873  *
1874  * Returns minimum supported page size for an iommu.
1875  *
1876  * @iommu_mr: the memory region being queried
1877  */
1878 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1879 
1880 /**
1881  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1882  *
1883  * Note: for any IOMMU implementation, an in-place mapping change
1884  * should be notified with an UNMAP followed by a MAP.
1885  *
1886  * @iommu_mr: the memory region that was changed
1887  * @iommu_idx: the IOMMU index for the translation table which has changed
1888  * @event: TLB event with the new entry in the IOMMU translation table.
1889  *         The entry replaces all old entries for the same virtual I/O address
1890  *         range.
1891  */
1892 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1893                                 int iommu_idx,
1894                                 const IOMMUTLBEvent event);
1895 
1896 /**
1897  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1898  *                           entry to a single notifier
1899  *
1900  * This works just like memory_region_notify_iommu(), but it only
1901  * notifies a specific notifier, not all of them.
1902  *
1903  * @notifier: the notifier to be notified
1904  * @event: TLB event with the new entry in the IOMMU translation table.
1905  *         The entry replaces all old entries for the same virtual I/O address
1906  *         range.
1907  */
1908 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1909                                     const IOMMUTLBEvent *event);
1910 
1911 /**
1912  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1913  *                                           translation that covers the
1914  *                                           range of a notifier
1915  *
1916  * @notifier: the notifier to be notified
1917  */
1918 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1919 
1920 
1921 /**
1922  * memory_region_register_iommu_notifier: register a notifier for changes to
1923  * IOMMU translation entries.
1924  *
1925  * Returns 0 on success, or a negative errno otherwise. In particular,
1926  * -EINVAL indicates that at least one of the attributes of the notifier
1927  * is not supported (flag/range) by the IOMMU memory region. In case of error
1928  * the error object must be created.
1929  *
1930  * @mr: the memory region to observe
1931  * @n: the IOMMUNotifier to be added; the notify callback receives a
1932  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1933  *     ceases to be valid on exit from the notifier.
1934  * @errp: pointer to Error*, to store an error if it happens.
1935  */
1936 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1937                                           IOMMUNotifier *n, Error **errp);
1938 
1939 /**
1940  * memory_region_iommu_replay: replay existing IOMMU translations to
1941  * a notifier with the minimum page granularity returned by
1942  * mr->iommu_ops->get_page_size().
1943  *
1944  * Note: this is not related to record-and-replay functionality.
1945  *
1946  * @iommu_mr: the memory region to observe
1947  * @n: the notifier to which to replay iommu mappings
1948  */
1949 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1950 
1951 /**
1952  * memory_region_unregister_iommu_notifier: unregister a notifier for
1953  * changes to IOMMU translation entries.
1954  *
1955  * @mr: the memory region which was observed and for which notify_stopped()
1956  *      needs to be called
1957  * @n: the notifier to be removed.
1958  */
1959 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1960                                              IOMMUNotifier *n);
1961 
1962 /**
1963  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1964  * defined on the IOMMU.
1965  *
1966  * Returns 0 on success, or a negative errno otherwise. In particular,
1967  * -EINVAL indicates that the IOMMU does not support the requested
1968  * attribute.
1969  *
1970  * @iommu_mr: the memory region
1971  * @attr: the requested attribute
1972  * @data: a pointer to the requested attribute data
1973  */
1974 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1975                                  enum IOMMUMemoryRegionAttr attr,
1976                                  void *data);
1977 
1978 /**
1979  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1980  * use for translations with the given memory transaction attributes.
1981  *
1982  * @iommu_mr: the memory region
1983  * @attrs: the memory transaction attributes
1984  */
1985 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1986                                        MemTxAttrs attrs);
1987 
1988 /**
1989  * memory_region_iommu_num_indexes: return the total number of IOMMU
1990  * indexes that this IOMMU supports.
1991  *
1992  * @iommu_mr: the memory region
1993  */
1994 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1995 
1996 /**
1997  * memory_region_name: get a memory region's name
1998  *
1999  * Returns the string that was used to initialize the memory region.
2000  *
2001  * @mr: the memory region being queried
2002  */
2003 const char *memory_region_name(const MemoryRegion *mr);
2004 
2005 /**
2006  * memory_region_is_logging: return whether a memory region is logging writes
2007  *
2008  * Returns %true if the memory region is logging writes for the given client
2009  *
2010  * @mr: the memory region being queried
2011  * @client: the client being queried
2012  */
2013 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
2014 
2015 /**
2016  * memory_region_get_dirty_log_mask: return the clients for which a
2017  * memory region is logging writes.
2018  *
2019  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
2020  * are the bit indices.
2021  *
2022  * @mr: the memory region being queried
2023  */
2024 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
2025 
2026 /**
2027  * memory_region_is_rom: check whether a memory region is ROM
2028  *
2029  * Returns %true if a memory region is read-only memory.
2030  *
2031  * @mr: the memory region being queried
2032  */
memory_region_is_rom(MemoryRegion * mr)2033 static inline bool memory_region_is_rom(MemoryRegion *mr)
2034 {
2035     return mr->ram && mr->readonly;
2036 }
2037 
2038 /**
2039  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
2040  *
2041  * Returns %true is a memory region is non-volatile memory.
2042  *
2043  * @mr: the memory region being queried
2044  */
memory_region_is_nonvolatile(MemoryRegion * mr)2045 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
2046 {
2047     return mr->nonvolatile;
2048 }
2049 
2050 /**
2051  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
2052  *
2053  * Returns a file descriptor backing a file-based RAM memory region,
2054  * or -1 if the region is not a file-based RAM memory region.
2055  *
2056  * @mr: the RAM or alias memory region being queried.
2057  */
2058 int memory_region_get_fd(MemoryRegion *mr);
2059 
2060 /**
2061  * memory_region_from_host: Convert a pointer into a RAM memory region
2062  * and an offset within it.
2063  *
2064  * Given a host pointer inside a RAM memory region (created with
2065  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
2066  * the MemoryRegion and the offset within it.
