1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
61  * match only a single modifier. A modifier must not be a subset of layouts of
62  * another modifier. For instance, it's incorrect to encode pitch alignment in
63  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
64  * aligned modifier. That said, modifiers can have implicit minimal
65  * requirements.
66  *
67  * For modifiers where the combination of fourcc code and modifier can alias,
68  * a canonical pair needs to be defined and used by all drivers. Preferred
69  * combinations are also encouraged where all combinations might lead to
70  * confusion and unnecessarily reduced interoperability. An example for the
71  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
72  *
73  * There are two kinds of modifier users:
74  *
75  * - Kernel and user-space drivers: for drivers it's important that modifiers
76  *   don't alias, otherwise two drivers might support the same format but use
77  *   different aliases, preventing them from sharing buffers in an efficient
78  *   format.
79  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
80  *   see modifiers as opaque tokens they can check for equality and intersect.
81  *   These users musn't need to know to reason about the modifier value
82  *   (i.e. they are not expected to extract information out of the modifier).
83  *
84  * Vendors should document their modifier usage in as much detail as
85  * possible, to ensure maximum compatibility across devices, drivers and
86  * applications.
87  *
88  * The authoritative list of format modifier codes is found in
89  * `include/uapi/drm/drm_fourcc.h`
90  */
91 
92 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
93 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
94 
95 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
96 
97 /* Reserve 0 for the invalid format specifier */
98 #define DRM_FORMAT_INVALID	0
99 
100 /* color index */
101 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
102 
103 /* 8 bpp Red */
104 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
105 
106 /* 10 bpp Red */
107 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
108 
109 /* 12 bpp Red */
110 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
111 
112 /* 16 bpp Red */
113 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
114 
115 /* 16 bpp RG */
116 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
117 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
118 
119 /* 32 bpp RG */
120 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
121 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
122 
123 /* 8 bpp RGB */
124 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
125 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
126 
127 /* 16 bpp RGB */
128 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
129 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
130 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
131 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
132 
133 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
134 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
135 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
136 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
137 
138 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
139 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
140 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
141 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
142 
143 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
144 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
145 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
146 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
147 
148 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
149 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
150 
151 /* 24 bpp RGB */
152 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
153 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
154 
155 /* 32 bpp RGB */
156 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
157 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
158 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
159 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
160 
161 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
162 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
163 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
164 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
165 
166 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
167 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
168 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
169 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
170 
171 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
172 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
173 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
174 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
175 
176 /* 64 bpp RGB */
177 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
178 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
179 
180 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
181 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
182 
183 /*
184  * Floating point 64bpp RGB
185  * IEEE 754-2008 binary16 half-precision float
186  * [15:0] sign:exponent:mantissa 1:5:10
187  */
188 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
189 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
190 
191 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
192 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
193 
194 /*
195  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
196  * of unused padding per component:
197  */
198 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
199 
200 /* packed YCbCr */
201 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
202 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
203 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
204 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
205 
206 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
207 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
208 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
209 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
210 
211 /*
212  * packed Y2xx indicate for each component, xx valid data occupy msb
213  * 16-xx padding occupy lsb
214  */
215 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
216 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
217 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
218 
219 /*
220  * packed Y4xx indicate for each component, xx valid data occupy msb
221  * 16-xx padding occupy lsb except Y410
222  */
223 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
224 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
225 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
226 
227 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
228 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
229 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
230 
231 /*
232  * packed YCbCr420 2x2 tiled formats
233  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
234  */
235 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
236 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
237 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
238 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
239 
240 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
241 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
242 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
243 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
244 
245 /*
246  * 1-plane YUV 4:2:0
247  * In these formats, the component ordering is specified (Y, followed by U
248  * then V), but the exact Linear layout is undefined.
249  * These formats can only be used with a non-Linear modifier.
250  */
251 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
252 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
253 
254 /*
255  * 2 plane RGB + A
256  * index 0 = RGB plane, same format as the corresponding non _A8 format has
257  * index 1 = A plane, [7:0] A
258  */
259 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
260 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
261 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
262 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
263 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
264 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
265 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
266 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
267 
268 /*
269  * 2 plane YCbCr
270  * index 0 = Y plane, [7:0] Y
271  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
272  * or
273  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
274  */
275 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
276 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
277 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
278 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
279 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
280 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
281 /*
282  * 2 plane YCbCr
283  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
284  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
285  */
286 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
287 
288 /*
289  * 2 plane YCbCr MSB aligned
290  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
291  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
292  */
293 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
294 
295 /*
296  * 2 plane YCbCr MSB aligned
297  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
298  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
299  */
300 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
301 
302 /*
303  * 2 plane YCbCr MSB aligned
304  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
305  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
306  */
307 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
308 
309 /*
310  * 2 plane YCbCr MSB aligned
311  * index 0 = Y plane, [15:0] Y little endian
312  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
313  */
314 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
315 
316 /* 2 plane YCbCr420.
