1 /* 2 * DMA helper functions 3 * 4 * Copyright (c) 2009, 2020 Red Hat 5 * 6 * This work is licensed under the terms of the GNU General Public License 7 * (GNU GPL), version 2 or later. 8 */ 9 10 #ifndef DMA_H 11 #define DMA_H 12 13 #include "exec/memory.h" 14 #include "exec/address-spaces.h" 15 #include "block/block.h" 16 #include "block/accounting.h" 17 18 typedef enum { 19 DMA_DIRECTION_TO_DEVICE = 0, 20 DMA_DIRECTION_FROM_DEVICE = 1, 21 } DMADirection; 22 23 /* 24 * When an IOMMU is present, bus addresses become distinct from 25 * CPU/memory physical addresses and may be a different size. Because 26 * the IOVA size depends more on the bus than on the platform, we more 27 * or less have to treat these as 64-bit always to cover all (or at 28 * least most) cases. 29 */ 30 typedef uint64_t dma_addr_t; 31 32 #define DMA_ADDR_BITS 64 33 #define DMA_ADDR_FMT "%" PRIx64 34 35 typedef struct ScatterGatherEntry ScatterGatherEntry; 36 37 struct QEMUSGList { 38 ScatterGatherEntry *sg; 39 int nsg; 40 int nalloc; 41 dma_addr_t size; 42 DeviceState *dev; 43 AddressSpace *as; 44 }; 45 46 static inline void dma_barrier(AddressSpace *as, DMADirection dir) 47 { 48 /* 49 * This is called before DMA read and write operations 50 * unless the _relaxed form is used and is responsible 51 * for providing some sane ordering of accesses vs 52 * concurrently running VCPUs. 53 * 54 * Users of map(), unmap() or lower level st/ld_* 55 * operations are responsible for providing their own 56 * ordering via barriers. 57 * 58 * This primitive implementation does a simple smp_mb() 59 * before each operation which provides pretty much full 60 * ordering. 61 * 62 * A smarter implementation can be devised if needed to 63 * use lighter barriers based on the direction of the 64 * transfer, the DMA context, etc... 65 */ 66 smp_mb(); 67 } 68 69 /* Checks that the given range of addresses is valid for DMA. This is 70 * useful for certain cases, but usually you should just use 71 * dma_memory_{read,write}() and check for errors */ 72 static inline bool dma_memory_valid(AddressSpace *as, 73 dma_addr_t addr, dma_addr_t len, 74 DMADirection dir, MemTxAttrs attrs) 75 { 76 return address_space_access_valid(as, addr, len, 77 dir == DMA_DIRECTION_FROM_DEVICE, 78 attrs); 79 } 80 81 static inline MemTxResult dma_memory_rw_relaxed(AddressSpace *as, 82 dma_addr_t addr, 83 void *buf, dma_addr_t len, 84 DMADirection dir, 85 MemTxAttrs attrs) 86 { 87 return address_space_rw(as, addr, attrs, 88 buf, len, dir == DMA_DIRECTION_FROM_DEVICE); 89 } 90 91 static inline MemTxResult dma_memory_read_relaxed(AddressSpace *as, 92 dma_addr_t addr, 93 void *buf, dma_addr_t len) 94 { 95 return dma_memory_rw_relaxed(as, addr, buf, len, 96 DMA_DIRECTION_TO_DEVICE, 97 MEMTXATTRS_UNSPECIFIED); 98 } 99 100 static inline MemTxResult dma_memory_write_relaxed(AddressSpace *as, 101 dma_addr_t addr, 102 const void *buf, 103 dma_addr_t len) 104 { 105 return dma_memory_rw_relaxed(as, addr, (void *)buf, len, 106 DMA_DIRECTION_FROM_DEVICE, 107 MEMTXATTRS_UNSPECIFIED); 108 } 109 110 /** 111 * dma_memory_rw: Read from or write to an address space from DMA controller. 112 * 113 * Return a MemTxResult indicating whether the operation succeeded 114 * or failed (eg unassigned memory, device rejected the transaction, 115 * IOMMU fault). 