1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
61  * match only a single modifier. A modifier must not be a subset of layouts of
62  * another modifier. For instance, it's incorrect to encode pitch alignment in
63  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
64  * aligned modifier. That said, modifiers can have implicit minimal
65  * requirements.
66  *
67  * For modifiers where the combination of fourcc code and modifier can alias,
68  * a canonical pair needs to be defined and used by all drivers. Preferred
69  * combinations are also encouraged where all combinations might lead to
70  * confusion and unnecessarily reduced interoperability. An example for the
71  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
72  *
73  * There are two kinds of modifier users:
74  *
75  * - Kernel and user-space drivers: for drivers it's important that modifiers
76  *   don't alias, otherwise two drivers might support the same format but use
77  *   different aliases, preventing them from sharing buffers in an efficient
78  *   format.
79  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
80  *   see modifiers as opaque tokens they can check for equality and intersect.
81  *   These users musn't need to know to reason about the modifier value
82  *   (i.e. they are not expected to extract information out of the modifier).
83  *
84  * Vendors should document their modifier usage in as much detail as
85  * possible, to ensure maximum compatibility across devices, drivers and
86  * applications.
87  *
88  * The authoritative list of format modifier codes is found in
89  * `include/uapi/drm/drm_fourcc.h`
90  *
91  * Open Source User Waiver
92  * -----------------------
93  *
94  * Because this is the authoritative source for pixel formats and modifiers
95  * referenced by GL, Vulkan extensions and other standards and hence used both
96  * by open source and closed source driver stacks, the usual requirement for an
97  * upstream in-kernel or open source userspace user does not apply.
98  *
99  * To ensure, as much as feasible, compatibility across stacks and avoid
100  * confusion with incompatible enumerations stakeholders for all relevant driver
101  * stacks should approve additions.
102  */
103 
104 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
105 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
106 
107 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
108 
109 /* Reserve 0 for the invalid format specifier */
110 #define DRM_FORMAT_INVALID	0
111 
112 /* color index */
113 #define DRM_FORMAT_C1		fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
114 #define DRM_FORMAT_C2		fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
115 #define DRM_FORMAT_C4		fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
116 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
117 
118 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
119 #define DRM_FORMAT_D1		fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
120 
121 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
122 #define DRM_FORMAT_D2		fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
123 
124 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
125 #define DRM_FORMAT_D4		fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
126 
127 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
128 #define DRM_FORMAT_D8		fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
129 
130 /* 1 bpp Red (direct relationship between channel value and brightness) */
131 #define DRM_FORMAT_R1		fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
132 
133 /* 2 bpp Red (direct relationship between channel value and brightness) */
134 #define DRM_FORMAT_R2		fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
135 
136 /* 4 bpp Red (direct relationship between channel value and brightness) */
137 #define DRM_FORMAT_R4		fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
138 
139 /* 8 bpp Red (direct relationship between channel value and brightness) */
140 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
141 
142 /* 10 bpp Red (direct relationship between channel value and brightness) */
143 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
144 
145 /* 12 bpp Red (direct relationship between channel value and brightness) */
146 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
147 
148 /* 16 bpp Red (direct relationship between channel value and brightness) */
149 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
150 
151 /* 16 bpp RG */
152 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
153 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
154 
155 /* 32 bpp RG */
156 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
157 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
158 
159 /* 8 bpp RGB */
160 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
161 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
162 
163 /* 16 bpp RGB */
164 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
165 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
166 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
167 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
168 
169 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
170 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
171 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
172 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
173 
174 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
175 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
176 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
177 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
178 
179 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
180 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
181 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
182 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
183 
184 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
185 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
186 
187 /* 24 bpp RGB */
188 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
189 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
190 
191 /* 32 bpp RGB */
192 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
193 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
194 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
195 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
196 
197 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
198 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
199 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
200 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
201 
202 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
203 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
204 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
205 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
206 
207 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
208 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
209 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
210 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
211 
212 /* 64 bpp RGB */
213 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
214 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
215 
216 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
217 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
218 
219 /*
220  * Floating point 64bpp RGB
221  * IEEE 754-2008 binary16 half-precision float
222  * [15:0] sign:exponent:mantissa 1:5:10
223  */
224 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
225 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
226 
227 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
228 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
229 
230 /*
231  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
232  * of unused padding per component:
233  */
234 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
235 
236 /* packed YCbCr */
237 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
238 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
239 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
240 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
241 
242 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
243 #define DRM_FORMAT_AVUY8888	fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
244 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
245 #define DRM_FORMAT_XVUY8888	fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
246 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
247 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
248 
249 /*
250  * packed Y2xx indicate for each component, xx valid data occupy msb
251  * 16-xx padding occupy lsb
252  */
253 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
254 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
255 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
256 
257 /*
258  * packed Y4xx indicate for each component, xx valid data occupy msb
259  * 16-xx padding occupy lsb except Y410
260  */
261 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
262 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
263 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
264 
265 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
266 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
267 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
268 
269 /*
270  * packed YCbCr420 2x2 tiled formats
271  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
272  */
273 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
274 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
275 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
276 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
277 
278 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
279 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
280 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
281 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
282 
283 /*
284  * 1-plane YUV 4:2:0
285  * In these formats, the component ordering is specified (Y, followed by U
286  * then V), but the exact Linear layout is undefined.