317  * 3 10 bit components and 2 padding bits packed into 4 bytes.
318  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
319  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
320  */
321 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
322 
323 /* 3 plane non-subsampled (444) YCbCr
324  * 16 bits per component, but only 10 bits are used and 6 bits are padded
325  * index 0: Y plane, [15:0] Y:x [10:6] little endian
326  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
327  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
328  */
329 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
330 
331 /* 3 plane non-subsampled (444) YCrCb
332  * 16 bits per component, but only 10 bits are used and 6 bits are padded
333  * index 0: Y plane, [15:0] Y:x [10:6] little endian
334  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
335  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
336  */
337 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
338 
339 /*
340  * 3 plane YCbCr
341  * index 0: Y plane, [7:0] Y
342  * index 1: Cb plane, [7:0] Cb
343  * index 2: Cr plane, [7:0] Cr
344  * or
345  * index 1: Cr plane, [7:0] Cr
346  * index 2: Cb plane, [7:0] Cb
347  */
348 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
349 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
350 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
351 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
352 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
353 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
354 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
355 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
356 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
357 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
358 
359 
360 /*
361  * Format Modifiers:
362  *
363  * Format modifiers describe, typically, a re-ordering or modification
364  * of the data in a plane of an FB.  This can be used to express tiled/
365  * swizzled formats, or compression, or a combination of the two.
366  *
367  * The upper 8 bits of the format modifier are a vendor-id as assigned
368  * below.  The lower 56 bits are assigned as vendor sees fit.
369  */
370 
371 /* Vendor Ids: */
372 #define DRM_FORMAT_MOD_VENDOR_NONE    0
373 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
374 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
375 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
376 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
377 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
378 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
379 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
380 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
381 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
382 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
383 
384 /* add more to the end as needed */
385 
386 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
387 
388 #define fourcc_mod_get_vendor(modifier) \
389 	(((modifier) >> 56) & 0xff)
390 
391 #define fourcc_mod_is_vendor(modifier, vendor) \
392 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
393 
394 #define fourcc_mod_code(vendor, val) \
395 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
396 
397 /*
398  * Format Modifier tokens:
399  *
400  * When adding a new token please document the layout with a code comment,
401  * similar to the fourcc codes above. drm_fourcc.h is considered the
402  * authoritative source for all of these.
403  *
404  * Generic modifier names:
405  *
406  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
407  * for layouts which are common across multiple vendors. To preserve
408  * compatibility, in cases where a vendor-specific definition already exists and
409  * a generic name for it is desired, the common name is a purely symbolic alias
410  * and must use the same numerical value as the original definition.
411  *
412  * Note that generic names should only be used for modifiers which describe
413  * generic layouts (such as pixel re-ordering), which may have
414  * independently-developed support across multiple vendors.
415  *
416  * In future cases where a generic layout is identified before merging with a
417  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
418  * 'NONE' could be considered. This should only be for obvious, exceptional
419  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
420  * apply to a single vendor.
421  *
422  * Generic names should not be used for cases where multiple hardware vendors
423  * have implementations of the same standardised compression scheme (such as
424  * AFBC). In those cases, all implementations should use the same format
425  * modifier(s), reflecting the vendor of the standard.
426  */
427 
428 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
429 
430 /*
431  * Invalid Modifier
432  *
433  * This modifier can be used as a sentinel to terminate the format modifiers
434  * list, or to initialize a variable with an invalid modifier. It might also be
435  * used to report an error back to userspace for certain APIs.
436  */
437 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
438 
439 /*
440  * Linear Layout
441  *
442  * Just plain linear layout. Note that this is different from no specifying any
443  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
444  * which tells the driver to also take driver-internal information into account
445  * and so might actually result in a tiled framebuffer.
446  */
447 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
448 
449 /*
450  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
451  *
452  * The "none" format modifier doesn't actually mean that the modifier is
453  * implicit, instead it means that the layout is linear. Whether modifiers are
454  * used is out-of-band information carried in an API-specific way (e.g. in a
455  * flag for drm_mode_fb_cmd2).
