1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef DRM_FOURCC_H 25 #define DRM_FOURCC_H 26 27 28 #if defined(__cplusplus) 29 extern "C" { 30 #endif 31 32 /** 33 * DOC: overview 34 * 35 * In the DRM subsystem, framebuffer pixel formats are described using the 36 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 37 * fourcc code, a Format Modifier may optionally be provided, in order to 38 * further describe the buffer's format - for example tiling or compression. 39 * 40 * Format Modifiers 41 * ---------------- 42 * 43 * Format modifiers are used in conjunction with a fourcc code, forming a 44 * unique fourcc:modifier pair. This format:modifier pair must fully define the 45 * format and data layout of the buffer, and should be the only way to describe 46 * that particular buffer. 47 * 48 * Having multiple fourcc:modifier pairs which describe the same layout should 49 * be avoided, as such aliases run the risk of different drivers exposing 50 * different names for the same data format, forcing userspace to understand 51 * that they are aliases. 52 * 53 * Format modifiers may change any property of the buffer, including the number 54 * of planes and/or the required allocation size. Format modifiers are 55 * vendor-namespaced, and as such the relationship between a fourcc code and a 56 * modifier is specific to the modifer being used. For example, some modifiers 57 * may preserve meaning - such as number of planes - from the fourcc code, 58 * whereas others may not. 59 * 60 * Vendors should document their modifier usage in as much detail as 61 * possible, to ensure maximum compatibility across devices, drivers and 62 * applications. 63 * 64 * The authoritative list of format modifier codes is found in 65 * `include/uapi/drm/drm_fourcc.h` 66 */ 67 68 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \ 69 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24)) 70 71 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ 72 73 /* Reserve 0 for the invalid format specifier */ 74 #define DRM_FORMAT_INVALID 0 75 76 /* color index */ 77 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 78 79 /* 8 bpp Red */ 80 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 81 82 /* 16 bpp Red */ 83 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 84 85 /* 16 bpp RG */ 86 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 87 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 88 89 /* 32 bpp RG */ 90 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 91 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 92 93 /* 8 bpp RGB */ 94 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 95 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 96 97 /* 16 bpp RGB */ 98 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 99 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 100 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 101 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 102 103 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 104 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 105 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 106 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 107 108 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 109 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 110 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 111 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 112 113 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 114 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 115 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 116 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 117 118 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 119 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 120 121 /* 24 bpp RGB */ 122 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 123 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 124 125 /* 32 bpp RGB */ 126 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 127 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 128 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 129 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 130 131 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 132 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 133 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 134 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 135 136 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 137 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 138 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 139 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 140 141 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 142 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 143 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 144 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 145 146 /* 147 * Floating point 64bpp RGB 148 * IEEE 754-2008 binary16 half-precision float 149 * [15:0] sign:exponent:mantissa 1:5:10 150 */ 151 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 152 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 153 154 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 155 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 156 157 /* packed YCbCr */ 158 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 159 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 160 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 161 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 162 163 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 164 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ 165 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ 166 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ 167 168 /* 169 * packed Y2xx indicate for each component, xx valid data occupy msb 170 * 16-xx padding occupy lsb 171 */ 172 