1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
61  * match only a single modifier. A modifier must not be a subset of layouts of
62  * another modifier. For instance, it's incorrect to encode pitch alignment in
63  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
64  * aligned modifier. That said, modifiers can have implicit minimal
65  * requirements.
66  *
67  * For modifiers where the combination of fourcc code and modifier can alias,
68  * a canonical pair needs to be defined and used by all drivers. Preferred
69  * combinations are also encouraged where all combinations might lead to
70  * confusion and unnecessarily reduced interoperability. An example for the
71  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
72  *
73  * There are two kinds of modifier users:
74  *
75  * - Kernel and user-space drivers: for drivers it's important that modifiers
76  *   don't alias, otherwise two drivers might support the same format but use
77  *   different aliases, preventing them from sharing buffers in an efficient
78  *   format.
79  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
80  *   see modifiers as opaque tokens they can check for equality and intersect.
81  *   These users musn't need to know to reason about the modifier value
82  *   (i.e. they are not expected to extract information out of the modifier).
83  *
84  * Vendors should document their modifier usage in as much detail as
85  * possible, to ensure maximum compatibility across devices, drivers and
86  * applications.
87  *
88  * The authoritative list of format modifier codes is found in
89  * `include/uapi/drm/drm_fourcc.h`
90  */
91 
92 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
93 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
94 
95 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
96 
97 /* Reserve 0 for the invalid format specifier */
98 #define DRM_FORMAT_INVALID	0
99 
100 /* color index */
101 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
102 
103 /* 8 bpp Red */
104 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
105 
106 /* 10 bpp Red */
107 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
108 
109 /* 12 bpp Red */
110 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
111 
112 /* 16 bpp Red */
113 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
114 
115 /* 16 bpp RG */
116 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
117 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
118 
119 /* 32 bpp RG */
120 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
121 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
122 
123 /* 8 bpp RGB */
124 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
125 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
126 
127 /* 16 bpp RGB */
128 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
129 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
130 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
131 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
132 
133 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
134 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
135 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
136 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
137 
138 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
139 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
140 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
141 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
142 
143 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
144 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
145 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
146 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
147 
148 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
149 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
150 
151 /* 24 bpp RGB */
152 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
153 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
154 
155 /* 32 bpp RGB */
156 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
157 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
158 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
159 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
160 
161 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
162 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
163 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
164 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
165 
166 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
167 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
168 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
169 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
170 
171 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
172 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
173 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
174 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
175 
176 /* 64 bpp RGB */
177 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
178 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
179 
180 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
181 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
182 
183 /*
184  * Floating point 64bpp RGB
185  * IEEE 754-2008 binary16 half-precision float
186  * [15:0] sign:exponent:mantissa 1:5:10
187  */
188 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
189 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
190 
191 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
192 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
193 
194 /*
195  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
196  * of unused padding per component:
197  */
198 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
199 
200 /* packed YCbCr */
201 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
202 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
203 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
204 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
205 
206 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
207 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
208 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
209 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
210 
211 /*
212  * packed Y2xx indicate for each component, xx valid data occupy msb
213  * 16-xx padding occupy lsb
214  */
215 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
216 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
217 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
218 
219 /*
220  * packed Y4xx indicate for each component, xx valid data occupy msb
221  * 16-xx padding occupy lsb except Y410
222  */
223 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
224 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
225 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
226 
227 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
228 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
229 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
230 
231 /*
232  * packed YCbCr420 2x2 tiled formats
233  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
234  */
235 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
236 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
237 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
238 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
239 
240 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
241 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
242 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
243 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
244 
245 /*
246  * 1-plane YUV 4:2:0
247  * In these formats, the component ordering is specified (Y, followed by U
248  * then V), but the exact Linear layout is undefined.
249  * These formats can only be used with a non-Linear modifier.
250  */
251 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
252 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
253 
254 /*
255  * 2 plane RGB + A
256  * index 0 = RGB plane, same format as the corresponding non _A8 format has
257  * index 1 = A plane, [7:0] A
258  */
259 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
260 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
261 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
262 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
263 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
264 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
265 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
266 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
267 
268 /*
269  * 2 plane YCbCr
270  * index 0 = Y plane, [7:0] Y
271  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
272  * or
273  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
274  */
275 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
276 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
277 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
278 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
279 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
280 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
281 /*
282  * 2 plane YCbCr
283  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
284  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
285  */
286 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
287 
288 /*
289  * 2 plane YCbCr MSB aligned
290  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
291  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
292  */
293 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
294 
295 /*
296  * 2 plane YCbCr MSB aligned
297  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
298  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
299  */
300 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
301 
302 /*
303  * 2 plane YCbCr MSB aligned
304  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
305  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
306  */
307 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
308 
309 /*
310  * 2 plane YCbCr MSB aligned
311  * index 0 = Y plane, [15:0] Y little endian
312  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
313  */
314 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
315 
316 /* 2 plane YCbCr420.
