1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
61  * match only a single modifier. A modifier must not be a subset of layouts of
62  * another modifier. For instance, it's incorrect to encode pitch alignment in
63  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
64  * aligned modifier. That said, modifiers can have implicit minimal
65  * requirements.
66  *
67  * For modifiers where the combination of fourcc code and modifier can alias,
68  * a canonical pair needs to be defined and used by all drivers. Preferred
69  * combinations are also encouraged where all combinations might lead to
70  * confusion and unnecessarily reduced interoperability. An example for the
71  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
72  *
73  * There are two kinds of modifier users:
74  *
75  * - Kernel and user-space drivers: for drivers it's important that modifiers
76  *   don't alias, otherwise two drivers might support the same format but use
77  *   different aliases, preventing them from sharing buffers in an efficient
78  *   format.
79  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
80  *   see modifiers as opaque tokens they can check for equality and intersect.
81  *   These users musn't need to know to reason about the modifier value
82  *   (i.e. they are not expected to extract information out of the modifier).
83  *
84  * Vendors should document their modifier usage in as much detail as
85  * possible, to ensure maximum compatibility across devices, drivers and
86  * applications.
87  *
88  * The authoritative list of format modifier codes is found in
89  * `include/uapi/drm/drm_fourcc.h`
90  *
91  * Open Source User Waiver
92  * -----------------------
93  *
94  * Because this is the authoritative source for pixel formats and modifiers
95  * referenced by GL, Vulkan extensions and other standards and hence used both
96  * by open source and closed source driver stacks, the usual requirement for an
97  * upstream in-kernel or open source userspace user does not apply.
98  *
99  * To ensure, as much as feasible, compatibility across stacks and avoid
100  * confusion with incompatible enumerations stakeholders for all relevant driver
101  * stacks should approve additions.
102  */
103 
104 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
105 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
106 
107 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
108 
109 /* Reserve 0 for the invalid format specifier */
110 #define DRM_FORMAT_INVALID	0
111 
112 /* color index */
113 #define DRM_FORMAT_C1		fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
114 #define DRM_FORMAT_C2		fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
115 #define DRM_FORMAT_C4		fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
116 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
117 
118 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
119 #define DRM_FORMAT_D1		fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
120 
121 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
122 #define DRM_FORMAT_D2		fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
123 
124 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
125 #define DRM_FORMAT_D4		fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
126 
127 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
128 #define DRM_FORMAT_D8		fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
129 
130 /* 1 bpp Red (direct relationship between channel value and brightness) */
131 #define DRM_FORMAT_R1		fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
132 
133 /* 2 bpp Red (direct relationship between channel value and brightness) */
134 #define DRM_FORMAT_R2		fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
135 
136 /* 4 bpp Red (direct relationship between channel value and brightness) */
137 #define DRM_FORMAT_R4		fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
138 
139 /* 8 bpp Red (direct relationship between channel value and brightness) */
140 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
141 
142 /* 10 bpp Red (direct relationship between channel value and brightness) */
143 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
144 
145 /* 12 bpp Red (direct relationship between channel value and brightness) */
146 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
147 
148 /* 16 bpp Red (direct relationship between channel value and brightness) */
149 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
150 
151 /* 16 bpp RG */
152 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
153 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
154 
155 /* 32 bpp RG */
156 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
157 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
158 
159 /* 8 bpp RGB */
160 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
161 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
162 
163 /* 16 bpp RGB */
164 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
165 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
166 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
167 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
168 
169 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
170 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
171 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
172 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
173 
174 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
175 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
176 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
177 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
178 
179 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
180 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
181 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
182 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
183 
184 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
185 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
186 
187 /* 24 bpp RGB */
188 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
189 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
190 
191 /* 32 bpp RGB */
192 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
193 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
194 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
195 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
196 
197 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
198 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
199 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
200 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
201 
202 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
203 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
204 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
205 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
206 
207 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
208 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
209 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
210 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
211 
212 /* 64 bpp RGB */
213 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
214 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
215 
216 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
217 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
218 
219 /*
220  * Floating point 64bpp RGB
221  * IEEE 754-2008 binary16 half-precision float
222  * [15:0] sign:exponent:mantissa 1:5:10
223  */
224 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
225 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
226 
227 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
228 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
229 
230 /*
231  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
232  * of unused padding per component:
233  */
234 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
235 
236 /* packed YCbCr */
237 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
238 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
239 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
240 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
241 
242 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
243 #define DRM_FORMAT_AVUY8888	fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
244 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
245 #define DRM_FORMAT_XVUY8888	fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
246 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
247 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
248 
249 /*
250  * packed Y2xx indicate for each component, xx valid data occupy msb
251  * 16-xx padding occupy lsb
252  */
253 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
254 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
255 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
256 
257 /*
258  * packed Y4xx indicate for each component, xx valid data occupy msb
259  * 16-xx padding occupy lsb except Y410
260  */
261 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
262 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
263 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
264 
265 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
266 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
267 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
268 
269 /*
270  * packed YCbCr420 2x2 tiled formats
271  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
272  */
273 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
274 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
275 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
276 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
277 
278 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
279 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
280 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
281 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
282 
283 /*
284  * 1-plane YUV 4:2:0
285  * In these formats, the component ordering is specified (Y, followed by U
286  * then V), but the exact Linear layout is undefined.