2067  *
2068  * Use with care; by the time this function returns, the returned pointer is
2069  * not protected by RCU anymore.  If the caller is not within an RCU critical
2070  * section and does not hold the BQL, it must have other means of
2071  * protecting the pointer, such as a reference to the region that includes
2072  * the incoming ram_addr_t.
2073  *
2074  * @ptr: the host pointer to be converted
2075  * @offset: the offset within memory region
2076  */
2077 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
2078 
2079 /**
2080  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
2081  *
2082  * Returns a host pointer to a RAM memory region (created with
2083  * memory_region_init_ram() or memory_region_init_ram_ptr()).
2084  *
2085  * Use with care; by the time this function returns, the returned pointer is
2086  * not protected by RCU anymore.  If the caller is not within an RCU critical
2087  * section and does not hold the BQL, it must have other means of
2088  * protecting the pointer, such as a reference to the region that includes
2089  * the incoming ram_addr_t.
2090  *
2091  * @mr: the memory region being queried.
2092  */
2093 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2094 
2095 /* memory_region_ram_resize: Resize a RAM region.
2096  *
2097  * Resizing RAM while migrating can result in the migration being canceled.
2098  * Care has to be taken if the guest might have already detected the memory.
2099  *
2100  * @mr: a memory region created with @memory_region_init_resizeable_ram.
2101  * @newsize: the new size the region
2102  * @errp: pointer to Error*, to store an error if it happens.
2103  */
2104 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2105                               Error **errp);
2106 
2107 /**
2108  * memory_region_msync: Synchronize selected address range of
2109  * a memory mapped region
2110  *
2111  * @mr: the memory region to be msync
2112  * @addr: the initial address of the range to be sync
2113  * @size: the size of the range to be sync
2114  */
2115 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2116 
2117 /**
2118  * memory_region_writeback: Trigger cache writeback for
2119  * selected address range
2120  *
2121  * @mr: the memory region to be updated
2122  * @addr: the initial address of the range to be written back
2123  * @size: the size of the range to be written back
2124  */
2125 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2126 
2127 /**
2128  * memory_region_set_log: Turn dirty logging on or off for a region.
2129  *
2130  * Turns dirty logging on or off for a specified client (display, migration).
2131  * Only meaningful for RAM regions.
2132  *
2133  * @mr: the memory region being updated.
2134  * @log: whether dirty logging is to be enabled or disabled.
2135  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2136  */
2137 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2138 
2139 /**
2140  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2141  *
2142  * Marks a range of bytes as dirty, after it has been dirtied outside
2143  * guest code.
2144  *
2145  * @mr: the memory region being dirtied.
2146  * @addr: the address (relative to the start of the region) being dirtied.
2147  * @size: size of the range being dirtied.
2148  */
2149 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2150                              hwaddr size);
2151 
2152 /**
2153  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2154  *
2155  * This function is called when the caller wants to clear the remote
2156  * dirty bitmap of a memory range within the memory region.  This can
2157  * be used by e.g. KVM to manually clear dirty log when
2158  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2159  * kernel.
2160  *
2161  * @mr:     the memory region to clear the dirty log upon
2162  * @start:  start address offset within the memory region
2163  * @len:    length of the memory region to clear dirty bitmap
2164  */
2165 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2166                                       hwaddr len);
2167 
2168 /**
2169  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2170  *                                         bitmap and clear it.
2171  *
2172  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2173  * returns the snapshot.  The snapshot can then be used to query dirty
2174  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2175  * querying the same page multiple times, which is especially useful for
2176  * display updates where the scanlines often are not page aligned.
2177  *
2178  * The dirty bitmap region which gets copied into the snapshot (and
2179  * cleared afterwards) can be larger than requested.  The boundaries
2180  * are rounded up/down so complete bitmap longs (covering 64 pages on
2181  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2182  * isn't a problem for display updates as the extra pages are outside
2183  * the visible area, and in case the visible area changes a full
2184  * display redraw is due anyway.  Should other use cases for this
2185  * function emerge we might have to revisit this implementation
2186  * detail.
2187  *
2188  * Use g_free to release DirtyBitmapSnapshot.
2189  *
2190  * @mr: the memory region being queried.
2191  * @addr: the address (relative to the start of the region) being queried.
2192  * @size: the size of the range being queried.
2193  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2194  */
2195 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2196                                                             hwaddr addr,
2197                                                             hwaddr size,
2198                                                             unsigned client);
2199 
2200 /**
2201  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2202  *                                   in the specified dirty bitmap snapshot.
2203  *
2204  * @mr: the memory region being queried.
2205  * @snap: the dirty bitmap snapshot
2206  * @addr: the address (relative to the start of the region) being queried.
2207  * @size: the size of the range being queried.
2208  */
2209 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2210                                       DirtyBitmapSnapshot *snap,
2211                                       hwaddr addr, hwaddr size);
2212 
2213 /**
2214  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2215  *                            client.
2216  *
2217  * Marks a range of pages as no longer dirty.
2218  *
2219  * @mr: the region being updated.
2220  * @addr: the start of the subrange being cleaned.
2221  * @size: the size of the subrange being cleaned.
2222  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2223  *          %DIRTY_MEMORY_VGA.
2224  */
2225 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2226                                hwaddr size, unsigned client);
2227 
2228 /**
2229  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2230  *                                 TBs (for self-modifying code).
2231  *
2232  * The MemoryRegionOps->write() callback of a ROM device must use this function
2233  * to mark byte ranges that have been modified internally, such as by directly
2234  * accessing the memory returned by memory_region_get_ram_ptr().
2235  *
2236  * This function marks the range dirty and invalidates TBs so that TCG can
2237  * detect self-modifying code.
2238  *
2239  * @mr: the region being flushed.
2240  * @addr: the start, relative to the start of the region, of the range being
2241  *        flushed.
2242  * @size: the size, in bytes, of the range being flushed.
2243  */
2244 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2245 
2246 /**
2247  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2248  *
2249  * Allows a memory region to be marked as read-only (turning it into a ROM).
2250  * only useful on RAM regions.
2251  *
2252  * @mr: the region being updated.