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ 173 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ 174 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ 175 176 /* 177 * packed Y4xx indicate for each component, xx valid data occupy msb 178 * 16-xx padding occupy lsb except Y410 179 */ 180 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ 181 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 182 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ 183 184 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ 185 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 186 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ 187 188 /* 189 * packed YCbCr420 2x2 tiled formats 190 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile 191 */ 192 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 193 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') 194 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 195 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') 196 197 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 198 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') 199 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 200 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') 201 202 /* 203 * 1-plane YUV 4:2:0 204 * In these formats, the component ordering is specified (Y, followed by U 205 * then V), but the exact Linear layout is undefined. 206 * These formats can only be used with a non-Linear modifier. 207 */ 208 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') 209 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') 210 211 /* 212 * 2 plane RGB + A 213 * index 0 = RGB plane, same format as the corresponding non _A8 format has 214 * index 1 = A plane, [7:0] A 215 */ 216 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 217 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 218 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 219 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 220 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 221 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 222 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 223 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 224 225 /* 226 * 2 plane YCbCr 227 * index 0 = Y plane, [7:0] Y 228 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 229 * or 230 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 231 */ 232 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 233 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 234 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 235 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 236 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 237 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 238 /* 239 * 2 plane YCbCr 240 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian 241 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian 242 */ 243 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */ 244 245 /* 246 * 2 plane YCbCr MSB aligned 247 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 248 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 249 */ 250 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ 251 252 /* 253 * 2 plane YCbCr MSB aligned 254 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 255 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 256 */ 257 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ 258 259 /* 260 * 2 plane YCbCr MSB aligned 261 * index 0 = Y plane, [15:0] Y:x [12:4] little endian 262 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian 263 */ 264 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ 265 266 /* 267 * 2 plane YCbCr MSB aligned 268 * index 0 = Y plane, [15:0] Y little endian 269 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian 270 */ 271 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ 272 273 /* 3 plane non-subsampled (444) YCbCr 274 * 16 bits per component, but only 10 bits are used and 6 bits are padded 275 * index 0: Y plane, [15:0] Y:x [10:6] little endian 276 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian 277 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian 278 */ 279 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0') 280 281 /* 3 plane non-subsampled (444) YCrCb 282 * 16 bits per component, but only 10 bits are used and 6 bits are padded 283 * index 0: Y plane, [15:0] Y:x [10:6] little endian 284 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian 285 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian 286 */ 287 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1') 288 289 /* 290 * 3 plane YCbCr 291 * index 0: Y plane, [7:0] Y 292 * index 1: Cb plane, [7:0] Cb 293 * index 2: Cr plane, [7:0] Cr 294 * or 295 * index 1: Cr plane, [7:0] Cr 296 * index 2: Cb plane, [7:0] Cb 297 */ 298 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 299 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 300 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 301 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 302 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 303 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 304 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 305 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 306 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 307 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 308 309 310 /* 311 * Format Modifiers: 312 * 313 * Format modifiers describe, typically, a re-ordering or modification 314 * of the data in a plane of an FB. This can be used to express tiled/ 315 * swizzled formats, or compression, or a combination of the two. 316 * 317 * The upper 8 bits of the format modifier are a vendor-id as assigned 318 * below. The lower 56 bits are assigned as vendor sees fit. 319 */ 320 321 /* Vendor Ids: */ 322 #define DRM_FORMAT_MOD_NONE 