287  * These formats can only be used with a non-Linear modifier.
288  */
289 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
290 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
291 
292 /*
293  * 2 plane RGB + A
294  * index 0 = RGB plane, same format as the corresponding non _A8 format has
295  * index 1 = A plane, [7:0] A
296  */
297 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
298 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
299 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
300 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
301 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
302 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
303 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
304 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
305 
306 /*
307  * 2 plane YCbCr
308  * index 0 = Y plane, [7:0] Y
309  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
310  * or
311  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
312  */
313 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
314 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
315 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
316 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
317 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
318 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
319 /*
320  * 2 plane YCbCr
321  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
322  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
323  */
324 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
325 
326 /*
327  * 2 plane YCbCr MSB aligned
328  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
329  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
330  */
331 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
332 
333 /*
334  * 2 plane YCbCr MSB aligned
335  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
336  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
337  */
338 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
339 
340 /*
341  * 2 plane YCbCr MSB aligned
342  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
343  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
344  */
345 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
346 
347 /*
348  * 2 plane YCbCr MSB aligned
349  * index 0 = Y plane, [15:0] Y little endian
350  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
351  */
352 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
353 
354 /* 2 plane YCbCr420.
355  * 3 10 bit components and 2 padding bits packed into 4 bytes.
356  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
357  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
358  */
359 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
360 
361 /* 3 plane non-subsampled (444) YCbCr
362  * 16 bits per component, but only 10 bits are used and 6 bits are padded
363  * index 0: Y plane, [15:0] Y:x [10:6] little endian
364  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
365  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
366  */
367 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
368 
369 /* 3 plane non-subsampled (444) YCrCb
370  * 16 bits per component, but only 10 bits are used and 6 bits are padded
371  * index 0: Y plane, [15:0] Y:x [10:6] little endian
372  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
373  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
374  */
375 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
376 
377 /*
378  * 3 plane YCbCr
379  * index 0: Y plane, [7:0] Y
380  * index 1: Cb plane, [7:0] Cb
381  * index 2: Cr plane, [7:0] Cr
382  * or
383  * index 1: Cr plane, [7:0] Cr
384  * index 2: Cb plane, [7:0] Cb
385  */
386 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
387 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
388 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
389 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
390 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
391 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
392 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
393 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
394 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
395 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
396 
397 
398 /*
399  * Format Modifiers:
400  *
401  * Format modifiers describe, typically, a re-ordering or modification
402  * of the data in a plane of an FB.  This can be used to express tiled/
403  * swizzled formats, or compression, or a combination of the two.
404  *
405  * The upper 8 bits of the format modifier are a vendor-id as assigned
406  * below.  The lower 56 bits are assigned as vendor sees fit.
407  */
408 
409 /* Vendor Ids: */
410 #define DRM_FORMAT_MOD_VENDOR_NONE    0
411 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
412 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
413 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
414 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
415 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
416 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
417 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
418 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
419 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
420 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
421 
422 /* add more to the end as needed */
423 
424 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
425 
426 #define fourcc_mod_get_vendor(modifier) \
427 	(((modifier) >> 56) & 0xff)
428 
429 #define fourcc_mod_is_vendor(modifier, vendor) \
430 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
431 
432 #define fourcc_mod_code(vendor, val) \
433 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
434 
435 /*
436  * Format Modifier tokens:
437  *
438  * When adding a new token please document the layout with a code comment,
439  * similar to the fourcc codes above. drm_fourcc.h is considered the
440  * authoritative source for all of these.
441  *
442  * Generic modifier names:
443  *
444  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
445  * for layouts which are common across multiple vendors. To preserve
446  * compatibility, in cases where a vendor-specific definition already exists and
447  * a generic name for it is desired, the common name is a purely symbolic alias
448  * and must use the same numerical value as the original definition.
449  *
450  * Note that generic names should only be used for modifiers which describe
451  * generic layouts (such as pixel re-ordering), which may have
452  * independently-developed support across multiple vendors.
453  *
454  * In future cases where a generic layout is identified before merging with a
455  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
456  * 'NONE' could be considered. This should only be for obvious, exceptional
457  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
458  * apply to a single vendor.
459  *
460  * Generic names should not be used for cases where multiple hardware vendors
461  * have implementations of the same standardised compression scheme (such as
462  * AFBC). In those cases, all implementations should use the same format
463  * modifier(s), reflecting the vendor of the standard.
464  */
465 
466 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
467 
468 /*
469  * Invalid Modifier
470  *
471  * This modifier can be used as a sentinel to terminate the format modifiers
472  * list, or to initialize a variable with an invalid modifier. It might also be
473  * used to report an error back to userspace for certain APIs.
474  */
475 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
476 
477 /*
478  * Linear Layout
479  *
480  * Just plain linear layout. Note that this is different from no specifying any
481  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
482  * which tells the driver to also take driver-internal information into account
483  * and so might actually result in a tiled framebuffer.