2253  * @readonly: whether the region is to be ROM or RAM.
2254  */
2255 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2256 
2257 /**
2258  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2259  *
2260  * Allows a memory region to be marked as non-volatile.
2261  * only useful on RAM regions.
2262  *
2263  * @mr: the region being updated.
2264  * @nonvolatile: whether the region is to be non-volatile.
2265  */
2266 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2267 
2268 /**
2269  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2270  *
2271  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2272  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2273  * device is mapped to guest memory and satisfies read access directly.
2274  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2275  * Writes are always handled by the #MemoryRegion.write function.
2276  *
2277  * @mr: the memory region to be updated
2278  * @romd_mode: %true to put the region into ROMD mode
2279  */
2280 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2281 
2282 /**
2283  * memory_region_set_coalescing: Enable memory coalescing for the region.
2284  *
2285  * Enabled writes to a region to be queued for later processing. MMIO ->write
2286  * callbacks may be delayed until a non-coalesced MMIO is issued.
2287  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2288  *
2289  * @mr: the memory region to be write coalesced
2290  */
2291 void memory_region_set_coalescing(MemoryRegion *mr);
2292 
2293 /**
2294  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2295  *                               a region.
2296  *
2297  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2298  * Multiple calls can be issued coalesced disjoint ranges.
2299  *
2300  * @mr: the memory region to be updated.
2301  * @offset: the start of the range within the region to be coalesced.
2302  * @size: the size of the subrange to be coalesced.
2303  */
2304 void memory_region_add_coalescing(MemoryRegion *mr,
2305                                   hwaddr offset,
2306                                   uint64_t size);
2307 
2308 /**
2309  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2310  *
2311  * Disables any coalescing caused by memory_region_set_coalescing() or
2312  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2313  * hardware.
2314  *
2315  * @mr: the memory region to be updated.
2316  */
2317 void memory_region_clear_coalescing(MemoryRegion *mr);
2318 
2319 /**
2320  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2321  *                                    accesses.
2322  *
2323  * Ensure that pending coalesced MMIO request are flushed before the memory
2324  * region is accessed. This property is automatically enabled for all regions
2325  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2326  *
2327  * @mr: the memory region to be updated.
2328  */
2329 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2330 
2331 /**
2332  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2333  *                                      accesses.
2334  *
2335  * Clear the automatic coalesced MMIO flushing enabled via
2336  * memory_region_set_flush_coalesced. Note that this service has no effect on
2337  * memory regions that have MMIO coalescing enabled for themselves. For them,
2338  * automatic flushing will stop once coalescing is disabled.
2339  *
2340  * @mr: the memory region to be updated.
2341  */
2342 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2343 
2344 /**
2345  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2346  *                            is written to a location.
2347  *
2348  * Marks a word in an IO region (initialized with memory_region_init_io())
2349  * as a trigger for an eventfd event.  The I/O callback will not be called.
2350  * The caller must be prepared to handle failure (that is, take the required
2351  * action if the callback _is_ called).
2352  *
2353  * @mr: the memory region being updated.
2354  * @addr: the address within @mr that is to be monitored
2355  * @size: the size of the access to trigger the eventfd
2356  * @match_data: whether to match against @data, instead of just @addr
2357  * @data: the data to match against the guest write
2358  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2359  **/
2360 void memory_region_add_eventfd(MemoryRegion *mr,
2361                                hwaddr addr,
2362                                unsigned size,
2363                                bool match_data,
2364                                uint64_t data,
2365                                EventNotifier *e);
2366 
2367 /**
2368  * memory_region_del_eventfd: Cancel an eventfd.
2369  *
2370  * Cancels an eventfd trigger requested by a previous
2371  * memory_region_add_eventfd() call.
2372  *
2373  * @mr: the memory region being updated.
2374  * @addr: the address within @mr that is to be monitored
2375  * @size: the size of the access to trigger the eventfd
2376  * @match_data: whether to match against @data, instead of just @addr
2377  * @data: the data to match against the guest write
2378  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2379  */
2380 void memory_region_del_eventfd(MemoryRegion *mr,
2381                                hwaddr addr,
2382                                unsigned size,
2383                                bool match_data,
2384                                uint64_t data,
2385                                EventNotifier *e);
2386 
2387 /**
2388  * memory_region_add_subregion: Add a subregion to a container.
2389  *
2390  * Adds a subregion at @offset.  The subregion may not overlap with other
2391  * subregions (except for those explicitly marked as overlapping).  A region
2392  * may only be added once as a subregion (unless removed with
2393  * memory_region_del_subregion()); use memory_region_init_alias() if you
2394  * want a region to be a subregion in multiple locations.
2395  *
2396  * @mr: the region to contain the new subregion; must be a container
2397  *      initialized with memory_region_init().
2398  * @offset: the offset relative to @mr where @subregion is added.
2399  * @subregion: the subregion to be added.
2400  */
2401 void memory_region_add_subregion(MemoryRegion *mr,
2402                                  hwaddr offset,
2403                                  MemoryRegion *subregion);
2404 /**
2405  * memory_region_add_subregion_overlap: Add a subregion to a container
2406  *                                      with overlap.
2407  *
2408  * Adds a subregion at @offset.  The subregion may overlap with other
2409  * subregions.  Conflicts are resolved by having a higher @priority hide a
2410  * lower @priority. Subregions without priority are taken as @priority 0.
2411  * A region may only be added once as a subregion (unless removed with
2412  * memory_region_del_subregion()); use memory_region_init_alias() if you
2413  * want a region to be a subregion in multiple locations.
2414  *
2415  * @mr: the region to contain the new subregion; must be a container
2416  *      initialized with memory_region_init().
2417  * @offset: the offset relative to @mr where @subregion is added.
2418  * @subregion: the subregion to be added.
2419  * @priority: used for resolving overlaps; highest priority wins.