116 * 117 * @as: #AddressSpace to be accessed 118 * @addr: address within that address space 119 * @buf: buffer with the data transferred 120 * @len: the number of bytes to read or write 121 * @dir: indicates the transfer direction 122 * @attrs: memory transaction attributes 123 */ 124 static inline MemTxResult dma_memory_rw(AddressSpace *as, dma_addr_t addr, 125 void *buf, dma_addr_t len, 126 DMADirection dir, MemTxAttrs attrs) 127 { 128 dma_barrier(as, dir); 129 130 return dma_memory_rw_relaxed(as, addr, buf, len, dir, attrs); 131 } 132 133 /** 134 * dma_memory_read: Read from an address space from DMA controller. 135 * 136 * Return a MemTxResult indicating whether the operation succeeded 137 * or failed (eg unassigned memory, device rejected the transaction, 138 * IOMMU fault). Called within RCU critical section. 139 * 140 * @as: #AddressSpace to be accessed 141 * @addr: address within that address space 142 * @buf: buffer with the data transferred 143 * @len: length of the data transferred 144 * @attrs: memory transaction attributes 145 */ 146 static inline MemTxResult dma_memory_read(AddressSpace *as, dma_addr_t addr, 147 void *buf, dma_addr_t len, 148 MemTxAttrs attrs) 149 { 150 return dma_memory_rw(as, addr, buf, len, 151 DMA_DIRECTION_TO_DEVICE, attrs); 152 } 153 154 /** 155 * dma_memory_write: Write to address space from DMA controller. 156 * 157 * Return a MemTxResult indicating whether the operation succeeded 158 * or failed (eg unassigned memory, device rejected the transaction, 159 * IOMMU fault). 160 * 161 * @as: #AddressSpace to be accessed 162 * @addr: address within that address space 163 * @buf: buffer with the data transferred 164 * @len: the number of bytes to write 165 * @attrs: memory transaction attributes 166 */ 167 static inline MemTxResult dma_memory_write(AddressSpace *as, dma_addr_t addr, 168 const void *buf, dma_addr_t len, 169 MemTxAttrs attrs) 170 { 171 return dma_memory_rw(as, addr, (void *)buf, len, 172 DMA_DIRECTION_FROM_DEVICE, attrs); 173 } 174 175 /** 176 * dma_memory_set: Fill memory with a constant byte from DMA controller. 177 * 178 * Return a MemTxResult indicating whether the operation succeeded 179 * or failed (eg unassigned memory, device rejected the transaction, 180 * IOMMU fault). 181 * 182 * @as: #AddressSpace to be accessed 183 * @addr: address within that address space 184 * @c: constant byte to fill the memory 185 * @len: the number of bytes to fill with the constant byte 186 * @attrs: memory transaction attributes 187 */ 188 MemTxResult dma_memory_set(AddressSpace *as, dma_addr_t addr, 189 uint8_t c, dma_addr_t len, MemTxAttrs attrs); 190 191 /** 192 * dma_memory_map: Map a physical memory region into a host virtual address. 193 * 194 * May map a subset of the requested range, given by and returned in @plen. 195 * May return %NULL and set *@plen to zero(0), if resources needed to perform 196 * the mapping are exhausted. 197 * Use only for reads OR writes - not for read-modify-write operations. 198 * 199 * @as: #AddressSpace to be accessed 200 * @addr: address within that address space 201 * @len: pointer to length of buffer; updated on return 202 * @dir: indicates the transfer direction 203 * @attrs: memory attributes 204 */ 205 static inline void *dma_memory_map(AddressSpace *as, 206 dma_addr_t addr, dma_addr_t *len, 207 DMADirection dir, MemTxAttrs attrs) 208 { 209 hwaddr xlen = *len; 210 void *p; 211 212 p = address_space_map(as, addr, &xlen, dir == DMA_DIRECTION_FROM_DEVICE, 213 attrs); 214 *len = xlen; 215 return p; 216 } 217 218 /** 219 * dma_memory_unmap: Unmaps a memory region previously mapped by dma_memory_map() 220 * 221 * Will also mark the memory as dirty if @dir == %DMA_DIRECTION_FROM_DEVICE. 