484  */
485 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
486 
487 /*
488  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
489  *
490  * The "none" format modifier doesn't actually mean that the modifier is
491  * implicit, instead it means that the layout is linear. Whether modifiers are
492  * used is out-of-band information carried in an API-specific way (e.g. in a
493  * flag for drm_mode_fb_cmd2).
494  */
495 #define DRM_FORMAT_MOD_NONE	0
496 
497 /* Intel framebuffer modifiers */
498 
499 /*
500  * Intel X-tiling layout
501  *
502  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
503  * in row-major layout. Within the tile bytes are laid out row-major, with
504  * a platform-dependent stride. On top of that the memory can apply
505  * platform-depending swizzling of some higher address bits into bit6.
506  *
507  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
508  * On earlier platforms the is highly platforms specific and not useful for
509  * cross-driver sharing. It exists since on a given platform it does uniquely
510  * identify the layout in a simple way for i915-specific userspace, which
511  * facilitated conversion of userspace to modifiers. Additionally the exact
512  * format on some really old platforms is not known.
513  */
514 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
515 
516 /*
517  * Intel Y-tiling layout
518  *
519  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
520  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
521  * chunks column-major, with a platform-dependent height. On top of that the
522  * memory can apply platform-depending swizzling of some higher address bits
523  * into bit6.
524  *
525  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
526  * On earlier platforms the is highly platforms specific and not useful for
527  * cross-driver sharing. It exists since on a given platform it does uniquely
528  * identify the layout in a simple way for i915-specific userspace, which
529  * facilitated conversion of userspace to modifiers. Additionally the exact
530  * format on some really old platforms is not known.
531  */
532 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
533 
534 /*
535  * Intel Yf-tiling layout
536  *
537  * This is a tiled layout using 4Kb tiles in row-major layout.
538  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
539  * are arranged in four groups (two wide, two high) with column-major layout.
540  * Each group therefore consits out of four 256 byte units, which are also laid
541  * out as 2x2 column-major.
542  * 256 byte units are made out of four 64 byte blocks of pixels, producing
543  * either a square block or a 2:1 unit.
544  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
545  * in pixel depends on the pixel depth.
546  */
547 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
548 
549 /*
550  * Intel color control surface (CCS) for render compression
551  *
552  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
553  * The main surface will be plane index 0 and must be Y/Yf-tiled,
554  * the CCS will be plane index 1.
555  *
556  * Each CCS tile matches a 1024x512 pixel area of the main surface.
557  * To match certain aspects of the 3D hardware the CCS is
558  * considered to be made up of normal 128Bx32 Y tiles, Thus
559  * the CCS pitch must be specified in multiples of 128 bytes.
560  *
561  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
562  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
563  * But that fact is not relevant unless the memory is accessed
564  * directly.
565  */
566 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
567 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
568 
569 /*
570  * Intel color control surfaces (CCS) for Gen-12 render compression.
571  *
572  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
573  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
574  * main surface. In other words, 4 bits in CCS map to a main surface cache
575  * line pair. The main surface pitch is required to be a multiple of four
576  * Y-tile widths.
577  */
578 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
579 
580 /*
581  * Intel color control surfaces (CCS) for Gen-12 media compression
582  *
583  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
584  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
585  * main surface. In other words, 4 bits in CCS map to a main surface cache
586  * line pair. The main surface pitch is required to be a multiple of four
587  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
588  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
589  * planes 2 and 3 for the respective CCS.
590  */
591 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
592 
593 /*
594  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
595  * compression.
596  *
597  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
598  * and at index 1. The clear color is stored at index 2, and the pitch should
599  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
600  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
601  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
602  * the converted clear color of size 64 bits. The first 32 bits store the Lower
603  * Converted Clear Color value and the next 32 bits store the Higher Converted
604  * Clear Color value when applicable. The Converted Clear Color values are
605  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
606  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
607  * corresponds to an area of 4x1 tiles in the main surface. The main surface
608  * pitch is required to be a multiple of 4 tile widths.
609  */
610 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
611 
612 /*
613  * Intel Tile 4 layout
614  *
615  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
616  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
617  * only differs from Tile Y at the 256B granularity in between. At this
618  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
619  * of 64B x 8 rows.
620  */
621 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
622 
623 /*
624  * Intel color control surfaces (CCS) for DG2 render compression.
625  *
626  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
627  * outside of the GEM object in a reserved memory area dedicated for the
628  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
629  * main surface pitch is required to be a multiple of four Tile 4 widths.
630  */
631 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
632 
633 /*
634  * Intel color control surfaces (CCS) for DG2 media compression.
635  *
636  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
637  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
638  * 0 and 1, respectively. The CCS for all planes are stored outside of the
639  * GEM object in a reserved memory area dedicated for the storage of the
640  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
641  * pitch is required to be a multiple of four Tile 4 widths.
642  */
643 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
644 
645 /*
646  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
647  *
648  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
649  * outside of the GEM object in a reserved memory area dedicated for the
650  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
651  * main surface pitch is required to be a multiple of four Tile 4 widths. The
652  * clear color is stored at plane index 1 and the pitch should be 64 bytes
653  * aligned. The format of the 256 bits of clear color data matches the one used
654  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
655  * for details.