2420  */
2421 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2422                                          hwaddr offset,
2423                                          MemoryRegion *subregion,
2424                                          int priority);
2425 
2426 /**
2427  * memory_region_get_ram_addr: Get the ram address associated with a memory
2428  *                             region
2429  *
2430  * @mr: the region to be queried
2431  */
2432 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2433 
2434 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2435 /**
2436  * memory_region_del_subregion: Remove a subregion.
2437  *
2438  * Removes a subregion from its container.
2439  *
2440  * @mr: the container to be updated.
2441  * @subregion: the region being removed; must be a current subregion of @mr.
2442  */
2443 void memory_region_del_subregion(MemoryRegion *mr,
2444                                  MemoryRegion *subregion);
2445 
2446 /*
2447  * memory_region_set_enabled: dynamically enable or disable a region
2448  *
2449  * Enables or disables a memory region.  A disabled memory region
2450  * ignores all accesses to itself and its subregions.  It does not
2451  * obscure sibling subregions with lower priority - it simply behaves as
2452  * if it was removed from the hierarchy.
2453  *
2454  * Regions default to being enabled.
2455  *
2456  * @mr: the region to be updated
2457  * @enabled: whether to enable or disable the region
2458  */
2459 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2460 
2461 /*
2462  * memory_region_set_address: dynamically update the address of a region
2463  *
2464  * Dynamically updates the address of a region, relative to its container.
2465  * May be used on regions are currently part of a memory hierarchy.
2466  *
2467  * @mr: the region to be updated
2468  * @addr: new address, relative to container region
2469  */
2470 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2471 
2472 /*
2473  * memory_region_set_size: dynamically update the size of a region.
2474  *
2475  * Dynamically updates the size of a region.
2476  *
2477  * @mr: the region to be updated
2478  * @size: used size of the region.
2479  */
2480 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2481 
2482 /*
2483  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2484  *
2485  * Dynamically updates the offset into the target region that an alias points
2486  * to, as if the fourth argument to memory_region_init_alias() has changed.
2487  *
2488  * @mr: the #MemoryRegion to be updated; should be an alias.
2489  * @offset: the new offset into the target memory region
2490  */
2491 void memory_region_set_alias_offset(MemoryRegion *mr,
2492                                     hwaddr offset);
2493 
2494 /*
2495  * memory_region_set_unmergeable: Set a memory region unmergeable
2496  *
2497  * Mark a memory region unmergeable, resulting in the memory region (or
2498  * everything contained in a memory region container) not getting merged when
2499  * simplifying the address space and notifying memory listeners. Consequently,
2500  * memory listeners will never get notified about ranges that are larger than
2501  * the original memory regions.
2502  *
2503  * This is primarily useful when multiple aliases to a RAM memory region are
2504  * mapped into a memory region container, and updates (e.g., enable/disable or
2505  * map/unmap) of individual memory region aliases are not supposed to affect
2506  * other memory regions in the same container.
2507  *
2508  * @mr: the #MemoryRegion to be updated
2509  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2510  */
2511 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2512 
2513 /**
2514  * memory_region_present: checks if an address relative to a @container
2515  * translates into #MemoryRegion within @container
2516  *
2517  * Answer whether a #MemoryRegion within @container covers the address
2518  * @addr.
2519  *
2520  * @container: a #MemoryRegion within which @addr is a relative address
2521  * @addr: the area within @container to be searched
2522  */
2523 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2524 
2525 /**
2526  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2527  * into another memory region, which does not necessarily imply that it is
2528  * mapped into an address space.
2529  *
2530  * @mr: a #MemoryRegion which should be checked if it's mapped
2531  */
2532 bool memory_region_is_mapped(MemoryRegion *mr);
2533 
2534 /**
2535  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2536  * #MemoryRegion
2537  *
2538  * The #RamDiscardManager cannot change while a memory region is mapped.
2539  *
2540  * @mr: the #MemoryRegion
2541  */
2542 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2543 
2544 /**
2545  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2546  * #RamDiscardManager assigned
2547  *
2548  * @mr: the #MemoryRegion
2549  */
memory_region_has_ram_discard_manager(MemoryRegion * mr)2550 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2551 {
2552     return !!memory_region_get_ram_discard_manager(mr);
2553 }
2554 
2555 /**
2556  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2557  * #MemoryRegion
2558  *
2559  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2560  * that does not cover RAM, or a #MemoryRegion that already has a
2561  * #RamDiscardManager assigned. Return 0 if the rdm is set successfully.
2562  *
2563  * @mr: the #MemoryRegion
2564  * @rdm: #RamDiscardManager to set
2565  */
2566 int memory_region_set_ram_discard_manager(MemoryRegion *mr,
2567                                           RamDiscardManager *rdm);
2568 
2569 /**
2570  * memory_region_find: translate an address/size relative to a
2571  * MemoryRegion into a #MemoryRegionSection.
2572  *
2573  * Locates the first #MemoryRegion within @mr that overlaps the range
2574  * given by @addr and @size.
2575  *
2576  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2577  * It will have the following characteristics:
2578  * - @size = 0 iff no overlap was found
2579  * - @mr is non-%NULL iff an overlap was found
2580  *
2581  * Remember that in the return value the @offset_within_region is
2582  * relative to the returned region (in the .@mr field), not to the
2583  * @mr argument.
2584  *
2585  * Similarly, the .@offset_within_address_space is relative to the
2586  * address space that contains both regions, the passed and the
2587  * returned one.  However, in the special case where the @mr argument
2588  * has no container (and thus is the root of the address space), the
2589  * following will hold:
2590  * - @offset_within_address_space >= @addr
2591  * - @offset_within_address_space + .@size <= @addr + @size
2592  *
2593  * @mr: a MemoryRegion within which @addr is a relative address
2594  * @addr: start of the area within @as to be searched
2595  * @size: size of the area to be searched
2596  */
2597 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2598                                        hwaddr addr, uint64_t size);
2599 
2600 /**
2601  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2602  *
2603  * Synchronizes the dirty page log for all address spaces.
2604  *
2605  * @last_stage: whether this is the last stage of live migration
2606  */
2607 void memory_global_dirty_log_sync(bool last_stage);
2608 
2609 /**
2610  * memory_global_after_dirty_log_sync: synchronize the dirty log for all memory
2611  *
2612  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2613  * This function must be called after the dirty log bitmap is cleared, and
2614  * before dirty guest memory pages are read.  If you are using
2615  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2616  * care of doing this.