456  */
457 #define DRM_FORMAT_MOD_NONE	0
458 
459 /* Intel framebuffer modifiers */
460 
461 /*
462  * Intel X-tiling layout
463  *
464  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
465  * in row-major layout. Within the tile bytes are laid out row-major, with
466  * a platform-dependent stride. On top of that the memory can apply
467  * platform-depending swizzling of some higher address bits into bit6.
468  *
469  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
470  * On earlier platforms the is highly platforms specific and not useful for
471  * cross-driver sharing. It exists since on a given platform it does uniquely
472  * identify the layout in a simple way for i915-specific userspace, which
473  * facilitated conversion of userspace to modifiers. Additionally the exact
474  * format on some really old platforms is not known.
475  */
476 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
477 
478 /*
479  * Intel Y-tiling layout
480  *
481  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
482  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
483  * chunks column-major, with a platform-dependent height. On top of that the
484  * memory can apply platform-depending swizzling of some higher address bits
485  * into bit6.
486  *
487  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
488  * On earlier platforms the is highly platforms specific and not useful for
489  * cross-driver sharing. It exists since on a given platform it does uniquely
490  * identify the layout in a simple way for i915-specific userspace, which
491  * facilitated conversion of userspace to modifiers. Additionally the exact
492  * format on some really old platforms is not known.
493  */
494 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
495 
496 /*
497  * Intel Yf-tiling layout
498  *
499  * This is a tiled layout using 4Kb tiles in row-major layout.
500  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
501  * are arranged in four groups (two wide, two high) with column-major layout.
502  * Each group therefore consits out of four 256 byte units, which are also laid
503  * out as 2x2 column-major.
504  * 256 byte units are made out of four 64 byte blocks of pixels, producing
505  * either a square block or a 2:1 unit.
506  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
507  * in pixel depends on the pixel depth.
508  */
509 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
510 
511 /*
512  * Intel color control surface (CCS) for render compression
513  *
514  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
515  * The main surface will be plane index 0 and must be Y/Yf-tiled,
516  * the CCS will be plane index 1.
517  *
518  * Each CCS tile matches a 1024x512 pixel area of the main surface.
519  * To match certain aspects of the 3D hardware the CCS is
520  * considered to be made up of normal 128Bx32 Y tiles, Thus
521  * the CCS pitch must be specified in multiples of 128 bytes.
522  *
523  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
524  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
525  * But that fact is not relevant unless the memory is accessed
526  * directly.
527  */
528 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
529 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
530 
531 /*
532  * Intel color control surfaces (CCS) for Gen-12 render compression.
533  *
534  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
535  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
536  * main surface. In other words, 4 bits in CCS map to a main surface cache
537  * line pair. The main surface pitch is required to be a multiple of four
538  * Y-tile widths.
539  */
540 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
541 
542 /*
543  * Intel color control surfaces (CCS) for Gen-12 media compression
544  *
545  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
546  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
547  * main surface. In other words, 4 bits in CCS map to a main surface cache
548  * line pair. The main surface pitch is required to be a multiple of four
549  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
550  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
551  * planes 2 and 3 for the respective CCS.
552  */
553 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
554 
555 /*
556  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
557  * compression.
558  *
559  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
560  * and at index 1. The clear color is stored at index 2, and the pitch should
561  * be ignored. The clear color structure is 256 bits. The first 128 bits
562  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
563  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
564  * the converted clear color of size 64 bits. The first 32 bits store the Lower
565  * Converted Clear Color value and the next 32 bits store the Higher Converted
566  * Clear Color value when applicable. The Converted Clear Color values are
567  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
568  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
569  * corresponds to an area of 4x1 tiles in the main surface. The main surface
570  * pitch is required to be a multiple of 4 tile widths.
571  */
572 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
573 
574 /*
575  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
576  *
577  * Macroblocks are laid in a Z-shape, and each pixel data is following the
578  * standard NV12 style.
579  * As for NV12, an image is the result of two frame buffers: one for Y,
580  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
581  * Alignment requirements are (for each buffer):
582  * - multiple of 128 pixels for the width
583  * - multiple of  32 pixels for the height
584  *
585  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
586  */
587 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
588 
589 /*
590  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
591  *
592  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
593  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
594  * they correspond to their 16x16 luma block.
595  */
596 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
597 
598 /*
599  * Qualcomm Compressed Format
600  *
601  * Refers to a compressed variant of the base format that is compressed.
602  * Implementation may be platform and base-format specific.
603  *
604  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
605  * Pixel data pitch/stride is aligned with macrotile width.
606  * Pixel data height is aligned with macrotile height.
607  * Entire pixel data buffer is aligned with 4k(bytes).