0 323 #define DRM_FORMAT_MOD_VENDOR_NONE 0 324 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 325 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 326 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 327 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 328 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 329 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 330 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 331 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 332 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 333 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a 334 335 /* add more to the end as needed */ 336 337 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 338 339 #define fourcc_mod_code(vendor, val) \ 340 ((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 341 342 /* 343 * Format Modifier tokens: 344 * 345 * When adding a new token please document the layout with a code comment, 346 * similar to the fourcc codes above. drm_fourcc.h is considered the 347 * authoritative source for all of these. 348 * 349 * Generic modifier names: 350 * 351 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names 352 * for layouts which are common across multiple vendors. To preserve 353 * compatibility, in cases where a vendor-specific definition already exists and 354 * a generic name for it is desired, the common name is a purely symbolic alias 355 * and must use the same numerical value as the original definition. 356 * 357 * Note that generic names should only be used for modifiers which describe 358 * generic layouts (such as pixel re-ordering), which may have 359 * independently-developed support across multiple vendors. 360 * 361 * In future cases where a generic layout is identified before merging with a 362 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor 363 * 'NONE' could be considered. This should only be for obvious, exceptional 364 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only 365 * apply to a single vendor. 366 * 367 * Generic names should not be used for cases where multiple hardware vendors 368 * have implementations of the same standardised compression scheme (such as 369 * AFBC). In those cases, all implementations should use the same format 370 * modifier(s), reflecting the vendor of the standard. 371 */ 372 373 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE 374 375 /* 376 * Invalid Modifier 377 * 378 * This modifier can be used as a sentinel to terminate the format modifiers 379 * list, or to initialize a variable with an invalid modifier. It might also be 380 * used to report an error back to userspace for certain APIs. 381 */ 382 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 383 384 /* 385 * Linear Layout 386 * 387 * Just plain linear layout. Note that this is different from no specifying any 388 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 389 * which tells the driver to also take driver-internal information into account 390 * and so might actually result in a tiled framebuffer. 391 */ 392 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 393 394 /* Intel framebuffer modifiers */ 395 396 /* 397 * Intel X-tiling layout 398 * 399 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 400 * in row-major layout. Within the tile bytes are laid out row-major, with 401 * a platform-dependent stride. On top of that the memory can apply 402 * platform-depending swizzling of some higher address bits into bit6. 403 * 404 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 405 * On earlier platforms the is highly platforms specific and not useful for 406 * cross-driver sharing. It exists since on a given platform it does uniquely 407 * identify the layout in a simple way for i915-specific userspace, which 408 * facilitated conversion of userspace to modifiers. Additionally the exact 409 * format on some really old platforms is not known. 410 */ 411 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 412 413 /* 414 * Intel Y-tiling layout 415 * 416 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 417 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 418 * chunks column-major, with a platform-dependent height. On top of that the 419 * memory can apply platform-depending swizzling of some higher address bits 420 * into bit6. 421 * 422 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 423 * On earlier platforms the is highly platforms specific and not useful for 424 * cross-driver sharing. It exists since on a given platform it does uniquely 425 * identify the layout in a simple way for i915-specific userspace, which 426 * facilitated conversion of userspace to modifiers. Additionally the exact 427 * format on some really old platforms is not known. 428 */ 429 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 430 431 /* 432 * Intel Yf-tiling layout 433 * 434 * This is a tiled layout using 4Kb tiles in row-major layout. 435 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 436 * are arranged in four groups (two wide, two high) with column-major layout. 437 * Each group therefore consits out of four 256 byte units, which are also laid 438 * out as 2x2 column-major. 439 * 256 byte units are made out of four 64 byte blocks of pixels, producing 440 * either a square block or a 2:1 unit. 441 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 442 * in pixel depends on the pixel depth. 443 */ 444 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 445 446 /* 447 * Intel color control surface (CCS) for render compression 448 * 449 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 450 * The main surface will be plane index 0 and must be Y/Yf-tiled, 451 * the CCS will be plane index 1. 452 * 453 * Each CCS tile matches a 1024x512 pixel area of the main surface. 