656  */
657 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
658 
659 /*
660  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
661  *
662  * Macroblocks are laid in a Z-shape, and each pixel data is following the
663  * standard NV12 style.
664  * As for NV12, an image is the result of two frame buffers: one for Y,
665  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
666  * Alignment requirements are (for each buffer):
667  * - multiple of 128 pixels for the width
668  * - multiple of  32 pixels for the height
669  *
670  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
671  */
672 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
673 
674 /*
675  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
676  *
677  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
678  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
679  * they correspond to their 16x16 luma block.
680  */
681 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
682 
683 /*
684  * Qualcomm Compressed Format
685  *
686  * Refers to a compressed variant of the base format that is compressed.
687  * Implementation may be platform and base-format specific.
688  *
689  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
690  * Pixel data pitch/stride is aligned with macrotile width.
691  * Pixel data height is aligned with macrotile height.
692  * Entire pixel data buffer is aligned with 4k(bytes).
693  */
694 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
695 
696 /*
697  * Qualcomm Tiled Format
698  *
699  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
700  * Implementation may be platform and base-format specific.
701  *
702  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
703  * Pixel data pitch/stride is aligned with macrotile width.
704  * Pixel data height is aligned with macrotile height.
705  * Entire pixel data buffer is aligned with 4k(bytes).
706  */
707 #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
708 
709 /*
710  * Qualcomm Alternate Tiled Format
711  *
712  * Alternate tiled format typically only used within GMEM.
713  * Implementation may be platform and base-format specific.
714  */
715 #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
716 
717 
718 /* Vivante framebuffer modifiers */
719 
720 /*
721  * Vivante 4x4 tiling layout
722  *
723  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
724  * layout.
725  */
726 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
727 
728 /*
729  * Vivante 64x64 super-tiling layout
730  *
731  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
732  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
733  * major layout.
734  *
735  * For more information: see
736  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
737  */
738 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
739 
740 /*
741  * Vivante 4x4 tiling layout for dual-pipe
742  *
743  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
744  * different base address. Offsets from the base addresses are therefore halved
745  * compared to the non-split tiled layout.
746  */
747 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
748 
749 /*
750  * Vivante 64x64 super-tiling layout for dual-pipe
751  *
752  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
753  * starts at a different base address. Offsets from the base addresses are
754  * therefore halved compared to the non-split super-tiled layout.
755  */
756 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
757 
758 /*
759  * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
760  * the color buffer tiling modifiers defined above. When TS is present it's a
761  * separate buffer containing the clear/compression status of each tile. The
762  * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
763  * tile size in bytes covered by one entry in the status buffer and s is the
764  * number of status bits per entry.
765  * We reserve the top 8 bits of the Vivante modifier space for tile status
766  * clear/compression modifiers, as future cores might add some more TS layout
767  * variations.
768  */
769 #define VIVANTE_MOD_TS_64_4               (1ULL << 48)
770 #define VIVANTE_MOD_TS_64_2               (2ULL << 48)
771 #define VIVANTE_MOD_TS_128_4              (3ULL << 48)
772 #define VIVANTE_MOD_TS_256_4              (4ULL << 48)
773 #define VIVANTE_MOD_TS_MASK               (0xfULL << 48)
774 
775 /*
776  * Vivante compression modifiers. Those depend on a TS modifier being present
777  * as the TS bits get reinterpreted as compression tags instead of simple
778  * clear markers when compression is enabled.
779  */
780 #define VIVANTE_MOD_COMP_DEC400           (1ULL << 52)
781 #define VIVANTE_MOD_COMP_MASK             (0xfULL << 52)
782 
783 /* Masking out the extension bits will yield the base modifier. */
784 #define VIVANTE_MOD_EXT_MASK              (VIVANTE_MOD_TS_MASK | \
785                                            VIVANTE_MOD_COMP_MASK)
786 
787 /* NVIDIA frame buffer modifiers */
788 
789 /*
790  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
791  *
792  * Pixels are arranged in simple tiles of 16 x 16 bytes.
793  */
794 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
795 
796 /*
797  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
798  * and Tegra GPUs starting with Tegra K1.
799  *
800  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
801  * based on the architecture generation.  GOBs themselves are then arranged in
802  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
803  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
804  * a block depth or height of "4").
805  *
806  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
807  * in full detail.
808  *
809  *       Macro
810  * Bits  Param Description
811  * ----  ----- -----------------------------------------------------------------
812  *
813  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
814  *             compatibility with the existing
815  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
816  *
817  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
818  *             compatibility with the existing
819  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
820  *
821  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
822  *             size).  Must be zero.
823  *
824  *             Note there is no log2(width) parameter.  Some portions of the
825  *             hardware support a block width of two gobs, but it is impractical
826  *             to use due to lack of support elsewhere, and has no known
827  *             benefits.
828  *
829  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
830  *             in blocks, specified via log2(tile width in blocks)).  Must be
831  *             zero.
832  *
833  * 19:12 k     Page Kind.  This value directly maps to a field in the page
834  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
835  *             in memory and can be derived from the tuple
836  *
837  *               (format, GPU model, compression type, samples per pixel)
838  *
839  *             Where compression type is defined below.  If GPU model were
840  *             implied by the format modifier, format, or memory buffer, page
841  *             kind would not need to be included in the modifier itself, but
842  *             since the modifier should define the layout of the associated
843  *             memory buffer independent from any device or other context, it
844  *             must be included here.