608  */
609 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
610 
611 /* Vivante framebuffer modifiers */
612 
613 /*
614  * Vivante 4x4 tiling layout
615  *
616  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
617  * layout.
618  */
619 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
620 
621 /*
622  * Vivante 64x64 super-tiling layout
623  *
624  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
625  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
626  * major layout.
627  *
628  * For more information: see
629  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
630  */
631 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
632 
633 /*
634  * Vivante 4x4 tiling layout for dual-pipe
635  *
636  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
637  * different base address. Offsets from the base addresses are therefore halved
638  * compared to the non-split tiled layout.
639  */
640 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
641 
642 /*
643  * Vivante 64x64 super-tiling layout for dual-pipe
644  *
645  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
646  * starts at a different base address. Offsets from the base addresses are
647  * therefore halved compared to the non-split super-tiled layout.
648  */
649 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
650 
651 /* NVIDIA frame buffer modifiers */
652 
653 /*
654  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
655  *
656  * Pixels are arranged in simple tiles of 16 x 16 bytes.
657  */
658 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
659 
660 /*
661  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
662  * and Tegra GPUs starting with Tegra K1.
663  *
664  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
665  * based on the architecture generation.  GOBs themselves are then arranged in
666  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
667  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
668  * a block depth or height of "4").
669  *
670  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
671  * in full detail.
672  *
673  *       Macro
674  * Bits  Param Description
675  * ----  ----- -----------------------------------------------------------------
676  *
677  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
678  *             compatibility with the existing
679  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
680  *
681  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
682  *             compatibility with the existing
683  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
684  *
685  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
686  *             size).  Must be zero.
687  *
688  *             Note there is no log2(width) parameter.  Some portions of the
689  *             hardware support a block width of two gobs, but it is impractical
690  *             to use due to lack of support elsewhere, and has no known
691  *             benefits.
692  *
693  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
694  *             in blocks, specified via log2(tile width in blocks)).  Must be
695  *             zero.
696  *
697  * 19:12 k     Page Kind.  This value directly maps to a field in the page
698  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
699  *             in memory and can be derived from the tuple
700  *
701  *               (format, GPU model, compression type, samples per pixel)
702  *
703  *             Where compression type is defined below.  If GPU model were
704  *             implied by the format modifier, format, or memory buffer, page
705  *             kind would not need to be included in the modifier itself, but
706  *             since the modifier should define the layout of the associated
707  *             memory buffer independent from any device or other context, it
708  *             must be included here.
709  *
710  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
711  *             starting with Fermi GPUs.  Additionally, the mapping between page
712  *             kind and bit layout has changed at various points.
713  *
714  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
715  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
716  *               2 = Gob Height 8, Turing+ Page Kind mapping
717  *               3 = Reserved for future use.
718  *
719  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
720  *             bit remapping step that occurs at an even lower level than the
721  *             page kind and block linear swizzles.  This causes the layout of
722  *             surfaces mapped in those SOC's GPUs to be incompatible with the
723  *             equivalent mapping on other GPUs in the same system.
724  *
725  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
726  *               1 = Desktop GPU and Tegra Xavier+ Layout
727  *
728  * 25:23 c     Lossless Framebuffer Compression type.
729  *
730  *               0 = none
731  *               1 = ROP/3D, layout 1, exact compression format implied by Page
732  *                   Kind field
733  *               2 = ROP/3D, layout 2, exact compression format implied by Page
734  *                   Kind field
735  *               3 = CDE horizontal
736  *               4 = CDE vertical
737  *               5 = Reserved for future use
738  *               6 = Reserved for future use
739  *               7 = Reserved for future use
740  *
741  * 55:25 -     Reserved for future use.  Must be zero.
742  */
743 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
744 	fourcc_mod_code(NVIDIA, (0x10 | \
745 				 ((h) & 0xf) | \
746 				 (((k) & 0xff) << 12) | \
747 				 (((g) & 0x3) << 20) | \
748 				 (((s) & 0x1) << 22) | \
749 				 (((c) & 0x7) << 23)))
750 
751 /* To grandfather in prior block linear format modifiers to the above layout,
752  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
753  * with block-linear layouts, is remapped within drivers to the value 0xfe,
754  * which corresponds to the "generic" kind used for simple single-sample
755  * uncompressed color formats on Fermi - Volta GPUs.