454 * To match certain aspects of the 3D hardware the CCS is 455 * considered to be made up of normal 128Bx32 Y tiles, Thus 456 * the CCS pitch must be specified in multiples of 128 bytes. 457 * 458 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 459 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 460 * But that fact is not relevant unless the memory is accessed 461 * directly. 462 */ 463 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 464 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 465 466 /* 467 * Intel color control surfaces (CCS) for Gen-12 render compression. 468 * 469 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 470 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 471 * main surface. In other words, 4 bits in CCS map to a main surface cache 472 * line pair. The main surface pitch is required to be a multiple of four 473 * Y-tile widths. 474 */ 475 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) 476 477 /* 478 * Intel color control surfaces (CCS) for Gen-12 media compression 479 * 480 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 481 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 482 * main surface. In other words, 4 bits in CCS map to a main surface cache 483 * line pair. The main surface pitch is required to be a multiple of four 484 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the 485 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, 486 * planes 2 and 3 for the respective CCS. 487 */ 488 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) 489 490 /* 491 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 492 * 493 * Macroblocks are laid in a Z-shape, and each pixel data is following the 494 * standard NV12 style. 495 * As for NV12, an image is the result of two frame buffers: one for Y, 496 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 497 * Alignment requirements are (for each buffer): 498 * - multiple of 128 pixels for the width 499 * - multiple of 32 pixels for the height 500 * 501 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 502 */ 503 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 504 505 /* 506 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks 507 * 508 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major 509 * layout. For YCbCr formats Cb/Cr components are taken in such a way that 510 * they correspond to their 16x16 luma block. 511 */ 512 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) 513 514 /* 515 * Qualcomm Compressed Format 516 * 517 * Refers to a compressed variant of the base format that is compressed. 518 * Implementation may be platform and base-format specific. 519 * 520 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 521 * Pixel data pitch/stride is aligned with macrotile width. 522 * Pixel data height is aligned with macrotile height. 523 * Entire pixel data buffer is aligned with 4k(bytes). 524 */ 525 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 526 527 /* Vivante framebuffer modifiers */ 528 529 /* 530 * Vivante 4x4 tiling layout 531 * 532 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 533 * layout. 534 */ 535 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 536 537 /* 538 * Vivante 64x64 super-tiling layout 539 * 540 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 541 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 542 * major layout. 543 * 544 * For more information: see 545 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 546 */ 547 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 548 549 /* 550 * Vivante 4x4 tiling layout for dual-pipe 551 * 552 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 553 * different base address. Offsets from the base addresses are therefore halved 554 * compared to the non-split tiled layout. 555 */ 556 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 557 558 /* 559 * Vivante 64x64 super-tiling layout for dual-pipe 560 * 561 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 562 * starts at a different base address. Offsets from the base addresses are 563 * therefore halved compared to the non-split super-tiled layout. 564 */ 565 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 566 567 /* NVIDIA frame buffer modifiers */ 568 569 /* 570 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 571 * 572 * Pixels are arranged in simple tiles of 16 x 16 bytes. 573 */ 574 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 575 576 /* 577 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80, 578 * and Tegra GPUs starting with Tegra K1. 579 * 580 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies 581 * based on the architecture generation. GOBs themselves are then arranged in 582 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power 583 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents 584 * a block depth or height of "4"). 585 * 586 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 587 * in full detail. 588 * 589 * Macro 590 * Bits Param Description 591 * ---- ----- ----------------------------------------------------------------- 592 * 593 * 3:0 h log2(height) of each block, in GOBs. Placed here for 594 * compatibility with the existing 595 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 596 * 597 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for 598 * compatibility with the existing 599 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 600 * 601 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block 602 * size). Must be zero. 603 * 604 * Note there is no log2(width) parameter. Some portions of the 605 * hardware support a block width of two gobs, but it is impractical 606 * to use due to lack of support elsewhere, and has no known 607 * benefits. 