317  * 3 10 bit components and 2 padding bits packed into 4 bytes.
318  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
319  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
320  */
321 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
322 
323 /* 3 plane non-subsampled (444) YCbCr
324  * 16 bits per component, but only 10 bits are used and 6 bits are padded
325  * index 0: Y plane, [15:0] Y:x [10:6] little endian
326  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
327  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
328  */
329 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
330 
331 /* 3 plane non-subsampled (444) YCrCb
332  * 16 bits per component, but only 10 bits are used and 6 bits are padded
333  * index 0: Y plane, [15:0] Y:x [10:6] little endian
334  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
335  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
336  */
337 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
338 
339 /*
340  * 3 plane YCbCr
341  * index 0: Y plane, [7:0] Y
342  * index 1: Cb plane, [7:0] Cb
343  * index 2: Cr plane, [7:0] Cr
344  * or
345  * index 1: Cr plane, [7:0] Cr
346  * index 2: Cb plane, [7:0] Cb
347  */
348 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
349 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
350 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
351 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
352 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
353 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
354 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
355 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
356 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
357 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
358 
359 
360 /*
361  * Format Modifiers:
362  *
363  * Format modifiers describe, typically, a re-ordering or modification
364  * of the data in a plane of an FB.  This can be used to express tiled/
365  * swizzled formats, or compression, or a combination of the two.
366  *
367  * The upper 8 bits of the format modifier are a vendor-id as assigned
368  * below.  The lower 56 bits are assigned as vendor sees fit.
369  */
370 
371 /* Vendor Ids: */
372 #define DRM_FORMAT_MOD_VENDOR_NONE    0
373 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
374 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
375 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
376 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
377 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
378 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
379 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
380 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
381 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
382 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
383 
384 /* add more to the end as needed */
385 
386 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
387 
388 #define fourcc_mod_get_vendor(modifier) \
389 	(((modifier) >> 56) & 0xff)
390 
391 #define fourcc_mod_is_vendor(modifier, vendor) \
392 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
393 
394 #define fourcc_mod_code(vendor, val) \
395 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
396 
397 /*
398  * Format Modifier tokens:
399  *
400  * When adding a new token please document the layout with a code comment,
401  * similar to the fourcc codes above. drm_fourcc.h is considered the
402  * authoritative source for all of these.
403  *
404  * Generic modifier names:
405  *
406  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
407  * for layouts which are common across multiple vendors. To preserve
408  * compatibility, in cases where a vendor-specific definition already exists and
409  * a generic name for it is desired, the common name is a purely symbolic alias
410  * and must use the same numerical value as the original definition.
411  *
412  * Note that generic names should only be used for modifiers which describe
413  * generic layouts (such as pixel re-ordering), which may have
414  * independently-developed support across multiple vendors.
415  *
416  * In future cases where a generic layout is identified before merging with a
417  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
418  * 'NONE' could be considered. This should only be for obvious, exceptional
419  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
420  * apply to a single vendor.
421  *
422  * Generic names should not be used for cases where multiple hardware vendors
423  * have implementations of the same standardised compression scheme (such as
424  * AFBC). In those cases, all implementations should use the same format
425  * modifier(s), reflecting the vendor of the standard.
426  */
427 
428 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
429 
430 /*
431  * Invalid Modifier
432  *
433  * This modifier can be used as a sentinel to terminate the format modifiers
434  * list, or to initialize a variable with an invalid modifier. It might also be
435  * used to report an error back to userspace for certain APIs.
436  */
437 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
438 
439 /*
440  * Linear Layout
441  *
442  * Just plain linear layout. Note that this is different from no specifying any
443  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
444  * which tells the driver to also take driver-internal information into account
445  * and so might actually result in a tiled framebuffer.
446  */
447 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
448 
449 /*
450  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
451  *
452  * The "none" format modifier doesn't actually mean that the modifier is
453  * implicit, instead it means that the layout is linear. Whether modifiers are
454  * used is out-of-band information carried in an API-specific way (e.g. in a
455  * flag for drm_mode_fb_cmd2).
456  */
457 #define DRM_FORMAT_MOD_NONE	0
458 
459 /* Intel framebuffer modifiers */
460 
461 /*
462  * Intel X-tiling layout
463  *
464  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
465  * in row-major layout. Within the tile bytes are laid out row-major, with
466  * a platform-dependent stride. On top of that the memory can apply
467  * platform-depending swizzling of some higher address bits into bit6.
468  *
469  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
470  * On earlier platforms the is highly platforms specific and not useful for
471  * cross-driver sharing. It exists since on a given platform it does uniquely
472  * identify the layout in a simple way for i915-specific userspace, which
473  * facilitated conversion of userspace to modifiers. Additionally the exact
474  * format on some really old platforms is not known.