2617  */
2618 void memory_global_after_dirty_log_sync(void);
2619 
2620 /**
2621  * memory_region_transaction_begin: Start a transaction.
2622  *
2623  * During a transaction, changes will be accumulated and made visible
2624  * only when the transaction ends (is committed).
2625  */
2626 void memory_region_transaction_begin(void);
2627 
2628 /**
2629  * memory_region_transaction_commit: Commit a transaction and make changes
2630  *                                   visible to the guest.
2631  */
2632 void memory_region_transaction_commit(void);
2633 
2634 /**
2635  * memory_listener_register: register callbacks to be called when memory
2636  *                           sections are mapped or unmapped into an address
2637  *                           space
2638  *
2639  * @listener: an object containing the callbacks to be called
2640  * @filter: if non-%NULL, only regions in this address space will be observed
2641  */
2642 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2643 
2644 /**
2645  * memory_listener_unregister: undo the effect of memory_listener_register()
2646  *
2647  * @listener: an object containing the callbacks to be removed
2648  */
2649 void memory_listener_unregister(MemoryListener *listener);
2650 
2651 /**
2652  * memory_global_dirty_log_start: begin dirty logging for all regions
2653  *
2654  * @flags: purpose of starting dirty log, migration or dirty rate
2655  * @errp: pointer to Error*, to store an error if it happens.
2656  *
2657  * Return: true on success, else false setting @errp with error.
2658  */
2659 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2660 
2661 /**
2662  * memory_global_dirty_log_stop: end dirty logging for all regions
2663  *
2664  * @flags: purpose of stopping dirty log, migration or dirty rate
2665  */
2666 void memory_global_dirty_log_stop(unsigned int flags);
2667 
2668 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2669 
2670 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2671                                 unsigned size, bool is_write,
2672                                 MemTxAttrs attrs);
2673 
2674 /**
2675  * memory_region_dispatch_read: perform a read directly to the specified
2676  * MemoryRegion.
2677  *
2678  * @mr: #MemoryRegion to access
2679  * @addr: address within that region
2680  * @pval: pointer to uint64_t which the data is written to
2681  * @op: size, sign, and endianness of the memory operation
2682  * @attrs: memory transaction attributes to use for the access
2683  */
2684 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2685                                         hwaddr addr,
2686                                         uint64_t *pval,
2687                                         MemOp op,
2688                                         MemTxAttrs attrs);
2689 /**
2690  * memory_region_dispatch_write: perform a write directly to the specified
2691  * MemoryRegion.
2692  *
2693  * @mr: #MemoryRegion to access
2694  * @addr: address within that region
2695  * @data: data to write
2696  * @op: size, sign, and endianness of the memory operation
2697  * @attrs: memory transaction attributes to use for the access
2698  */
2699 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2700                                          hwaddr addr,
2701                                          uint64_t data,
2702                                          MemOp op,
2703                                          MemTxAttrs attrs);
2704 
2705 /**
2706  * address_space_init: initializes an address space
2707  *
2708  * @as: an uninitialized #AddressSpace
2709  * @root: a #MemoryRegion that routes addresses for the address space
2710  * @name: an address space name.  The name is only used for debugging
2711  *        output.
2712  */
2713 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2714 
2715 /**
2716  * address_space_destroy: destroy an address space
2717  *
2718  * Releases all resources associated with an address space.  After an address space
2719  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2720  * as well.
2721  *
2722  * @as: address space to be destroyed
2723  */
2724 void address_space_destroy(AddressSpace *as);
2725 
2726 /**
2727  * address_space_remove_listeners: unregister all listeners of an address space
2728  *
2729  * Removes all callbacks previously registered with memory_listener_register()
2730  * for @as.
2731  *
2732  * @as: an initialized #AddressSpace
2733  */
2734 void address_space_remove_listeners(AddressSpace *as);
2735 
2736 /**
2737  * address_space_rw: read from or write to an address space.
2738  *
2739  * Return a MemTxResult indicating whether the operation succeeded
2740  * or failed (eg unassigned memory, device rejected the transaction,
2741  * IOMMU fault).
2742  *
2743  * @as: #AddressSpace to be accessed
2744  * @addr: address within that address space
2745  * @attrs: memory transaction attributes
2746  * @buf: buffer with the data transferred
2747  * @len: the number of bytes to read or write
2748  * @is_write: indicates the transfer direction
2749  */
2750 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2751                              MemTxAttrs attrs, void *buf,
2752                              hwaddr len, bool is_write);
2753 
2754 /**
2755  * address_space_write: write to address space.
2756  *
2757  * Return a MemTxResult indicating whether the operation succeeded
2758  * or failed (eg unassigned memory, device rejected the transaction,
2759  * IOMMU fault).
2760  *
2761  * @as: #AddressSpace to be accessed
2762  * @addr: address within that address space
2763  * @attrs: memory transaction attributes
2764  * @buf: buffer with the data transferred
2765  * @len: the number of bytes to write
2766  */
2767 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2768                                 MemTxAttrs attrs,
2769                                 const void *buf, hwaddr len);
2770 
2771 /**
2772  * address_space_write_rom: write to address space, including ROM.
2773  *
2774  * This function writes to the specified address space, but will
2775  * write data to both ROM and RAM. This is used for non-guest
2776  * writes like writes from the gdb debug stub or initial loading
2777  * of ROM contents.
2778  *
2779  * Note that portions of the write which attempt to write data to
2780  * a device will be silently ignored -- only real RAM and ROM will
2781  * be written to.
2782  *
2783  * Return a MemTxResult indicating whether the operation succeeded
2784  * or failed (eg unassigned memory, device rejected the transaction,
2785  * IOMMU fault).