608 * 609 * 11:9 - Reserved (To support 2D-array textures with variable array stride 610 * in blocks, specified via log2(tile width in blocks)). Must be 611 * zero. 612 * 613 * 19:12 k Page Kind. This value directly maps to a field in the page 614 * tables of all GPUs >= NV50. It affects the exact layout of bits 615 * in memory and can be derived from the tuple 616 * 617 * (format, GPU model, compression type, samples per pixel) 618 * 619 * Where compression type is defined below. If GPU model were 620 * implied by the format modifier, format, or memory buffer, page 621 * kind would not need to be included in the modifier itself, but 622 * since the modifier should define the layout of the associated 623 * memory buffer independent from any device or other context, it 624 * must be included here. 625 * 626 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed 627 * starting with Fermi GPUs. Additionally, the mapping between page 628 * kind and bit layout has changed at various points. 629 * 630 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping 631 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping 632 * 2 = Gob Height 8, Turing+ Page Kind mapping 633 * 3 = Reserved for future use. 634 * 635 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further 636 * bit remapping step that occurs at an even lower level than the 637 * page kind and block linear swizzles. This causes the layout of 638 * surfaces mapped in those SOC's GPUs to be incompatible with the 639 * equivalent mapping on other GPUs in the same system. 640 * 641 * 0 = Tegra K1 - Tegra Parker/TX2 Layout. 642 * 1 = Desktop GPU and Tegra Xavier+ Layout 643 * 644 * 25:23 c Lossless Framebuffer Compression type. 645 * 646 * 0 = none 647 * 1 = ROP/3D, layout 1, exact compression format implied by Page 648 * Kind field 649 * 2 = ROP/3D, layout 2, exact compression format implied by Page 650 * Kind field 651 * 3 = CDE horizontal 652 * 4 = CDE vertical 653 * 5 = Reserved for future use 654 * 6 = Reserved for future use 655 * 7 = Reserved for future use 656 * 657 * 55:25 - Reserved for future use. Must be zero. 658 */ 659 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \ 660 fourcc_mod_code(NVIDIA, (0x10 | \ 661 ((h) & 0xf) | \ 662 (((k) & 0xff) << 12) | \ 663 (((g) & 0x3) << 20) | \ 664 (((s) & 0x1) << 22) | \ 665 (((c) & 0x7) << 23))) 666 667 /* To grandfather in prior block linear format modifiers to the above layout, 668 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable 669 * with block-linear layouts, is remapped within drivers to the value 0xfe, 670 * which corresponds to the "generic" kind used for simple single-sample 671 * uncompressed color formats on Fermi - Volta GPUs. 672 */ 673 static inline uint64_t 674 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier) 675 { 676 if (!(modifier & 0x10) || (modifier & (0xff << 12))) 677 return modifier; 678 else 679 return modifier | (0xfe << 12); 680 } 681 682 /* 683 * 16Bx2 Block Linear layout, used by Tegra K1 and later 684 * 685 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 686 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 687 * 688 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 689 * 690 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 691 * Valid values are: 692 * 693 * 0 == ONE_GOB 694 * 1 == TWO_GOBS 695 * 2 == FOUR_GOBS 696 * 3 == EIGHT_GOBS 697 * 4 == SIXTEEN_GOBS 698 * 5 == THIRTYTWO_GOBS 699 * 700 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 701 * in full detail. 702 */ 703 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 704 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v)) 705 706 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 707 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0) 708 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 709 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1) 710 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 711 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2) 712 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 713 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3) 714 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 715 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4) 716 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 717 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5) 718 719 /* 720 * Some Broadcom modifiers take parameters, for example the number of 721 * vertical lines in the image. Reserve the lower 32 bits for modifier 722 * type, and the next 24 bits for parameters. Top 8 bits are the 723 * vendor code. 724 */ 725 #define __fourcc_mod_broadcom_param_shift 8 726 #define __fourcc_mod_broadcom_param_bits 48 727 #define fourcc_mod_broadcom_code(val, params) \ 728 fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val)) 729 #define fourcc_mod_broadcom_param(m) \ 730 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 731 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 732 #define fourcc_mod_broadcom_mod(m) \ 733 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 734 __fourcc_mod_broadcom_param_shift)) 735 736 /* 737 * Broadcom VC4 "T" format 738 * 739 * This is the primary layout that the V3D GPU can texture from (it 740 * can't do linear). The T format has: 741 * 742 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 743 * pixels at 32 bit depth. 744 * 745 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 746 * 16x16 pixels). 747 * 748 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 749 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 750 * they're (TR, BR, BL, TL), where bottom left is start of memory. 751 * 752 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 753 * tiles) or right-to-left (odd rows of 4k tiles). 