475  */
476 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
477 
478 /*
479  * Intel Y-tiling layout
480  *
481  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
482  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
483  * chunks column-major, with a platform-dependent height. On top of that the
484  * memory can apply platform-depending swizzling of some higher address bits
485  * into bit6.
486  *
487  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
488  * On earlier platforms the is highly platforms specific and not useful for
489  * cross-driver sharing. It exists since on a given platform it does uniquely
490  * identify the layout in a simple way for i915-specific userspace, which
491  * facilitated conversion of userspace to modifiers. Additionally the exact
492  * format on some really old platforms is not known.
493  */
494 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
495 
496 /*
497  * Intel Yf-tiling layout
498  *
499  * This is a tiled layout using 4Kb tiles in row-major layout.
500  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
501  * are arranged in four groups (two wide, two high) with column-major layout.
502  * Each group therefore consits out of four 256 byte units, which are also laid
503  * out as 2x2 column-major.
504  * 256 byte units are made out of four 64 byte blocks of pixels, producing
505  * either a square block or a 2:1 unit.
506  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
507  * in pixel depends on the pixel depth.
508  */
509 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
510 
511 /*
512  * Intel color control surface (CCS) for render compression
513  *
514  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
515  * The main surface will be plane index 0 and must be Y/Yf-tiled,
516  * the CCS will be plane index 1.
517  *
518  * Each CCS tile matches a 1024x512 pixel area of the main surface.
519  * To match certain aspects of the 3D hardware the CCS is
520  * considered to be made up of normal 128Bx32 Y tiles, Thus
521  * the CCS pitch must be specified in multiples of 128 bytes.
522  *
523  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
524  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
525  * But that fact is not relevant unless the memory is accessed
526  * directly.
527  */
528 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
529 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
530 
531 /*
532  * Intel color control surfaces (CCS) for Gen-12 render compression.
533  *
534  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
535  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
536  * main surface. In other words, 4 bits in CCS map to a main surface cache
537  * line pair. The main surface pitch is required to be a multiple of four
538  * Y-tile widths.
539  */
540 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
541 
542 /*
543  * Intel color control surfaces (CCS) for Gen-12 media compression
544  *
545  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
546  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
547  * main surface. In other words, 4 bits in CCS map to a main surface cache
548  * line pair. The main surface pitch is required to be a multiple of four
549  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
550  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
551  * planes 2 and 3 for the respective CCS.
552  */
553 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
554 
555 /*
556  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
557  * compression.
558  *
559  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
560  * and at index 1. The clear color is stored at index 2, and the pitch should
561  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
562  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
563  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
564  * the converted clear color of size 64 bits. The first 32 bits store the Lower
565  * Converted Clear Color value and the next 32 bits store the Higher Converted
566  * Clear Color value when applicable. The Converted Clear Color values are
567  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
568  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
569  * corresponds to an area of 4x1 tiles in the main surface. The main surface
570  * pitch is required to be a multiple of 4 tile widths.
571  */
572 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
573 
574 /*
575  * Intel Tile 4 layout
576  *
577  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
578  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
579  * only differs from Tile Y at the 256B granularity in between. At this
580  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
581  * of 64B x 8 rows.
582  */
583 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
584 
585 /*
586  * Intel color control surfaces (CCS) for DG2 render compression.
587  *
588  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
589  * outside of the GEM object in a reserved memory area dedicated for the
590  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
591  * main surface pitch is required to be a multiple of four Tile 4 widths.
592  */
593 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
594 
595 /*
596  * Intel color control surfaces (CCS) for DG2 media compression.
597  *
598  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
599  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
600  * 0 and 1, respectively. The CCS for all planes are stored outside of the
601  * GEM object in a reserved memory area dedicated for the storage of the
602  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
603  * pitch is required to be a multiple of four Tile 4 widths.
604  */
605 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
606 
607 /*
608  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
609  *
610  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
611  * outside of the GEM object in a reserved memory area dedicated for the
612  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
613  * main surface pitch is required to be a multiple of four Tile 4 widths. The
614  * clear color is stored at plane index 1 and the pitch should be 64 bytes
615  * aligned. The format of the 256 bits of clear color data matches the one used
616  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
617  * for details.
618  */
619 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
620 
621 /*
622  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
623  *
624  * Macroblocks are laid in a Z-shape, and each pixel data is following the
625  * standard NV12 style.
626  * As for NV12, an image is the result of two frame buffers: one for Y,
627  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
628  * Alignment requirements are (for each buffer):
629  * - multiple of 128 pixels for the width
630  * - multiple of  32 pixels for the height
631  *
632  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
633  */
634 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
635 
636 /*
637  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
638  *
639  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
640  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
641  * they correspond to their 16x16 luma block.