756  */
757 static inline uint64_t
758 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
759 {
760 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
761 		return modifier;
762 	else
763 		return modifier | (0xfe << 12);
764 }
765 
766 /*
767  * 16Bx2 Block Linear layout, used by Tegra K1 and later
768  *
769  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
770  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
771  *
772  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
773  *
774  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
775  * Valid values are:
776  *
777  * 0 == ONE_GOB
778  * 1 == TWO_GOBS
779  * 2 == FOUR_GOBS
780  * 3 == EIGHT_GOBS
781  * 4 == SIXTEEN_GOBS
782  * 5 == THIRTYTWO_GOBS
783  *
784  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
785  * in full detail.
786  */
787 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
788 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
789 
790 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
791 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
792 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
793 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
794 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
795 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
796 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
797 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
798 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
799 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
800 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
801 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
802 
803 /*
804  * Some Broadcom modifiers take parameters, for example the number of
805  * vertical lines in the image. Reserve the lower 32 bits for modifier
806  * type, and the next 24 bits for parameters. Top 8 bits are the
807  * vendor code.
808  */
809 #define __fourcc_mod_broadcom_param_shift 8
810 #define __fourcc_mod_broadcom_param_bits 48
811 #define fourcc_mod_broadcom_code(val, params) \
812 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
813 #define fourcc_mod_broadcom_param(m) \
814 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
815 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
816 #define fourcc_mod_broadcom_mod(m) \
817 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
818 		 __fourcc_mod_broadcom_param_shift))
819 
820 /*
821  * Broadcom VC4 "T" format
822  *
823  * This is the primary layout that the V3D GPU can texture from (it
824  * can't do linear).  The T format has:
825  *
826  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
827  *   pixels at 32 bit depth.
828  *
829  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
830  *   16x16 pixels).
831  *
832  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
833  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
834  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
835  *
836  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
837  *   tiles) or right-to-left (odd rows of 4k tiles).
838  */
839 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
840 
841 /*
842  * Broadcom SAND format
843  *
844  * This is the native format that the H.264 codec block uses.  For VC4
845  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
846  *
847  * The image can be considered to be split into columns, and the
848  * columns are placed consecutively into memory.  The width of those
849  * columns can be either 32, 64, 128, or 256 pixels, but in practice
850  * only 128 pixel columns are used.
851  *
852  * The pitch between the start of each column is set to optimally
853  * switch between SDRAM banks. This is passed as the number of lines
854  * of column width in the modifier (we can't use the stride value due
855  * to various core checks that look at it , so you should set the
856  * stride to width*cpp).
857  *
858  * Note that the column height for this format modifier is the same
859  * for all of the planes, assuming that each column contains both Y
860  * and UV.  Some SAND-using hardware stores UV in a separate tiled
861  * image from Y to reduce the column height, which is not supported
862  * with these modifiers.
863  *
864  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
865  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
866  * wide, but as this is a 10 bpp format that translates to 96 pixels.
867  */
868 
869 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
870 	fourcc_mod_broadcom_code(2, v)
871 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
872 	fourcc_mod_broadcom_code(3, v)
873 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
874 	fourcc_mod_broadcom_code(4, v)
875 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
876 	fourcc_mod_broadcom_code(5, v)
877 
878 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
879 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
880 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
881 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
882 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
883 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
884 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
885 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
886 
887 /* Broadcom UIF format
888  *
889  * This is the common format for the current Broadcom multimedia
890  * blocks, including V3D 3.x and newer, newer video codecs, and
891  * displays.
892  *
893  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
894  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
895  * stored in columns, with padding between the columns to ensure that
896  * moving from one column to the next doesn't hit the same SDRAM page
897  * bank.
898  *
899  * To calculate the padding, it is assumed that each hardware block
900  * and the software driving it knows the platform's SDRAM page size,
901  * number of banks, and XOR address, and that it's identical between
902  * all blocks using the format.  This tiling modifier will use XOR as
903  * necessary to reduce the padding.  If a hardware block can't do XOR,
904  * the assumption is that a no-XOR tiling modifier will be created.
905  */
906 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
907 
908 /*
909  * Arm Framebuffer Compression (AFBC) modifiers
910  *
911  * AFBC is a proprietary lossless image compression protocol and format.
912  * It provides fine-grained random access and minimizes the amount of data
913  * transferred between IP blocks.
914  *
915  * AFBC has several features which may be supported and/or used, which are
916  * represented using bits in the modifier. Not all combinations are valid,
917  * and different devices or use-cases may support different combinations.
918  *
919  * Further information on the use of AFBC modifiers can be found in
920  * Documentation/gpu/afbc.rst
921  */
922 
923 /*
924  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
925  * modifiers) denote the category for modifiers. Currently we have three
926  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
927  * sixteen different categories.