754 */ 755 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 756 757 /* 758 * Broadcom SAND format 759 * 760 * This is the native format that the H.264 codec block uses. For VC4 761 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 762 * 763 * The image can be considered to be split into columns, and the 764 * columns are placed consecutively into memory. The width of those 765 * columns can be either 32, 64, 128, or 256 pixels, but in practice 766 * only 128 pixel columns are used. 767 * 768 * The pitch between the start of each column is set to optimally 769 * switch between SDRAM banks. This is passed as the number of lines 770 * of column width in the modifier (we can't use the stride value due 771 * to various core checks that look at it , so you should set the 772 * stride to width*cpp). 773 * 774 * Note that the column height for this format modifier is the same 775 * for all of the planes, assuming that each column contains both Y 776 * and UV. Some SAND-using hardware stores UV in a separate tiled 777 * image from Y to reduce the column height, which is not supported 778 * with these modifiers. 779 */ 780 781 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 782 fourcc_mod_broadcom_code(2, v) 783 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 784 fourcc_mod_broadcom_code(3, v) 785 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 786 fourcc_mod_broadcom_code(4, v) 787 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 788 fourcc_mod_broadcom_code(5, v) 789 790 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 791 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 792 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 793 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 794 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 795 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 796 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 797 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 798 799 /* Broadcom UIF format 800 * 801 * This is the common format for the current Broadcom multimedia 802 * blocks, including V3D 3.x and newer, newer video codecs, and 803 * displays. 804 * 805 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 806 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 807 * stored in columns, with padding between the columns to ensure that 808 * moving from one column to the next doesn't hit the same SDRAM page 809 * bank. 810 * 811 * To calculate the padding, it is assumed that each hardware block 812 * and the software driving it knows the platform's SDRAM page size, 813 * number of banks, and XOR address, and that it's identical between 814 * all blocks using the format. This tiling modifier will use XOR as 815 * necessary to reduce the padding. If a hardware block can't do XOR, 816 * the assumption is that a no-XOR tiling modifier will be created. 817 */ 818 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 819 820 /* 821 * Arm Framebuffer Compression (AFBC) modifiers 822 * 823 * AFBC is a proprietary lossless image compression protocol and format. 824 * It provides fine-grained random access and minimizes the amount of data 825 * transferred between IP blocks. 826 * 827 * AFBC has several features which may be supported and/or used, which are 828 * represented using bits in the modifier. Not all combinations are valid, 829 * and different devices or use-cases may support different combinations. 830 * 831 * Further information on the use of AFBC modifiers can be found in 832 * Documentation/gpu/afbc.rst 833 */ 834 835 /* 836 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific 837 * modifiers) denote the category for modifiers. Currently we have only two 838 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen 839 * different categories. 840 */ 841 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ 842 fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) 843 844 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 845 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 846 847 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ 848 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) 849 850 /* 851 * AFBC superblock size 852 * 853 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 854 * size (in pixels) must be aligned to a multiple of the superblock size. 855 * Four lowest significant bits(LSBs) are reserved for block size. 856 * 857 * Where one superblock size is specified, it applies to all planes of the 858 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, 859 * the first applies to the Luma plane and the second applies to the Chroma 860 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). 861 * Multiple superblock sizes are only valid for multi-plane YCbCr formats. 862 */ 863 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 864 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 865 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 866 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) 867 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) 868 869 /* 870 * AFBC lossless colorspace transform 871 * 872 * Indicates that the buffer makes use of the AFBC lossless colorspace 873 * transform. 874 */ 875 #define AFBC_FORMAT_MOD_YTR (1ULL << 4) 876 877 /* 878 * AFBC block-split 879 * 880 * Indicates that the payload of each superblock is split. The second 881 * half of the payload is positioned at a predefined offset from the start 882 * of the superblock payload. 