2786  *
2787  * @as: #AddressSpace to be accessed
2788  * @addr: address within that address space
2789  * @attrs: memory transaction attributes
2790  * @buf: buffer with the data transferred
2791  * @len: the number of bytes to write
2792  */
2793 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2794                                     MemTxAttrs attrs,
2795                                     const void *buf, hwaddr len);
2796 
2797 /* address_space_ld*: load from an address space
2798  * address_space_st*: store to an address space
2799  *
2800  * These functions perform a load or store of the byte, word,
2801  * longword or quad to the specified address within the AddressSpace.
2802  * The _le suffixed functions treat the data as little endian;
2803  * _be indicates big endian; no suffix indicates "same endianness
2804  * as guest CPU".
2805  *
2806  * The "guest CPU endianness" accessors are deprecated for use outside
2807  * target-* code; devices should be CPU-agnostic and use either the LE
2808  * or the BE accessors.
2809  *
2810  * @as #AddressSpace to be accessed
2811  * @addr: address within that address space
2812  * @val: data value, for stores
2813  * @attrs: memory transaction attributes
2814  * @result: location to write the success/failure of the transaction;
2815  *   if NULL, this information is discarded
2816  */
2817 
2818 #define SUFFIX
2819 #define ARG1         as
2820 #define ARG1_DECL    AddressSpace *as
2821 #include "exec/memory_ldst.h.inc"
2822 
stl_phys_notdirty(AddressSpace * as,hwaddr addr,uint32_t val)2823 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
2824 {
2825     address_space_stl_notdirty(as, addr, val,
2826                                MEMTXATTRS_UNSPECIFIED, NULL);
2827 }
2828 
2829 #define SUFFIX
2830 #define ARG1         as
2831 #define ARG1_DECL    AddressSpace *as
2832 #include "exec/memory_ldst_phys.h.inc"
2833 
2834 struct MemoryRegionCache {
2835     uint8_t *ptr;
2836     hwaddr xlat;
2837     hwaddr len;
2838     FlatView *fv;
2839     MemoryRegionSection mrs;
2840     bool is_write;
2841 };
2842 
2843 /* address_space_ld*_cached: load from a cached #MemoryRegion
2844  * address_space_st*_cached: store into a cached #MemoryRegion
2845  *
2846  * These functions perform a load or store of the byte, word,
2847  * longword or quad to the specified address.  The address is
2848  * a physical address in the AddressSpace, but it must lie within
2849  * a #MemoryRegion that was mapped with address_space_cache_init.
2850  *
2851  * The _le suffixed functions treat the data as little endian;
2852  * _be indicates big endian; no suffix indicates "same endianness
2853  * as guest CPU".
2854  *
2855  * The "guest CPU endianness" accessors are deprecated for use outside
2856  * target-* code; devices should be CPU-agnostic and use either the LE
2857  * or the BE accessors.
2858  *
2859  * @cache: previously initialized #MemoryRegionCache to be accessed
2860  * @addr: address within the address space
2861  * @val: data value, for stores
2862  * @attrs: memory transaction attributes
2863  * @result: location to write the success/failure of the transaction;
2864  *   if NULL, this information is discarded
2865  */
2866 
2867 #define SUFFIX       _cached_slow
2868 #define ARG1         cache
2869 #define ARG1_DECL    MemoryRegionCache *cache
2870 #include "exec/memory_ldst.h.inc"
2871 
2872 /* Inline fast path for direct RAM access.  */
address_space_ldub_cached(MemoryRegionCache * cache,hwaddr addr,MemTxAttrs attrs,MemTxResult * result)2873 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2874     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2875 {
2876     assert(addr < cache->len);
2877     if (likely(cache->ptr)) {
2878         return ldub_p(cache->ptr + addr);
2879     } else {
2880         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2881     }
2882 }
2883 
address_space_stb_cached(MemoryRegionCache * cache,hwaddr addr,uint8_t val,MemTxAttrs attrs,MemTxResult * result)2884 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2885     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2886 {
2887     assert(addr < cache->len);
2888     if (likely(cache->ptr)) {
2889         stb_p(cache->ptr + addr, val);
2890     } else {
2891         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2892     }
2893 }
2894 
2895 #define ENDIANNESS
2896 #include "exec/memory_ldst_cached.h.inc"
2897 
2898 #define ENDIANNESS   _le
2899 #include "exec/memory_ldst_cached.h.inc"
2900 
2901 #define ENDIANNESS   _be
2902 #include "exec/memory_ldst_cached.h.inc"
2903 
2904 #define SUFFIX       _cached
2905 #define ARG1         cache
2906 #define ARG1_DECL    MemoryRegionCache *cache
2907 #include "exec/memory_ldst_phys.h.inc"
2908 
2909 /* address_space_cache_init: prepare for repeated access to a physical
2910  * memory region
2911  *
2912  * @cache: #MemoryRegionCache to be filled
2913  * @as: #AddressSpace to be accessed
2914  * @addr: address within that address space
2915  * @len: length of buffer
2916  * @is_write: indicates the transfer direction
2917  *
2918  * Will only work with RAM, and may map a subset of the requested range by
2919  * returning a value that is less than @len.  On failure, return a negative
2920  * errno value.
2921  *
2922  * Because it only works with RAM, this function can be used for
2923  * read-modify-write operations.  In this case, is_write should be %true.
2924  *
2925  * Note that addresses passed to the address_space_*_cached functions
2926  * are relative to @addr.
2927  */
2928 int64_t address_space_cache_init(MemoryRegionCache *cache,
2929                                  AddressSpace *as,
2930                                  hwaddr addr,
2931                                  hwaddr len,
2932                                  bool is_write);
2933 
2934 /**
2935  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2936  *
2937  * @cache: The #MemoryRegionCache to operate on.
2938  *
2939  * Initializes #MemoryRegionCache structure without memory region attached.
2940  * Cache initialized this way can only be safely destroyed, but not used.
2941  */
address_space_cache_init_empty(MemoryRegionCache * cache)2942 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2943 {
2944     cache->mrs.mr = NULL;
2945     /* There is no real need to initialize fv, but it makes Coverity happy. */
2946     cache->fv = NULL;
2947 }
2948 
2949 /**
2950  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2951  *
2952  * @cache: The #MemoryRegionCache to operate on.