222 * @access_len gives the amount of memory that was actually read or written 223 * by the caller. 224 * 225 * @as: #AddressSpace used 226 * @buffer: host pointer as returned by dma_memory_map() 227 * @len: buffer length as returned by dma_memory_map() 228 * @dir: indicates the transfer direction 229 * @access_len: amount of data actually transferred 230 */ 231 static inline void dma_memory_unmap(AddressSpace *as, 232 void *buffer, dma_addr_t len, 233 DMADirection dir, dma_addr_t access_len) 234 { 235 address_space_unmap(as, buffer, (hwaddr)len, 236 dir == DMA_DIRECTION_FROM_DEVICE, access_len); 237 } 238 239 #define DEFINE_LDST_DMA(_lname, _sname, _bits, _end) \ 240 static inline MemTxResult ld##_lname##_##_end##_dma(AddressSpace *as, \ 241 dma_addr_t addr, \ 242 uint##_bits##_t *pval, \ 243 MemTxAttrs attrs) \ 244 { \ 245 MemTxResult res = dma_memory_read(as, addr, pval, (_bits) / 8, attrs); \ 246 _end##_bits##_to_cpus(pval); \ 247 return res; \ 248 } \ 249 static inline MemTxResult st##_sname##_##_end##_dma(AddressSpace *as, \ 250 dma_addr_t addr, \ 251 uint##_bits##_t val, \ 252 MemTxAttrs attrs) \ 253 { \ 254 val = cpu_to_##_end##_bits(val); \ 255 return dma_memory_write(as, addr, &val, (_bits) / 8, attrs); \ 256 } 257 258 static inline MemTxResult ldub_dma(AddressSpace *as, dma_addr_t addr, 259 uint8_t *val, MemTxAttrs attrs) 260 { 261 return dma_memory_read(as, addr, val, 1, attrs); 262 } 263 264 static inline MemTxResult stb_dma(AddressSpace *as, dma_addr_t addr, 265 uint8_t val, MemTxAttrs attrs) 266 { 267 return dma_memory_write(as, addr, &val, 1, attrs); 268 } 269 270 DEFINE_LDST_DMA(uw, w, 16, le); 271 DEFINE_LDST_DMA(l, l, 32, le); 272 DEFINE_LDST_DMA(q, q, 64, le); 273 DEFINE_LDST_DMA(uw, w, 16, be); 274 DEFINE_LDST_DMA(l, l, 32, be); 275 DEFINE_LDST_DMA(q, q, 64, be); 276 277 #undef DEFINE_LDST_DMA 278 279 struct ScatterGatherEntry { 280 dma_addr_t base; 281 dma_addr_t len; 282 }; 283 284 void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint, 285 AddressSpace *as); 286 void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len); 287 void qemu_sglist_destroy(QEMUSGList *qsg); 288 289 typedef BlockAIOCB *DMAIOFunc(int64_t offset, QEMUIOVector *iov, 290 BlockCompletionFunc *cb, void *cb_opaque, 291 void *opaque); 292 293 BlockAIOCB *dma_blk_io(AioContext *ctx, 294 QEMUSGList *sg, uint64_t offset, uint32_t align, 295 DMAIOFunc *io_func, void *io_func_opaque, 296 BlockCompletionFunc *cb, void *opaque, DMADirection dir); 297 BlockAIOCB *dma_blk_read(BlockBackend *blk, 298 QEMUSGList *sg, uint64_t offset, uint32_t align, 299 BlockCompletionFunc *cb, void *opaque); 300 BlockAIOCB *dma_blk_write(BlockBackend *blk, 301 QEMUSGList *sg, uint64_t offset, uint32_t align, 302 BlockCompletionFunc *cb, void *opaque); 303 MemTxResult dma_buf_read(void *ptr, dma_addr_t len, dma_addr_t *residual, 304 QEMUSGList *sg, MemTxAttrs attrs); 305 MemTxResult dma_buf_write(void *ptr, dma_addr_t len, dma_addr_t *residual, 306 QEMUSGList *sg, MemTxAttrs attrs); 307 308 void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie, 309 QEMUSGList *sg, enum BlockAcctType type); 310 311 /** 312 * dma_aligned_pow2_mask: Return the address bit mask of the largest 313 * power of 2 size less or equal than @end - @start + 1, aligned with @start, 314 * and bounded by 1 << @max_addr_bits bits. 315 * 316 * @start: range start address 317 * @end: range end address (greater than @start) 318 * @max_addr_bits: max address bits (<= 64) 319 */ 320 uint64_t dma_aligned_pow2_mask(uint64_t start, uint64_t end, 321 int max_addr_bits); 322 323 #endif 324