928  */
929 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
930 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
931 
932 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
933 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
934 
935 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
936 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
937 
938 /*
939  * AFBC superblock size
940  *
941  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
942  * size (in pixels) must be aligned to a multiple of the superblock size.
943  * Four lowest significant bits(LSBs) are reserved for block size.
944  *
945  * Where one superblock size is specified, it applies to all planes of the
946  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
947  * the first applies to the Luma plane and the second applies to the Chroma
948  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
949  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
950  */
951 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
952 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
953 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
954 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
955 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
956 
957 /*
958  * AFBC lossless colorspace transform
959  *
960  * Indicates that the buffer makes use of the AFBC lossless colorspace
961  * transform.
962  */
963 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
964 
965 /*
966  * AFBC block-split
967  *
968  * Indicates that the payload of each superblock is split. The second
969  * half of the payload is positioned at a predefined offset from the start
970  * of the superblock payload.
971  */
972 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
973 
974 /*
975  * AFBC sparse layout
976  *
977  * This flag indicates that the payload of each superblock must be stored at a
978  * predefined position relative to the other superblocks in the same AFBC
979  * buffer. This order is the same order used by the header buffer. In this mode
980  * each superblock is given the same amount of space as an uncompressed
981  * superblock of the particular format would require, rounding up to the next
982  * multiple of 128 bytes in size.
983  */
984 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
985 
986 /*
987  * AFBC copy-block restrict
988  *
989  * Buffers with this flag must obey the copy-block restriction. The restriction
990  * is such that there are no copy-blocks referring across the border of 8x8
991  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
992  */
993 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
994 
995 /*
996  * AFBC tiled layout
997  *
998  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
999  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1000  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1001  * larger bpp formats. The order between the tiles is scan line.
1002  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1003  * to the tile size.
1004  */
1005 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1006 
1007 /*
1008  * AFBC solid color blocks
1009  *
1010  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1011  * can be reduced if a whole superblock is a single color.
1012  */
1013 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1014 
1015 /*
1016  * AFBC double-buffer
1017  *
1018  * Indicates that the buffer is allocated in a layout safe for front-buffer
1019  * rendering.
1020  */
1021 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1022 
1023 /*
1024  * AFBC buffer content hints
1025  *
1026  * Indicates that the buffer includes per-superblock content hints.
1027  */
1028 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1029 
1030 /* AFBC uncompressed storage mode
1031  *
1032  * Indicates that the buffer is using AFBC uncompressed storage mode.
1033  * In this mode all superblock payloads in the buffer use the uncompressed
1034  * storage mode, which is usually only used for data which cannot be compressed.
1035  * The buffer layout is the same as for AFBC buffers without USM set, this only
1036  * affects the storage mode of the individual superblocks. Note that even a
1037  * buffer without USM set may use uncompressed storage mode for some or all
1038  * superblocks, USM just guarantees it for all.
1039  */
1040 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1041 
1042 /*
1043  * Arm Fixed-Rate Compression (AFRC) modifiers
1044  *
1045  * AFRC is a proprietary fixed rate image compression protocol and format,
1046  * designed to provide guaranteed bandwidth and memory footprint
1047  * reductions in graphics and media use-cases.
1048  *
1049  * AFRC buffers consist of one or more planes, with the same components
1050  * and meaning as an uncompressed buffer using the same pixel format.
1051  *
1052  * Within each plane, the pixel/luma/chroma values are grouped into
1053  * "coding unit" blocks which are individually compressed to a
1054  * fixed size (in bytes). All coding units within a given plane of a buffer
1055  * store the same number of values, and have the same compressed size.
1056  *
1057  * The coding unit size is configurable, allowing different rates of compression.
1058  *
1059  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1060  * depends on the coding unit size.
1061  *
1062  * Coding Unit Size   Plane Alignment
1063  * ----------------   ---------------
1064  * 16 bytes           1024 bytes
1065  * 24 bytes           512  bytes
1066  * 32 bytes           2048 bytes
1067  *
1068  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1069  * to a multiple of the paging tile dimensions.
1070  * The dimensions of each paging tile depend on whether the buffer is optimised for
1071  * scanline (SCAN layout) or rotated (ROT layout) access.
1072  *
1073  * Layout   Paging Tile Width   Paging Tile Height
1074  * ------   -----------------   ------------------
1075  * SCAN     16 coding units     4 coding units
1076  * ROT      8  coding units     8 coding units
1077  *
1078  * The dimensions of each coding unit depend on the number of components
1079  * in the compressed plane and whether the buffer is optimised for
1080  * scanline (SCAN layout) or rotated (ROT layout) access.