2953  * @addr: The first physical address that was written, relative to the
2954  * address that was passed to @address_space_cache_init.
2955  * @access_len: The number of bytes that were written starting at @addr.
2956  */
2957 void address_space_cache_invalidate(MemoryRegionCache *cache,
2958                                     hwaddr addr,
2959                                     hwaddr access_len);
2960 
2961 /**
2962  * address_space_cache_destroy: free a #MemoryRegionCache
2963  *
2964  * @cache: The #MemoryRegionCache whose memory should be released.
2965  */
2966 void address_space_cache_destroy(MemoryRegionCache *cache);
2967 
2968 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2969  * entry. Should be called from an RCU critical section.
2970  */
2971 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2972                                             bool is_write, MemTxAttrs attrs);
2973 
2974 /* address_space_translate: translate an address range into an address space
2975  * into a MemoryRegion and an address range into that section.  Should be
2976  * called from an RCU critical section, to avoid that the last reference
2977  * to the returned region disappears after address_space_translate returns.
2978  *
2979  * @fv: #FlatView to be accessed
2980  * @addr: address within that address space
2981  * @xlat: pointer to address within the returned memory region section's
2982  * #MemoryRegion.
2983  * @len: pointer to length
2984  * @is_write: indicates the transfer direction
2985  * @attrs: memory attributes
2986  */
2987 MemoryRegion *flatview_translate(FlatView *fv,
2988                                  hwaddr addr, hwaddr *xlat,
2989                                  hwaddr *len, bool is_write,
2990                                  MemTxAttrs attrs);
2991 
address_space_translate(AddressSpace * as,hwaddr addr,hwaddr * xlat,hwaddr * len,bool is_write,MemTxAttrs attrs)2992 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2993                                                     hwaddr addr, hwaddr *xlat,
2994                                                     hwaddr *len, bool is_write,
2995                                                     MemTxAttrs attrs)
2996 {
2997     return flatview_translate(address_space_to_flatview(as),
2998                               addr, xlat, len, is_write, attrs);
2999 }
3000 
3001 /* address_space_access_valid: check for validity of accessing an address
3002  * space range
3003  *
3004  * Check whether memory is assigned to the given address space range, and
3005  * access is permitted by any IOMMU regions that are active for the address
3006  * space.
3007  *
3008  * For now, addr and len should be aligned to a page size.  This limitation
3009  * will be lifted in the future.
3010  *
3011  * @as: #AddressSpace to be accessed
3012  * @addr: address within that address space
3013  * @len: length of the area to be checked
3014  * @is_write: indicates the transfer direction
3015  * @attrs: memory attributes
3016  */
3017 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
3018                                 bool is_write, MemTxAttrs attrs);
3019 
3020 /* address_space_map: map a physical memory region into a host virtual address
3021  *
3022  * May map a subset of the requested range, given by and returned in @plen.
3023  * May return %NULL and set *@plen to zero(0), if resources needed to perform
3024  * the mapping are exhausted.
3025  * Use only for reads OR writes - not for read-modify-write operations.
3026  * Use address_space_register_map_client() to know when retrying the map
3027  * operation is likely to succeed.
3028  *
3029  * @as: #AddressSpace to be accessed
3030  * @addr: address within that address space
3031  * @plen: pointer to length of buffer; updated on return
3032  * @is_write: indicates the transfer direction
3033  * @attrs: memory attributes
3034  */
3035 void *address_space_map(AddressSpace *as, hwaddr addr,
3036                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
3037 
3038 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
3039  *
3040  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
3041  * the amount of memory that was actually read or written by the caller.
3042  *
3043  * @as: #AddressSpace used
3044  * @buffer: host pointer as returned by address_space_map()
3045  * @len: buffer length as returned by address_space_map()
3046  * @access_len: amount of data actually transferred
3047  * @is_write: indicates the transfer direction
3048  */
3049 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3050                          bool is_write, hwaddr access_len);
3051 
3052 /*
3053  * address_space_register_map_client: Register a callback to invoke when
3054  * resources for address_space_map() are available again.
3055  *
3056  * address_space_map may fail when there are not enough resources available,
3057  * such as when bounce buffer memory would exceed the limit. The callback can
3058  * be used to retry the address_space_map operation. Note that the callback
3059  * gets automatically removed after firing.
3060  *
3061  * @as: #AddressSpace to be accessed
3062  * @bh: callback to invoke when address_space_map() retry is appropriate
3063  */
3064 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
3065 
3066 /*
3067  * address_space_unregister_map_client: Unregister a callback that has
3068  * previously been registered and not fired yet.
3069  *
3070  * @as: #AddressSpace to be accessed
3071  * @bh: callback to unregister
3072  */
3073 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
3074 
3075 /* Internal functions, part of the implementation of address_space_read.  */
3076 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3077                                     MemTxAttrs attrs, void *buf, hwaddr len);
3078 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3079                                    MemTxAttrs attrs, void *buf,
3080                                    hwaddr len, hwaddr addr1, hwaddr l,
3081                                    MemoryRegion *mr);
3082 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
3083 
3084 /* Internal functions, part of the implementation of address_space_read_cached
3085  * and address_space_write_cached.  */
3086 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
3087                                            hwaddr addr, void *buf, hwaddr len);
3088 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
3089                                             hwaddr addr, const void *buf,
3090                                             hwaddr len);
3091 
3092 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
3093 bool prepare_mmio_access(MemoryRegion *mr);
3094 
memory_region_supports_direct_access(MemoryRegion * mr)3095 static inline bool memory_region_supports_direct_access(MemoryRegion *mr)
3096 {
3097     /* ROM DEVICE regions only allow direct access if in ROMD mode. */
3098     if (memory_region_is_romd(mr)) {
3099         return true;
3100     }
3101     if (!memory_region_is_ram(mr)) {
3102         return false;
3103     }
3104     /*
3105      * RAM DEVICE regions can be accessed directly using memcpy, but it might
3106      * be MMIO and access using mempy can be wrong (e.g., using instructions not
3107      * intended for MMIO access). So we treat this as IO.