642  */
643 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
644 
645 /*
646  * Qualcomm Compressed Format
647  *
648  * Refers to a compressed variant of the base format that is compressed.
649  * Implementation may be platform and base-format specific.
650  *
651  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
652  * Pixel data pitch/stride is aligned with macrotile width.
653  * Pixel data height is aligned with macrotile height.
654  * Entire pixel data buffer is aligned with 4k(bytes).
655  */
656 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
657 
658 /*
659  * Qualcomm Tiled Format
660  *
661  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
662  * Implementation may be platform and base-format specific.
663  *
664  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
665  * Pixel data pitch/stride is aligned with macrotile width.
666  * Pixel data height is aligned with macrotile height.
667  * Entire pixel data buffer is aligned with 4k(bytes).
668  */
669 #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
670 
671 /*
672  * Qualcomm Alternate Tiled Format
673  *
674  * Alternate tiled format typically only used within GMEM.
675  * Implementation may be platform and base-format specific.
676  */
677 #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
678 
679 
680 /* Vivante framebuffer modifiers */
681 
682 /*
683  * Vivante 4x4 tiling layout
684  *
685  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
686  * layout.
687  */
688 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
689 
690 /*
691  * Vivante 64x64 super-tiling layout
692  *
693  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
694  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
695  * major layout.
696  *
697  * For more information: see
698  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
699  */
700 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
701 
702 /*
703  * Vivante 4x4 tiling layout for dual-pipe
704  *
705  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
706  * different base address. Offsets from the base addresses are therefore halved
707  * compared to the non-split tiled layout.
708  */
709 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
710 
711 /*
712  * Vivante 64x64 super-tiling layout for dual-pipe
713  *
714  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
715  * starts at a different base address. Offsets from the base addresses are
716  * therefore halved compared to the non-split super-tiled layout.
717  */
718 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
719 
720 /* NVIDIA frame buffer modifiers */
721 
722 /*
723  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
724  *
725  * Pixels are arranged in simple tiles of 16 x 16 bytes.
726  */
727 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
728 
729 /*
730  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
731  * and Tegra GPUs starting with Tegra K1.
732  *
733  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
734  * based on the architecture generation.  GOBs themselves are then arranged in
735  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
736  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
737  * a block depth or height of "4").
738  *
739  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
740  * in full detail.
741  *
742  *       Macro
743  * Bits  Param Description
744  * ----  ----- -----------------------------------------------------------------
745  *
746  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
747  *             compatibility with the existing
748  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
749  *
750  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
751  *             compatibility with the existing
752  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
753  *
754  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
755  *             size).  Must be zero.
756  *
757  *             Note there is no log2(width) parameter.  Some portions of the
758  *             hardware support a block width of two gobs, but it is impractical
759  *             to use due to lack of support elsewhere, and has no known
760  *             benefits.
761  *
762  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
763  *             in blocks, specified via log2(tile width in blocks)).  Must be
764  *             zero.
765  *
766  * 19:12 k     Page Kind.  This value directly maps to a field in the page
767  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
768  *             in memory and can be derived from the tuple
769  *
770  *               (format, GPU model, compression type, samples per pixel)
771  *
772  *             Where compression type is defined below.  If GPU model were
773  *             implied by the format modifier, format, or memory buffer, page
774  *             kind would not need to be included in the modifier itself, but
775  *             since the modifier should define the layout of the associated
776  *             memory buffer independent from any device or other context, it
777  *             must be included here.
778  *
779  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
780  *             starting with Fermi GPUs.  Additionally, the mapping between page
781  *             kind and bit layout has changed at various points.
782  *
783  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
784  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
785  *               2 = Gob Height 8, Turing+ Page Kind mapping
786  *               3 = Reserved for future use.
787  *
788  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
789  *             bit remapping step that occurs at an even lower level than the
790  *             page kind and block linear swizzles.  This causes the layout of
791  *             surfaces mapped in those SOC's GPUs to be incompatible with the
792  *             equivalent mapping on other GPUs in the same system.
793  *
794  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
795  *               1 = Desktop GPU and Tegra Xavier+ Layout
796  *
797  * 25:23 c     Lossless Framebuffer Compression type.
798  *
799  *               0 = none
800  *               1 = ROP/3D, layout 1, exact compression format implied by Page
801  *                   Kind field
802  *               2 = ROP/3D, layout 2, exact compression format implied by Page
803  *                   Kind field
804  *               3 = CDE horizontal
805  *               4 = CDE vertical
806  *               5 = Reserved for future use
807  *               6 = Reserved for future use
808  *               7 = Reserved for future use
809  *
810  * 55:25 -     Reserved for future use.  Must be zero.