1081  *
1082  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1083  * -----------------------------   ---------   -----------------   ------------------
1084  * 1                               SCAN        16 samples          4 samples
1085  * Example: 16x4 luma samples in a 'Y' plane
1086  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1087  * -----------------------------   ---------   -----------------   ------------------
1088  * 1                               ROT         8 samples           8 samples
1089  * Example: 8x8 luma samples in a 'Y' plane
1090  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1091  * -----------------------------   ---------   -----------------   ------------------
1092  * 2                               DONT CARE   8 samples           4 samples
1093  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1094  * -----------------------------   ---------   -----------------   ------------------
1095  * 3                               DONT CARE   4 samples           4 samples
1096  * Example: 4x4 pixels in an RGB buffer without alpha
1097  * -----------------------------   ---------   -----------------   ------------------
1098  * 4                               DONT CARE   4 samples           4 samples
1099  * Example: 4x4 pixels in an RGB buffer with alpha
1100  */
1101 
1102 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1103 
1104 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1105 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1106 
1107 /*
1108  * AFRC coding unit size modifier.
1109  *
1110  * Indicates the number of bytes used to store each compressed coding unit for
1111  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1112  * is the same for both Cb and Cr, which may be stored in separate planes.
1113  *
1114  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1115  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1116  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1117  * this corresponds to the luma plane.
1118  *
1119  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1120  * each compressed coding unit in the second and third planes in the buffer.
1121  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1122  *
1123  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1124  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1125  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1126  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1127  */
1128 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1129 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1130 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1131 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1132 
1133 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1134 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1135 
1136 /*
1137  * AFRC scanline memory layout.
1138  *
1139  * Indicates if the buffer uses the scanline-optimised layout
1140  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1141  * The memory layout is the same for all planes.
1142  */
1143 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1144 
1145 /*
1146  * Arm 16x16 Block U-Interleaved modifier
1147  *
1148  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1149  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1150  * in the block are reordered.
1151  */
1152 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1153 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1154 
1155 /*
1156  * Allwinner tiled modifier
1157  *
1158  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1159  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1160  * planes.
1161  *
1162  * With this tiling, the luminance samples are disposed in tiles representing
1163  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1164  * The pixel order in each tile is linear and the tiles are disposed linearly,
1165  * both in row-major order.
1166  */
1167 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1168 
1169 /*
1170  * Amlogic Video Framebuffer Compression modifiers
1171  *
1172  * Amlogic uses a proprietary lossless image compression protocol and format
1173  * for their hardware video codec accelerators, either video decoders or
1174  * video input encoders.
1175  *
1176  * It considerably reduces memory bandwidth while writing and reading
1177  * frames in memory.
1178  *
1179  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1180  * per component YCbCr 420, single plane :
1181  * - DRM_FORMAT_YUV420_8BIT
1182  * - DRM_FORMAT_YUV420_10BIT
1183  *
1184  * The first 8 bits of the mode defines the layout, then the following 8 bits
1185  * defines the options changing the layout.
1186  *
1187  * Not all combinations are valid, and different SoCs may support different
1188  * combinations of layout and options.
1189  */
1190 #define __fourcc_mod_amlogic_layout_mask 0xff
1191 #define __fourcc_mod_amlogic_options_shift 8
1192 #define __fourcc_mod_amlogic_options_mask 0xff
1193 
1194 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1195 	fourcc_mod_code(AMLOGIC, \
1196 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1197 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1198 			 << __fourcc_mod_amlogic_options_shift))
1199 
1200 /* Amlogic FBC Layouts */
1201 
1202 /*
1203  * Amlogic FBC Basic Layout
1204  *
1205  * The basic layout is composed of:
1206  * - a body content organized in 64x32 superblocks with 4096 bytes per
1207  *   superblock in default mode.
1208  * - a 32 bytes per 128x64 header block
1209  *
1210  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1211  */
1212 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1213 
1214 /*
1215  * Amlogic FBC Scatter Memory layout
1216  *
1217  * Indicates the header contains IOMMU references to the compressed
1218  * frames content to optimize memory access and layout.
1219  *
1220  * In this mode, only the header memory address is needed, thus the
1221  * content memory organization is tied to the current producer
1222  * execution and cannot be saved/dumped neither transferrable between
1223  * Amlogic SoCs supporting this modifier.
1224  *
1225  * Due to the nature of the layout, these buffers are not expected to
1226  * be accessible by the user-space clients, but only accessible by the
1227  * hardware producers and consumers.