3108      */
3109     return !memory_region_is_ram_device(mr);
3110 }
3111 
memory_access_is_direct(MemoryRegion * mr,bool is_write,MemTxAttrs attrs)3112 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write,
3113                                            MemTxAttrs attrs)
3114 {
3115     if (!memory_region_supports_direct_access(mr)) {
3116         return false;
3117     }
3118     /* Debug access can write to ROM. */
3119     if (is_write && !attrs.debug) {
3120         return !mr->readonly && !mr->rom_device;
3121     }
3122     return true;
3123 }
3124 
3125 /**
3126  * address_space_read: read from an address space.
3127  *
3128  * Return a MemTxResult indicating whether the operation succeeded
3129  * or failed (eg unassigned memory, device rejected the transaction,
3130  * IOMMU fault).  Called within RCU critical section.
3131  *
3132  * @as: #AddressSpace to be accessed
3133  * @addr: address within that address space
3134  * @attrs: memory transaction attributes
3135  * @buf: buffer with the data transferred
3136  * @len: length of the data transferred
3137  */
3138 static inline __attribute__((__always_inline__))
address_space_read(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3139 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3140                                MemTxAttrs attrs, void *buf,
3141                                hwaddr len)
3142 {
3143     MemTxResult result = MEMTX_OK;
3144     hwaddr l, addr1;
3145     void *ptr;
3146     MemoryRegion *mr;
3147     FlatView *fv;
3148 
3149     if (__builtin_constant_p(len)) {
3150         if (len) {
3151             RCU_READ_LOCK_GUARD();
3152             fv = address_space_to_flatview(as);
3153             l = len;
3154             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3155             if (len == l && memory_access_is_direct(mr, false, attrs)) {
3156                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3157                 memcpy(buf, ptr, len);
3158             } else {
3159                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3160                                                 addr1, l, mr);
3161             }
3162         }
3163     } else {
3164         result = address_space_read_full(as, addr, attrs, buf, len);
3165     }
3166     return result;
3167 }
3168 
3169 /**
3170  * address_space_read_cached: read from a cached RAM region
3171  *
3172  * @cache: Cached region to be addressed
3173  * @addr: address relative to the base of the RAM region
3174  * @buf: buffer with the data transferred
3175  * @len: length of the data transferred
3176  */
3177 static inline MemTxResult
address_space_read_cached(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3178 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3179                           void *buf, hwaddr len)
3180 {
3181     assert(addr < cache->len && len <= cache->len - addr);
3182     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3183     if (likely(cache->ptr)) {
3184         memcpy(buf, cache->ptr + addr, len);
3185         return MEMTX_OK;
3186     } else {
3187         return address_space_read_cached_slow(cache, addr, buf, len);
3188     }
3189 }
3190 
3191 /**
3192  * address_space_write_cached: write to a cached RAM region
3193  *
3194  * @cache: Cached region to be addressed
3195  * @addr: address relative to the base of the RAM region
3196  * @buf: buffer with the data transferred
3197  * @len: length of the data transferred
3198  */
3199 static inline MemTxResult
address_space_write_cached(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3200 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3201                            const void *buf, hwaddr len)
3202 {
3203     assert(addr < cache->len && len <= cache->len - addr);
3204     if (likely(cache->ptr)) {
3205         memcpy(cache->ptr + addr, buf, len);
3206         return MEMTX_OK;
3207     } else {
3208         return address_space_write_cached_slow(cache, addr, buf, len);
3209     }
3210 }
3211 
3212 /**
3213  * address_space_set: Fill address space with a constant byte.
3214  *
3215  * Return a MemTxResult indicating whether the operation succeeded
3216  * or failed (eg unassigned memory, device rejected the transaction,
3217  * IOMMU fault).
3218  *
3219  * @as: #AddressSpace to be accessed
3220  * @addr: address within that address space
3221  * @c: constant byte to fill the memory
3222  * @len: the number of bytes to fill with the constant byte
3223  * @attrs: memory transaction attributes
3224  */
3225 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3226                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3227 
3228 /*
3229  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3230  * to manage the actual amount of memory consumed by the VM (then, the memory
3231  * provided by RAM blocks might be bigger than the desired memory consumption).
3232  * This *must* be set if:
3233  * - Discarding parts of a RAM blocks does not result in the change being
3234  *   reflected in the VM and the pages getting freed.
3235  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3236  *   discards blindly.
3237  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3238  *   encrypted VMs).
3239  * Technologies that only temporarily pin the current working set of a
3240  * driver are fine, because we don't expect such pages to be discarded
3241  * (esp. based on guest action like balloon inflation).
3242  *
3243  * This is *not* to be used to protect from concurrent discards (esp.,
3244  * postcopy).
3245  *
3246  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3247  * discards to work reliably is active.
3248  */
3249 int ram_block_discard_disable(bool state);
3250 
3251 /*
3252  * See ram_block_discard_disable(): only disable uncoordinated discards,
3253  * keeping coordinated discards (via the RamDiscardManager) enabled.
3254  */
3255 int ram_block_uncoordinated_discard_disable(bool state);
3256 
3257 /*
3258  * Inhibit technologies that disable discarding of pages in RAM blocks.
3259  *
3260  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3261  * broken.
3262  */
3263 int ram_block_discard_require(bool state);
3264 
3265 /*
3266  * See ram_block_discard_require(): only inhibit technologies that disable
3267  * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3268  * technologies that only inhibit uncoordinated discards (via the
3269  * RamDiscardManager).
3270  */
3271 int ram_block_coordinated_discard_require(bool state);
3272 
3273 /*
3274  * Test if any discarding of memory in ram blocks is disabled.
3275  */
3276 bool ram_block_discard_is_disabled(void);
3277 
3278 /*
3279  * Test if any discarding of memory in ram blocks is required to work reliably.
3280  */
3281 bool ram_block_discard_is_required(void);
3282 
3283 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp);
3284 void ram_block_del_cpr_blocker(RAMBlock *rb);
3285 
3286 #endif
3287