845  *
846  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
847  *             starting with Fermi GPUs.  Additionally, the mapping between page
848  *             kind and bit layout has changed at various points.
849  *
850  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
851  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
852  *               2 = Gob Height 8, Turing+ Page Kind mapping
853  *               3 = Reserved for future use.
854  *
855  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
856  *             bit remapping step that occurs at an even lower level than the
857  *             page kind and block linear swizzles.  This causes the layout of
858  *             surfaces mapped in those SOC's GPUs to be incompatible with the
859  *             equivalent mapping on other GPUs in the same system.
860  *
861  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
862  *               1 = Desktop GPU and Tegra Xavier+ Layout
863  *
864  * 25:23 c     Lossless Framebuffer Compression type.
865  *
866  *               0 = none
867  *               1 = ROP/3D, layout 1, exact compression format implied by Page
868  *                   Kind field
869  *               2 = ROP/3D, layout 2, exact compression format implied by Page
870  *                   Kind field
871  *               3 = CDE horizontal
872  *               4 = CDE vertical
873  *               5 = Reserved for future use
874  *               6 = Reserved for future use
875  *               7 = Reserved for future use
876  *
877  * 55:25 -     Reserved for future use.  Must be zero.
878  */
879 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
880 	fourcc_mod_code(NVIDIA, (0x10 | \
881 				 ((h) & 0xf) | \
882 				 (((k) & 0xff) << 12) | \
883 				 (((g) & 0x3) << 20) | \
884 				 (((s) & 0x1) << 22) | \
885 				 (((c) & 0x7) << 23)))
886 
887 /* To grandfather in prior block linear format modifiers to the above layout,
888  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
889  * with block-linear layouts, is remapped within drivers to the value 0xfe,
890  * which corresponds to the "generic" kind used for simple single-sample
891  * uncompressed color formats on Fermi - Volta GPUs.
892  */
893 static inline uint64_t
894 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
895 {
896 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
897 		return modifier;
898 	else
899 		return modifier | (0xfe << 12);
900 }
901 
902 /*
903  * 16Bx2 Block Linear layout, used by Tegra K1 and later
904  *
905  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
906  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
907  *
908  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
909  *
910  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
911  * Valid values are:
912  *
913  * 0 == ONE_GOB
914  * 1 == TWO_GOBS
915  * 2 == FOUR_GOBS
916  * 3 == EIGHT_GOBS
917  * 4 == SIXTEEN_GOBS
918  * 5 == THIRTYTWO_GOBS
919  *
920  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
921  * in full detail.
922  */
923 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
924 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
925 
926 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
927 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
928 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
929 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
930 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
931 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
932 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
933 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
934 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
935 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
936 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
937 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
938 
939 /*
940  * Some Broadcom modifiers take parameters, for example the number of
941  * vertical lines in the image. Reserve the lower 32 bits for modifier
942  * type, and the next 24 bits for parameters. Top 8 bits are the
943  * vendor code.
944  */
945 #define __fourcc_mod_broadcom_param_shift 8
946 #define __fourcc_mod_broadcom_param_bits 48
947 #define fourcc_mod_broadcom_code(val, params) \
948 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
949 #define fourcc_mod_broadcom_param(m) \
950 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
951 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
952 #define fourcc_mod_broadcom_mod(m) \
953 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
954 		 __fourcc_mod_broadcom_param_shift))
955 
956 /*
957  * Broadcom VC4 "T" format
958  *
959  * This is the primary layout that the V3D GPU can texture from (it
960  * can't do linear).  The T format has:
961  *
962  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
963  *   pixels at 32 bit depth.
964  *
965  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
966  *   16x16 pixels).
967  *
968  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
969  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
970  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
971  *
972  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
973  *   tiles) or right-to-left (odd rows of 4k tiles).
974  */
975 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
976 
977 /*
978  * Broadcom SAND format
979  *
980  * This is the native format that the H.264 codec block uses.  For VC4
981  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
982  *
983  * The image can be considered to be split into columns, and the
984  * columns are placed consecutively into memory.  The width of those
985  * columns can be either 32, 64, 128, or 256 pixels, but in practice
986  * only 128 pixel columns are used.
987  *
988  * The pitch between the start of each column is set to optimally
989  * switch between SDRAM banks. This is passed as the number of lines
990  * of column width in the modifier (we can't use the stride value due
991  * to various core checks that look at it , so you should set the
992  * stride to width*cpp).
993  *
994  * Note that the column height for this format modifier is the same
995  * for all of the planes, assuming that each column contains both Y
996  * and UV.  Some SAND-using hardware stores UV in a separate tiled
997  * image from Y to reduce the column height, which is not supported
998  * with these modifiers.
999  *
1000  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1001  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1002  * wide, but as this is a 10 bpp format that translates to 96 pixels.