1228  *
1229  * The user-space clients should expect a failure while trying to mmap
1230  * the DMA-BUF handle returned by the producer.
1231  */
1232 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1233 
1234 /* Amlogic FBC Layout Options Bit Mask */
1235 
1236 /*
1237  * Amlogic FBC Memory Saving mode
1238  *
1239  * Indicates the storage is packed when pixel size is multiple of word
1240  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1241  * memory.
1242  *
1243  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1244  * the basic layout and 3200 bytes per 64x32 superblock combined with
1245  * the scatter layout.
1246  */
1247 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1248 
1249 /*
1250  * AMD modifiers
1251  *
1252  * Memory layout:
1253  *
1254  * without DCC:
1255  *   - main surface
1256  *
1257  * with DCC & without DCC_RETILE:
1258  *   - main surface in plane 0
1259  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1260  *
1261  * with DCC & DCC_RETILE:
1262  *   - main surface in plane 0
1263  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1264  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1265  *
1266  * For multi-plane formats the above surfaces get merged into one plane for
1267  * each format plane, based on the required alignment only.
1268  *
1269  * Bits  Parameter                Notes
1270  * ----- ------------------------ ---------------------------------------------
1271  *
1272  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1273  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1274  *    13 DCC
1275  *    14 DCC_RETILE
1276  *    15 DCC_PIPE_ALIGN
1277  *    16 DCC_INDEPENDENT_64B
1278  *    17 DCC_INDEPENDENT_128B
1279  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1280  *    20 DCC_CONSTANT_ENCODE
1281  * 23:21 PIPE_XOR_BITS            Only for some chips
1282  * 26:24 BANK_XOR_BITS            Only for some chips
1283  * 29:27 PACKERS                  Only for some chips
1284  * 32:30 RB                       Only for some chips
1285  * 35:33 PIPE                     Only for some chips
1286  * 55:36 -                        Reserved for future use, must be zero
1287  */
1288 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1289 
1290 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1291 
1292 /* Reserve 0 for GFX8 and older */
1293 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1294 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1295 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1296 
1297 /*
1298  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1299  * version.
1300  */
1301 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1302 
1303 /*
1304  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1305  * GFX9 as canonical version.
1306  */
1307 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1308 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1309 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1310 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1311 
1312 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1313 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1314 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1315 
1316 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1317 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1318 #define AMD_FMT_MOD_TILE_SHIFT 8
1319 #define AMD_FMT_MOD_TILE_MASK 0x1F
1320 
1321 /* Whether DCC compression is enabled. */
1322 #define AMD_FMT_MOD_DCC_SHIFT 13
1323 #define AMD_FMT_MOD_DCC_MASK 0x1
1324 
1325 /*
1326  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1327  * one which is not-aligned.
1328  */
1329 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1330 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1331 
1332 /* Only set if DCC_RETILE = false */
1333 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1334 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1335 
1336 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1337 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1338 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1339 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1340 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1341 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1342 
1343 /*
1344  * DCC supports embedding some clear colors directly in the DCC surface.
1345  * However, on older GPUs the rendering HW ignores the embedded clear color
1346  * and prefers the driver provided color. This necessitates doing a fastclear
1347  * eliminate operation before a process transfers control.
1348  *
1349  * If this bit is set that means the fastclear eliminate is not needed for these
1350  * embeddable colors.
1351  */
1352 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1353 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1354 
1355 /*
1356  * The below fields are for accounting for per GPU differences. These are only
1357  * relevant for GFX9 and later and if the tile field is *_X/_T.
1358  *
1359  * PIPE_XOR_BITS = always needed
1360  * BANK_XOR_BITS = only for TILE_VER_GFX9
1361  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1362  * RB = only for TILE_VER_GFX9 & DCC
1363  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1364  */
1365 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1366 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1367 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1368 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1369 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1370 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1371 #define AMD_FMT_MOD_RB_SHIFT 30
1372 #define AMD_FMT_MOD_RB_MASK 0x7
1373 #define AMD_FMT_MOD_PIPE_SHIFT 33
1374 #define AMD_FMT_MOD_PIPE_MASK 0x7
1375 
1376 #define AMD_FMT_MOD_SET(field, value) \
1377 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1378 #define AMD_FMT_MOD_GET(field, value) \
1379 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1380 #define AMD_FMT_MOD_CLEAR(field) \
1381 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1382 
1383 #if defined(__cplusplus)
1384 }
1385 #endif
1386 
1387 #endif /* DRM_FOURCC_H */
1388