883 */ 884 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 885 886 /* 887 * AFBC sparse layout 888 * 889 * This flag indicates that the payload of each superblock must be stored at a 890 * predefined position relative to the other superblocks in the same AFBC 891 * buffer. This order is the same order used by the header buffer. In this mode 892 * each superblock is given the same amount of space as an uncompressed 893 * superblock of the particular format would require, rounding up to the next 894 * multiple of 128 bytes in size. 895 */ 896 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 897 898 /* 899 * AFBC copy-block restrict 900 * 901 * Buffers with this flag must obey the copy-block restriction. The restriction 902 * is such that there are no copy-blocks referring across the border of 8x8 903 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 904 */ 905 #define AFBC_FORMAT_MOD_CBR (1ULL << 7) 906 907 /* 908 * AFBC tiled layout 909 * 910 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 911 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 912 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 913 * larger bpp formats. The order between the tiles is scan line. 914 * When the tiled layout is used, the buffer size (in pixels) must be aligned 915 * to the tile size. 916 */ 917 #define AFBC_FORMAT_MOD_TILED (1ULL << 8) 918 919 /* 920 * AFBC solid color blocks 921 * 922 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 923 * can be reduced if a whole superblock is a single color. 924 */ 925 #define AFBC_FORMAT_MOD_SC (1ULL << 9) 926 927 /* 928 * AFBC double-buffer 929 * 930 * Indicates that the buffer is allocated in a layout safe for front-buffer 931 * rendering. 932 */ 933 #define AFBC_FORMAT_MOD_DB (1ULL << 10) 934 935 /* 936 * AFBC buffer content hints 937 * 938 * Indicates that the buffer includes per-superblock content hints. 939 */ 940 #define AFBC_FORMAT_MOD_BCH (1ULL << 11) 941 942 /* AFBC uncompressed storage mode 943 * 944 * Indicates that the buffer is using AFBC uncompressed storage mode. 945 * In this mode all superblock payloads in the buffer use the uncompressed 946 * storage mode, which is usually only used for data which cannot be compressed. 947 * The buffer layout is the same as for AFBC buffers without USM set, this only 948 * affects the storage mode of the individual superblocks. Note that even a 949 * buffer without USM set may use uncompressed storage mode for some or all 950 * superblocks, USM just guarantees it for all. 951 */ 952 #define AFBC_FORMAT_MOD_USM (1ULL << 12) 953 954 /* 955 * Arm 16x16 Block U-Interleaved modifier 956 * 957 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image 958 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels 959 * in the block are reordered. 960 */ 961 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ 962 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) 963 964 /* 965 * Allwinner tiled modifier 966 * 967 * This tiling mode is implemented by the VPU found on all Allwinner platforms, 968 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 969 * planes. 970 * 971 * With this tiling, the luminance samples are disposed in tiles representing 972 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. 973 * The pixel order in each tile is linear and the tiles are disposed linearly, 974 * both in row-major order. 975 */ 976 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) 977 978 /* 979 * Amlogic Video Framebuffer Compression modifiers 980 * 981 * Amlogic uses a proprietary lossless image compression protocol and format 982 * for their hardware video codec accelerators, either video decoders or 983 * video input encoders. 984 * 985 * It considerably reduces memory bandwidth while writing and reading 986 * frames in memory. 987 * 988 * The underlying storage is considered to be 3 components, 8bit or 10-bit 989 * per component YCbCr 420, single plane : 990 * - DRM_FORMAT_YUV420_8BIT 991 * - DRM_FORMAT_YUV420_10BIT 992 * 993 * The first 8 bits of the mode defines the layout, then the following 8 bits 994 * defines the options changing the layout. 995 * 996 * Not all combinations are valid, and different SoCs may support different 997 * combinations of layout and options. 998 */ 999 #define __fourcc_mod_amlogic_layout_mask 0xf 1000 #define __fourcc_mod_amlogic_options_shift 8 1001 #define __fourcc_mod_amlogic_options_mask 0xf 1002 1003 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \ 1004 fourcc_mod_code(AMLOGIC, \ 1005 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \ 1006 (((__options) & __fourcc_mod_amlogic_options_mask) \ 1007 << __fourcc_mod_amlogic_options_shift)) 1008 1009 /* Amlogic FBC Layouts */ 1010 1011 /* 1012 * Amlogic FBC Basic Layout 1013 * 1014 * The basic layout is composed of: 1015 * - a body content organized in 64x32 superblocks with 4096 bytes per 1016 * superblock in default mode. 1017 * - a 32 bytes per 128x64 header block 1018 * 1019 * This layout is transferrable between Amlogic SoCs supporting this modifier. 1020 */ 1021 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL) 1022 1023 /* 1024 * Amlogic FBC Scatter Memory layout 1025 * 1026 * Indicates the header contains IOMMU references to the compressed 1027 * frames content to optimize memory access and layout. 1028 * 1029 * In this mode, only the header memory address is needed, thus the 1030 * content memory organization is tied to the current producer 1031 * execution and cannot be saved/dumped neither transferrable between 1032 * Amlogic SoCs supporting this modifier. 1033 * 1034 * Due to the nature of the layout, these buffers are not expected to 1035 * be accessible by the user-space clients, but only accessible by the 1036 * hardware producers and consumers. 1037 * 1038 * The user-space clients should expect a failure while trying to mmap 1039 * the DMA-BUF handle returned by the producer. 1040 */ 1041 #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL) 1042 1043 /* Amlogic FBC Layout Options Bit Mask */ 1044 1045 /* 1046 * Amlogic FBC Memory Saving mode 1047 * 1048 * Indicates the storage is packed when pixel size is multiple of word 1049 * boudaries, i.e. 8bit should be stored in this mode to save allocation 1050 * memory. 1051 * 1052 * This mode reduces body layout to 3072 bytes per 64x32 superblock with 1053 * the basic layout and 3200 bytes per 64x32 superblock combined with 1054 * the scatter layout. 1055 */ 1056 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0) 1057 1058 #if defined(__cplusplus) 1059 } 1060 #endif 1061 1062 #endif /* DRM_FOURCC_H */ 1063