1003  */
1004 
1005 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1006 	fourcc_mod_broadcom_code(2, v)
1007 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1008 	fourcc_mod_broadcom_code(3, v)
1009 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1010 	fourcc_mod_broadcom_code(4, v)
1011 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1012 	fourcc_mod_broadcom_code(5, v)
1013 
1014 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1015 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1016 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1017 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1018 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1019 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1020 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1021 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1022 
1023 /* Broadcom UIF format
1024  *
1025  * This is the common format for the current Broadcom multimedia
1026  * blocks, including V3D 3.x and newer, newer video codecs, and
1027  * displays.
1028  *
1029  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1030  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
1031  * stored in columns, with padding between the columns to ensure that
1032  * moving from one column to the next doesn't hit the same SDRAM page
1033  * bank.
1034  *
1035  * To calculate the padding, it is assumed that each hardware block
1036  * and the software driving it knows the platform's SDRAM page size,
1037  * number of banks, and XOR address, and that it's identical between
1038  * all blocks using the format.  This tiling modifier will use XOR as
1039  * necessary to reduce the padding.  If a hardware block can't do XOR,
1040  * the assumption is that a no-XOR tiling modifier will be created.
1041  */
1042 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1043 
1044 /*
1045  * Arm Framebuffer Compression (AFBC) modifiers
1046  *
1047  * AFBC is a proprietary lossless image compression protocol and format.
1048  * It provides fine-grained random access and minimizes the amount of data
1049  * transferred between IP blocks.
1050  *
1051  * AFBC has several features which may be supported and/or used, which are
1052  * represented using bits in the modifier. Not all combinations are valid,
1053  * and different devices or use-cases may support different combinations.
1054  *
1055  * Further information on the use of AFBC modifiers can be found in
1056  * Documentation/gpu/afbc.rst
1057  */
1058 
1059 /*
1060  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
1061  * modifiers) denote the category for modifiers. Currently we have three
1062  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1063  * sixteen different categories.
1064  */
1065 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1066 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1067 
1068 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1069 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1070 
1071 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1072 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1073 
1074 /*
1075  * AFBC superblock size
1076  *
1077  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1078  * size (in pixels) must be aligned to a multiple of the superblock size.
1079  * Four lowest significant bits(LSBs) are reserved for block size.
1080  *
1081  * Where one superblock size is specified, it applies to all planes of the
1082  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1083  * the first applies to the Luma plane and the second applies to the Chroma
1084  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1085  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1086  */
1087 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1088 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1089 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1090 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1091 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1092 
1093 /*
1094  * AFBC lossless colorspace transform
1095  *
1096  * Indicates that the buffer makes use of the AFBC lossless colorspace
1097  * transform.
1098  */
1099 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1100 
1101 /*
1102  * AFBC block-split
1103  *
1104  * Indicates that the payload of each superblock is split. The second
1105  * half of the payload is positioned at a predefined offset from the start
1106  * of the superblock payload.
1107  */
1108 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1109 
1110 /*
1111  * AFBC sparse layout
1112  *
1113  * This flag indicates that the payload of each superblock must be stored at a
1114  * predefined position relative to the other superblocks in the same AFBC
1115  * buffer. This order is the same order used by the header buffer. In this mode
1116  * each superblock is given the same amount of space as an uncompressed
1117  * superblock of the particular format would require, rounding up to the next
1118  * multiple of 128 bytes in size.
1119  */
1120 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1121 
1122 /*
1123  * AFBC copy-block restrict
1124  *
1125  * Buffers with this flag must obey the copy-block restriction. The restriction
1126  * is such that there are no copy-blocks referring across the border of 8x8
1127  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1128  */
1129 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1130 
1131 /*
1132  * AFBC tiled layout
1133  *
1134  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1135  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1136  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1137  * larger bpp formats. The order between the tiles is scan line.
1138  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1139  * to the tile size.
1140  */
1141 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1142 
1143 /*
1144  * AFBC solid color blocks
1145  *
1146  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1147  * can be reduced if a whole superblock is a single color.
1148  */
1149 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1150 
1151 /*
1152  * AFBC double-buffer
1153  *
1154  * Indicates that the buffer is allocated in a layout safe for front-buffer
1155  * rendering.
1156  */
1157 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1158 
1159 /*
1160  * AFBC buffer content hints
1161  *
1162  * Indicates that the buffer includes per-superblock content hints.
1163  */
1164 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1165 
1166 /* AFBC uncompressed storage mode
1167  *
1168  * Indicates that the buffer is using AFBC uncompressed storage mode.
1169  * In this mode all superblock payloads in the buffer use the uncompressed
1170  * storage mode, which is usually only used for data which cannot be compressed.
1171  * The buffer layout is the same as for AFBC buffers without USM set, this only
1172  * affects the storage mode of the individual superblocks. Note that even a
1173  * buffer without USM set may use uncompressed storage mode for some or all
1174  * superblocks, USM just guarantees it for all.
1175  */
1176 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1177 
1178 /*
1179  * Arm Fixed-Rate Compression (AFRC) modifiers
1180  *
1181  * AFRC is a proprietary fixed rate image compression protocol and format,
1182  * designed to provide guaranteed bandwidth and memory footprint
1183  * reductions in graphics and media use-cases.
1184  *
1185  * AFRC buffers consist of one or more planes, with the same components
1186  * and meaning as an uncompressed buffer using the same pixel format.