811  */
812 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
813 	fourcc_mod_code(NVIDIA, (0x10 | \
814 				 ((h) & 0xf) | \
815 				 (((k) & 0xff) << 12) | \
816 				 (((g) & 0x3) << 20) | \
817 				 (((s) & 0x1) << 22) | \
818 				 (((c) & 0x7) << 23)))
819 
820 /* To grandfather in prior block linear format modifiers to the above layout,
821  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
822  * with block-linear layouts, is remapped within drivers to the value 0xfe,
823  * which corresponds to the "generic" kind used for simple single-sample
824  * uncompressed color formats on Fermi - Volta GPUs.
825  */
826 static inline uint64_t
827 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
828 {
829 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
830 		return modifier;
831 	else
832 		return modifier | (0xfe << 12);
833 }
834 
835 /*
836  * 16Bx2 Block Linear layout, used by Tegra K1 and later
837  *
838  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
839  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
840  *
841  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
842  *
843  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
844  * Valid values are:
845  *
846  * 0 == ONE_GOB
847  * 1 == TWO_GOBS
848  * 2 == FOUR_GOBS
849  * 3 == EIGHT_GOBS
850  * 4 == SIXTEEN_GOBS
851  * 5 == THIRTYTWO_GOBS
852  *
853  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
854  * in full detail.
855  */
856 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
857 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
858 
859 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
860 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
861 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
862 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
863 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
864 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
865 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
866 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
867 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
868 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
869 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
870 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
871 
872 /*
873  * Some Broadcom modifiers take parameters, for example the number of
874  * vertical lines in the image. Reserve the lower 32 bits for modifier
875  * type, and the next 24 bits for parameters. Top 8 bits are the
876  * vendor code.
877  */
878 #define __fourcc_mod_broadcom_param_shift 8
879 #define __fourcc_mod_broadcom_param_bits 48
880 #define fourcc_mod_broadcom_code(val, params) \
881 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
882 #define fourcc_mod_broadcom_param(m) \
883 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
884 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
885 #define fourcc_mod_broadcom_mod(m) \
886 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
887 		 __fourcc_mod_broadcom_param_shift))
888 
889 /*
890  * Broadcom VC4 "T" format
891  *
892  * This is the primary layout that the V3D GPU can texture from (it
893  * can't do linear).  The T format has:
894  *
895  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
896  *   pixels at 32 bit depth.
897  *
898  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
899  *   16x16 pixels).
900  *
901  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
902  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
903  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
904  *
905  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
906  *   tiles) or right-to-left (odd rows of 4k tiles).
907  */
908 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
909 
910 /*
911  * Broadcom SAND format
912  *
913  * This is the native format that the H.264 codec block uses.  For VC4
914  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
915  *
916  * The image can be considered to be split into columns, and the
917  * columns are placed consecutively into memory.  The width of those
918  * columns can be either 32, 64, 128, or 256 pixels, but in practice
919  * only 128 pixel columns are used.
920  *
921  * The pitch between the start of each column is set to optimally
922  * switch between SDRAM banks. This is passed as the number of lines
923  * of column width in the modifier (we can't use the stride value due
924  * to various core checks that look at it , so you should set the
925  * stride to width*cpp).
926  *
927  * Note that the column height for this format modifier is the same
928  * for all of the planes, assuming that each column contains both Y
929  * and UV.  Some SAND-using hardware stores UV in a separate tiled
930  * image from Y to reduce the column height, which is not supported
931  * with these modifiers.
932  *
933  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
934  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
935  * wide, but as this is a 10 bpp format that translates to 96 pixels.
936  */
937 
938 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
939 	fourcc_mod_broadcom_code(2, v)
940 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
941 	fourcc_mod_broadcom_code(3, v)
942 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
943 	fourcc_mod_broadcom_code(4, v)
944 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
945 	fourcc_mod_broadcom_code(5, v)
946 
947 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
948 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
949 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
950 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
951 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
952 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
953 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
954 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
955 
956 /* Broadcom UIF format
957  *
958  * This is the common format for the current Broadcom multimedia
959  * blocks, including V3D 3.x and newer, newer video codecs, and
960  * displays.
961  *
962  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
963  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
964  * stored in columns, with padding between the columns to ensure that
965  * moving from one column to the next doesn't hit the same SDRAM page
966  * bank.
967  *
968  * To calculate the padding, it is assumed that each hardware block
969  * and the software driving it knows the platform's SDRAM page size,
970  * number of banks, and XOR address, and that it's identical between
971  * all blocks using the format.  This tiling modifier will use XOR as
972  * necessary to reduce the padding.  If a hardware block can't do XOR,
973  * the assumption is that a no-XOR tiling modifier will be created.
974  */
975 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
976 
977 /*
978  * Arm Framebuffer Compression (AFBC) modifiers
979  *
980  * AFBC is a proprietary lossless image compression protocol and format.