1187  *
1188  * Within each plane, the pixel/luma/chroma values are grouped into
1189  * "coding unit" blocks which are individually compressed to a
1190  * fixed size (in bytes). All coding units within a given plane of a buffer
1191  * store the same number of values, and have the same compressed size.
1192  *
1193  * The coding unit size is configurable, allowing different rates of compression.
1194  *
1195  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1196  * depends on the coding unit size.
1197  *
1198  * Coding Unit Size   Plane Alignment
1199  * ----------------   ---------------
1200  * 16 bytes           1024 bytes
1201  * 24 bytes           512  bytes
1202  * 32 bytes           2048 bytes
1203  *
1204  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1205  * to a multiple of the paging tile dimensions.
1206  * The dimensions of each paging tile depend on whether the buffer is optimised for
1207  * scanline (SCAN layout) or rotated (ROT layout) access.
1208  *
1209  * Layout   Paging Tile Width   Paging Tile Height
1210  * ------   -----------------   ------------------
1211  * SCAN     16 coding units     4 coding units
1212  * ROT      8  coding units     8 coding units
1213  *
1214  * The dimensions of each coding unit depend on the number of components
1215  * in the compressed plane and whether the buffer is optimised for
1216  * scanline (SCAN layout) or rotated (ROT layout) access.
1217  *
1218  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1219  * -----------------------------   ---------   -----------------   ------------------
1220  * 1                               SCAN        16 samples          4 samples
1221  * Example: 16x4 luma samples in a 'Y' plane
1222  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1223  * -----------------------------   ---------   -----------------   ------------------
1224  * 1                               ROT         8 samples           8 samples
1225  * Example: 8x8 luma samples in a 'Y' plane
1226  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1227  * -----------------------------   ---------   -----------------   ------------------
1228  * 2                               DONT CARE   8 samples           4 samples
1229  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1230  * -----------------------------   ---------   -----------------   ------------------
1231  * 3                               DONT CARE   4 samples           4 samples
1232  * Example: 4x4 pixels in an RGB buffer without alpha
1233  * -----------------------------   ---------   -----------------   ------------------
1234  * 4                               DONT CARE   4 samples           4 samples
1235  * Example: 4x4 pixels in an RGB buffer with alpha
1236  */
1237 
1238 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1239 
1240 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1241 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1242 
1243 /*
1244  * AFRC coding unit size modifier.
1245  *
1246  * Indicates the number of bytes used to store each compressed coding unit for
1247  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1248  * is the same for both Cb and Cr, which may be stored in separate planes.
1249  *
1250  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1251  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1252  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1253  * this corresponds to the luma plane.
1254  *
1255  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1256  * each compressed coding unit in the second and third planes in the buffer.
1257  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1258  *
1259  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1260  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1261  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1262  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1263  */
1264 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1265 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1266 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1267 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1268 
1269 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1270 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1271 
1272 /*
1273  * AFRC scanline memory layout.
1274  *
1275  * Indicates if the buffer uses the scanline-optimised layout
1276  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1277  * The memory layout is the same for all planes.
1278  */
1279 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1280 
1281 /*
1282  * Arm 16x16 Block U-Interleaved modifier
1283  *
1284  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1285  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1286  * in the block are reordered.
1287  */
1288 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1289 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1290 
1291 /*
1292  * Allwinner tiled modifier
1293  *
1294  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1295  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1296  * planes.
1297  *
1298  * With this tiling, the luminance samples are disposed in tiles representing
1299  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1300  * The pixel order in each tile is linear and the tiles are disposed linearly,
1301  * both in row-major order.
1302  */
1303 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1304 
1305 /*
1306  * Amlogic Video Framebuffer Compression modifiers
1307  *
1308  * Amlogic uses a proprietary lossless image compression protocol and format
1309  * for their hardware video codec accelerators, either video decoders or
1310  * video input encoders.
1311  *
1312  * It considerably reduces memory bandwidth while writing and reading
1313  * frames in memory.
1314  *
1315  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1316  * per component YCbCr 420, single plane :
1317  * - DRM_FORMAT_YUV420_8BIT
1318  * - DRM_FORMAT_YUV420_10BIT
1319  *
1320  * The first 8 bits of the mode defines the layout, then the following 8 bits
1321  * defines the options changing the layout.
1322  *
1323  * Not all combinations are valid, and different SoCs may support different
1324  * combinations of layout and options.
1325  */
1326 #define __fourcc_mod_amlogic_layout_mask 0xff
1327 #define __fourcc_mod_amlogic_options_shift 8
1328 #define __fourcc_mod_amlogic_options_mask 0xff
1329 
1330 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1331 	fourcc_mod_code(AMLOGIC, \
1332 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1333 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1334 			 << __fourcc_mod_amlogic_options_shift))
1335 
1336 /* Amlogic FBC Layouts */
1337 
1338 /*
1339  * Amlogic FBC Basic Layout
1340  *
1341  * The basic layout is composed of:
1342  * - a body content organized in 64x32 superblocks with 4096 bytes per
1343  *   superblock in default mode.
1344  * - a 32 bytes per 128x64 header block
1345  *
1346  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1347  */
1348 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1349 
1350 /*
1351  * Amlogic FBC Scatter Memory layout
1352  *
1353  * Indicates the header contains IOMMU references to the compressed
1354  * frames content to optimize memory access and layout.
1355  *
1356  * In this mode, only the header memory address is needed, thus the
1357  * content memory organization is tied to the current producer
1358  * execution and cannot be saved/dumped neither transferrable between
1359  * Amlogic SoCs supporting this modifier.
1360  *
1361  * Due to the nature of the layout, these buffers are not expected to
1362  * be accessible by the user-space clients, but only accessible by the
1363  * hardware producers and consumers.
1364  *
1365  * The user-space clients should expect a failure while trying to mmap
1366  * the DMA-BUF handle returned by the producer.
1367  */
1368 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1369 
1370 /* Amlogic FBC Layout Options Bit Mask */
1371 
1372 /*
1373  * Amlogic FBC Memory Saving mode
1374  *
1375  * Indicates the storage is packed when pixel size is multiple of word
1376  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1377  * memory.
1378  *
1379  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1380  * the basic layout and 3200 bytes per 64x32 superblock combined with
1381  * the scatter layout.
1382  */
1383 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1384 
1385 /*
1386  * AMD modifiers
1387  *
1388  * Memory layout:
1389  *
1390  * without DCC:
1391  *   - main surface
1392  *
1393  * with DCC & without DCC_RETILE:
1394  *   - main surface in plane 0
1395  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1396  *
1397  * with DCC & DCC_RETILE:
1398  *   - main surface in plane 0
1399  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1400  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1401  *
1402  * For multi-plane formats the above surfaces get merged into one plane for
1403  * each format plane, based on the required alignment only.
1404  *
1405  * Bits  Parameter                Notes
1406  * ----- ------------------------ ---------------------------------------------
1407  *
1408  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1409  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1410  *    13 DCC
1411  *    14 DCC_RETILE
1412  *    15 DCC_PIPE_ALIGN
1413  *    16 DCC_INDEPENDENT_64B
1414  *    17 DCC_INDEPENDENT_128B
1415  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1416  *    20 DCC_CONSTANT_ENCODE
1417  * 23:21 PIPE_XOR_BITS            Only for some chips
1418  * 26:24 BANK_XOR_BITS            Only for some chips
1419  * 29:27 PACKERS                  Only for some chips
1420  * 32:30 RB                       Only for some chips
1421  * 35:33 PIPE                     Only for some chips
1422  * 55:36 -                        Reserved for future use, must be zero
1423  */
1424 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1425 
1426 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1427 
1428 /* Reserve 0 for GFX8 and older */
1429 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1430 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1431 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1432 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1433 
1434 /*
1435  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1436  * version.
1437  */
1438 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1439 
1440 /*
1441  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1442  * GFX9 as canonical version.
1443  */
1444 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1445 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1446 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1447 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1448 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1449 
1450 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1451 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1452 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1453 
1454 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1455 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1456 #define AMD_FMT_MOD_TILE_SHIFT 8
1457 #define AMD_FMT_MOD_TILE_MASK 0x1F
1458 
1459 /* Whether DCC compression is enabled. */
1460 #define AMD_FMT_MOD_DCC_SHIFT 13
1461 #define AMD_FMT_MOD_DCC_MASK 0x1
1462 
1463 /*
1464  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1465  * one which is not-aligned.
1466  */
1467 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1468 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1469 
1470 /* Only set if DCC_RETILE = false */
1471 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1472 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1473 
1474 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1475 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1476 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1477 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1478 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1479 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1480 
1481 /*
1482  * DCC supports embedding some clear colors directly in the DCC surface.
1483  * However, on older GPUs the rendering HW ignores the embedded clear color
1484  * and prefers the driver provided color. This necessitates doing a fastclear
1485  * eliminate operation before a process transfers control.
1486  *
1487  * If this bit is set that means the fastclear eliminate is not needed for these
1488  * embeddable colors.
1489  */
1490 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1491 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1492 
1493 /*
1494  * The below fields are for accounting for per GPU differences. These are only
1495  * relevant for GFX9 and later and if the tile field is *_X/_T.
1496  *
1497  * PIPE_XOR_BITS = always needed
1498  * BANK_XOR_BITS = only for TILE_VER_GFX9
1499  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1500  * RB = only for TILE_VER_GFX9 & DCC
1501  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1502  */
1503 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1504 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1505 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1506 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1507 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1508 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1509 #define AMD_FMT_MOD_RB_SHIFT 30
1510 #define AMD_FMT_MOD_RB_MASK 0x7
1511 #define AMD_FMT_MOD_PIPE_SHIFT 33
1512 #define AMD_FMT_MOD_PIPE_MASK 0x7
1513 
1514 #define AMD_FMT_MOD_SET(field, value) \
1515 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1516 #define AMD_FMT_MOD_GET(field, value) \
1517 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1518 #define AMD_FMT_MOD_CLEAR(field) \
1519 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1520 
1521 #if defined(__cplusplus)
1522 }
1523 #endif
1524 
1525 #endif /* DRM_FOURCC_H */
1526