981  * It provides fine-grained random access and minimizes the amount of data
982  * transferred between IP blocks.
983  *
984  * AFBC has several features which may be supported and/or used, which are
985  * represented using bits in the modifier. Not all combinations are valid,
986  * and different devices or use-cases may support different combinations.
987  *
988  * Further information on the use of AFBC modifiers can be found in
989  * Documentation/gpu/afbc.rst
990  */
991 
992 /*
993  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
994  * modifiers) denote the category for modifiers. Currently we have three
995  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
996  * sixteen different categories.
997  */
998 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
999 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1000 
1001 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1002 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1003 
1004 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1005 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1006 
1007 /*
1008  * AFBC superblock size
1009  *
1010  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1011  * size (in pixels) must be aligned to a multiple of the superblock size.
1012  * Four lowest significant bits(LSBs) are reserved for block size.
1013  *
1014  * Where one superblock size is specified, it applies to all planes of the
1015  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1016  * the first applies to the Luma plane and the second applies to the Chroma
1017  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1018  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1019  */
1020 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1021 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1022 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1023 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1024 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1025 
1026 /*
1027  * AFBC lossless colorspace transform
1028  *
1029  * Indicates that the buffer makes use of the AFBC lossless colorspace
1030  * transform.
1031  */
1032 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1033 
1034 /*
1035  * AFBC block-split
1036  *
1037  * Indicates that the payload of each superblock is split. The second
1038  * half of the payload is positioned at a predefined offset from the start
1039  * of the superblock payload.
1040  */
1041 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1042 
1043 /*
1044  * AFBC sparse layout
1045  *
1046  * This flag indicates that the payload of each superblock must be stored at a
1047  * predefined position relative to the other superblocks in the same AFBC
1048  * buffer. This order is the same order used by the header buffer. In this mode
1049  * each superblock is given the same amount of space as an uncompressed
1050  * superblock of the particular format would require, rounding up to the next
1051  * multiple of 128 bytes in size.
1052  */
1053 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1054 
1055 /*
1056  * AFBC copy-block restrict
1057  *
1058  * Buffers with this flag must obey the copy-block restriction. The restriction
1059  * is such that there are no copy-blocks referring across the border of 8x8
1060  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1061  */
1062 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1063 
1064 /*
1065  * AFBC tiled layout
1066  *
1067  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1068  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1069  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1070  * larger bpp formats. The order between the tiles is scan line.
1071  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1072  * to the tile size.
1073  */
1074 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1075 
1076 /*
1077  * AFBC solid color blocks
1078  *
1079  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1080  * can be reduced if a whole superblock is a single color.
1081  */
1082 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1083 
1084 /*
1085  * AFBC double-buffer
1086  *
1087  * Indicates that the buffer is allocated in a layout safe for front-buffer
1088  * rendering.
1089  */
1090 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1091 
1092 /*
1093  * AFBC buffer content hints
1094  *
1095  * Indicates that the buffer includes per-superblock content hints.
1096  */
1097 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1098 
1099 /* AFBC uncompressed storage mode
1100  *
1101  * Indicates that the buffer is using AFBC uncompressed storage mode.
1102  * In this mode all superblock payloads in the buffer use the uncompressed
1103  * storage mode, which is usually only used for data which cannot be compressed.
1104  * The buffer layout is the same as for AFBC buffers without USM set, this only
1105  * affects the storage mode of the individual superblocks. Note that even a
1106  * buffer without USM set may use uncompressed storage mode for some or all
1107  * superblocks, USM just guarantees it for all.
1108  */
1109 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1110 
1111 /*
1112  * Arm Fixed-Rate Compression (AFRC) modifiers
1113  *
1114  * AFRC is a proprietary fixed rate image compression protocol and format,
1115  * designed to provide guaranteed bandwidth and memory footprint
1116  * reductions in graphics and media use-cases.
1117  *
1118  * AFRC buffers consist of one or more planes, with the same components
1119  * and meaning as an uncompressed buffer using the same pixel format.
1120  *
1121  * Within each plane, the pixel/luma/chroma values are grouped into
1122  * "coding unit" blocks which are individually compressed to a
1123  * fixed size (in bytes). All coding units within a given plane of a buffer
1124  * store the same number of values, and have the same compressed size.
1125  *
1126  * The coding unit size is configurable, allowing different rates of compression.
1127  *
1128  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1129  * depends on the coding unit size.
1130  *
1131  * Coding Unit Size   Plane Alignment
1132  * ----------------   ---------------
1133  * 16 bytes           1024 bytes
1134  * 24 bytes           512  bytes
1135  * 32 bytes           2048 bytes
1136  *
1137  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1138  * to a multiple of the paging tile dimensions.
1139  * The dimensions of each paging tile depend on whether the buffer is optimised for
1140  * scanline (SCAN layout) or rotated (ROT layout) access.
1141  *
1142  * Layout   Paging Tile Width   Paging Tile Height
1143  * ------   -----------------   ------------------
1144  * SCAN     16 coding units     4 coding units
1145  * ROT      8  coding units     8 coding units
1146  *
1147  * The dimensions of each coding unit depend on the number of components
1148  * in the compressed plane and whether the buffer is optimised for
1149  * scanline (SCAN layout) or rotated (ROT layout) access.
1150  *
1151  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1152  * -----------------------------   ---------   -----------------   ------------------
1153  * 1                               SCAN        16 samples          4 samples
1154  * Example: 16x4 luma samples in a 'Y' plane
1155  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1156  * -----------------------------   ---------   -----------------   ------------------
1157  * 1                               ROT         8 samples           8 samples
1158  * Example: 8x8 luma samples in a 'Y' plane
1159  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1160  * -----------------------------   ---------   -----------------   ------------------
1161  * 2                               DONT CARE   8 samples           4 samples
1162  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1163  * -----------------------------   ---------   -----------------   ------------------
1164  * 3                               DONT CARE   4 samples           4 samples
1165  * Example: 4x4 pixels in an RGB buffer without alpha
1166  * -----------------------------   ---------   -----------------   ------------------
1167  * 4                               DONT CARE   4 samples           4 samples
1168  * Example: 4x4 pixels in an RGB buffer with alpha
1169  */
1170 
1171 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1172 
1173 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1174 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1175 
1176 /*
1177  * AFRC coding unit size modifier.
1178  *
1179  * Indicates the number of bytes used to store each compressed coding unit for
1180  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1181  * is the same for both Cb and Cr, which may be stored in separate planes.
1182  *
1183  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1184  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1185  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1186  * this corresponds to the luma plane.
1187  *
1188  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1189  * each compressed coding unit in the second and third planes in the buffer.
1190  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1191  *
1192  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1193  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1194  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1195  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1196  */
1197 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1198 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1199 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1200 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1201 
1202 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1203 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1204 
1205 /*
1206  * AFRC scanline memory layout.
1207  *
1208  * Indicates if the buffer uses the scanline-optimised layout
1209  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1210  * The memory layout is the same for all planes.
1211  */
1212 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1213 
1214 /*
1215  * Arm 16x16 Block U-Interleaved modifier
1216  *
1217  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1218  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1219  * in the block are reordered.
1220  */
1221 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1222 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1223 
1224 /*
1225  * Allwinner tiled modifier
1226  *
1227  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1228  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1229  * planes.
1230  *
1231  * With this tiling, the luminance samples are disposed in tiles representing
1232  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1233  * The pixel order in each tile is linear and the tiles are disposed linearly,
1234  * both in row-major order.
1235  */
1236 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1237 
1238 /*
1239  * Amlogic Video Framebuffer Compression modifiers
1240  *
1241  * Amlogic uses a proprietary lossless image compression protocol and format
1242  * for their hardware video codec accelerators, either video decoders or
1243  * video input encoders.
1244  *
1245  * It considerably reduces memory bandwidth while writing and reading
1246  * frames in memory.
1247  *
1248  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1249  * per component YCbCr 420, single plane :
1250  * - DRM_FORMAT_YUV420_8BIT
1251  * - DRM_FORMAT_YUV420_10BIT
1252  *
1253  * The first 8 bits of the mode defines the layout, then the following 8 bits
1254  * defines the options changing the layout.
1255  *
1256  * Not all combinations are valid, and different SoCs may support different
1257  * combinations of layout and options.
1258  */
1259 #define __fourcc_mod_amlogic_layout_mask 0xff
1260 #define __fourcc_mod_amlogic_options_shift 8
1261 #define __fourcc_mod_amlogic_options_mask 0xff
1262 
1263 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1264 	fourcc_mod_code(AMLOGIC, \
1265 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1266 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1267 			 << __fourcc_mod_amlogic_options_shift))
1268 
1269 /* Amlogic FBC Layouts */
1270 
1271 /*
1272  * Amlogic FBC Basic Layout
1273  *
1274  * The basic layout is composed of:
1275  * - a body content organized in 64x32 superblocks with 4096 bytes per
1276  *   superblock in default mode.
1277  * - a 32 bytes per 128x64 header block
1278  *
1279  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1280  */
1281 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1282 
1283 /*
1284  * Amlogic FBC Scatter Memory layout
1285  *
1286  * Indicates the header contains IOMMU references to the compressed
1287  * frames content to optimize memory access and layout.
1288  *
1289  * In this mode, only the header memory address is needed, thus the
1290  * content memory organization is tied to the current producer
1291  * execution and cannot be saved/dumped neither transferrable between
1292  * Amlogic SoCs supporting this modifier.
1293  *
1294  * Due to the nature of the layout, these buffers are not expected to
1295  * be accessible by the user-space clients, but only accessible by the
1296  * hardware producers and consumers.
1297  *
1298  * The user-space clients should expect a failure while trying to mmap
1299  * the DMA-BUF handle returned by the producer.
1300  */
1301 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1302 
1303 /* Amlogic FBC Layout Options Bit Mask */
1304 
1305 /*
1306  * Amlogic FBC Memory Saving mode
1307  *
1308  * Indicates the storage is packed when pixel size is multiple of word
1309  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1310  * memory.
1311  *
1312  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1313  * the basic layout and 3200 bytes per 64x32 superblock combined with
1314  * the scatter layout.
1315  */
1316 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1317 
1318 /*
1319  * AMD modifiers
1320  *
1321  * Memory layout:
1322  *
1323  * without DCC:
1324  *   - main surface
1325  *
1326  * with DCC & without DCC_RETILE:
1327  *   - main surface in plane 0
1328  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1329  *
1330  * with DCC & DCC_RETILE:
1331  *   - main surface in plane 0
1332  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1333  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1334  *
1335  * For multi-plane formats the above surfaces get merged into one plane for
1336  * each format plane, based on the required alignment only.
1337  *
1338  * Bits  Parameter                Notes
1339  * ----- ------------------------ ---------------------------------------------
1340  *
1341  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1342  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1343  *    13 DCC
1344  *    14 DCC_RETILE
1345  *    15 DCC_PIPE_ALIGN
1346  *    16 DCC_INDEPENDENT_64B
1347  *    17 DCC_INDEPENDENT_128B
1348  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1349  *    20 DCC_CONSTANT_ENCODE
1350  * 23:21 PIPE_XOR_BITS            Only for some chips
1351  * 26:24 BANK_XOR_BITS            Only for some chips
1352  * 29:27 PACKERS                  Only for some chips
1353  * 32:30 RB                       Only for some chips
1354  * 35:33 PIPE                     Only for some chips
1355  * 55:36 -                        Reserved for future use, must be zero
1356  */
1357 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1358 
1359 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1360 
1361 /* Reserve 0 for GFX8 and older */
1362 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1363 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1364 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1365 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1366 
1367 /*
1368  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1369  * version.
1370  */
1371 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1372 
1373 /*
1374  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1375  * GFX9 as canonical version.
1376  */
1377 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1378 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1379 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1380 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1381 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1382 
1383 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1384 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1385 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1386 
1387 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1388 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1389 #define AMD_FMT_MOD_TILE_SHIFT 8
1390 #define AMD_FMT_MOD_TILE_MASK 0x1F
1391 
1392 /* Whether DCC compression is enabled. */
1393 #define AMD_FMT_MOD_DCC_SHIFT 13
1394 #define AMD_FMT_MOD_DCC_MASK 0x1
1395 
1396 /*
1397  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1398  * one which is not-aligned.
1399  */
1400 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1401 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1402 
1403 /* Only set if DCC_RETILE = false */
1404 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1405 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1406 
1407 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1408 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1409 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1410 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1411 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1412 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1413 
1414 /*
1415  * DCC supports embedding some clear colors directly in the DCC surface.
1416  * However, on older GPUs the rendering HW ignores the embedded clear color
1417  * and prefers the driver provided color. This necessitates doing a fastclear
1418  * eliminate operation before a process transfers control.
1419  *
1420  * If this bit is set that means the fastclear eliminate is not needed for these
1421  * embeddable colors.
1422  */
1423 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1424 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1425 
1426 /*
1427  * The below fields are for accounting for per GPU differences. These are only
1428  * relevant for GFX9 and later and if the tile field is *_X/_T.
1429  *
1430  * PIPE_XOR_BITS = always needed
1431  * BANK_XOR_BITS = only for TILE_VER_GFX9
1432  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1433  * RB = only for TILE_VER_GFX9 & DCC
1434  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1435  */
1436 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1437 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1438 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1439 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1440 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1441 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1442 #define AMD_FMT_MOD_RB_SHIFT 30
1443 #define AMD_FMT_MOD_RB_MASK 0x7
1444 #define AMD_FMT_MOD_PIPE_SHIFT 33
1445 #define AMD_FMT_MOD_PIPE_MASK 0x7
1446 
1447 #define AMD_FMT_MOD_SET(field, value) \
1448 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1449 #define AMD_FMT_MOD_GET(field, value) \
1450 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1451 #define AMD_FMT_MOD_CLEAR(field) \
1452 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1453 
1454 #if defined(__cplusplus)
1455 }
1456 #endif
1457 
1458 #endif /* DRM_FOURCC_H */
1459