287  * These formats can only be used with a non-Linear modifier.
288  */
289 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
290 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
291 
292 /*
293  * 2 plane RGB + A
294  * index 0 = RGB plane, same format as the corresponding non _A8 format has
295  * index 1 = A plane, [7:0] A
296  */
297 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
298 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
299 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
300 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
301 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
302 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
303 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
304 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
305 
306 /*
307  * 2 plane YCbCr
308  * index 0 = Y plane, [7:0] Y
309  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
310  * or
311  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
312  */
313 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
314 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
315 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
316 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
317 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
318 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
319 /*
320  * 2 plane YCbCr
321  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
322  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
323  */
324 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
325 
326 /*
327  * 2 plane YCbCr MSB aligned
328  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
329  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
330  */
331 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
332 
333 /*
334  * 2 plane YCbCr MSB aligned
335  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
336  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
337  */
338 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
339 
340 /*
341  * 2 plane YCbCr MSB aligned
342  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
343  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
344  */
345 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
346 
347 /*
348  * 2 plane YCbCr MSB aligned
349  * index 0 = Y plane, [15:0] Y little endian
350  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
351  */
352 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
353 
354 /* 2 plane YCbCr420.
355  * 3 10 bit components and 2 padding bits packed into 4 bytes.
356  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
357  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
358  */
359 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
360 
361 /* 3 plane non-subsampled (444) YCbCr
362  * 16 bits per component, but only 10 bits are used and 6 bits are padded
363  * index 0: Y plane, [15:0] Y:x [10:6] little endian
364  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
365  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
366  */
367 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
368 
369 /* 3 plane non-subsampled (444) YCrCb
370  * 16 bits per component, but only 10 bits are used and 6 bits are padded
371  * index 0: Y plane, [15:0] Y:x [10:6] little endian
372  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
373  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
374  */
375 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
376 
377 /*
378  * 3 plane YCbCr
379  * index 0: Y plane, [7:0] Y
380  * index 1: Cb plane, [7:0] Cb
381  * index 2: Cr plane, [7:0] Cr
382  * or
383  * index 1: Cr plane, [7:0] Cr
384  * index 2: Cb plane, [7:0] Cb
385  */
386 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
387 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
388 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
389 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
390 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
391 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
392 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
393 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
394 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
395 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
396 
397 
398 /*
399  * Format Modifiers:
400  *
401  * Format modifiers describe, typically, a re-ordering or modification
402  * of the data in a plane of an FB.  This can be used to express tiled/
403  * swizzled formats, or compression, or a combination of the two.
404  *
405  * The upper 8 bits of the format modifier are a vendor-id as assigned
406  * below.  The lower 56 bits are assigned as vendor sees fit.
407  */
408 
409 /* Vendor Ids: */
410 #define DRM_FORMAT_MOD_VENDOR_NONE    0
411 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
412 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
413 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
414 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
415 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
416 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
417 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
418 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
419 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
420 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
421 
422 /* add more to the end as needed */
423 
424 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
425 
426 #define fourcc_mod_get_vendor(modifier) \
427 	(((modifier) >> 56) & 0xff)
428 
429 #define fourcc_mod_is_vendor(modifier, vendor) \
430 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
431 
432 #define fourcc_mod_code(vendor, val) \
433 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
434 
435 /*
436  * Format Modifier tokens:
437  *
438  * When adding a new token please document the layout with a code comment,
439  * similar to the fourcc codes above. drm_fourcc.h is considered the
440  * authoritative source for all of these.
441  *
442  * Generic modifier names:
443  *
444  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
445  * for layouts which are common across multiple vendors. To preserve
446  * compatibility, in cases where a vendor-specific definition already exists and
447  * a generic name for it is desired, the common name is a purely symbolic alias
448  * and must use the same numerical value as the original definition.
449  *
450  * Note that generic names should only be used for modifiers which describe
451  * generic layouts (such as pixel re-ordering), which may have
452  * independently-developed support across multiple vendors.
453  *
454  * In future cases where a generic layout is identified before merging with a
455  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
456  * 'NONE' could be considered. This should only be for obvious, exceptional
457  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
458  * apply to a single vendor.
459  *
460  * Generic names should not be used for cases where multiple hardware vendors
461  * have implementations of the same standardised compression scheme (such as
462  * AFBC). In those cases, all implementations should use the same format
463  * modifier(s), reflecting the vendor of the standard.
464  */
465 
466 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
467 
468 /*
469  * Invalid Modifier
470  *
471  * This modifier can be used as a sentinel to terminate the format modifiers
472  * list, or to initialize a variable with an invalid modifier. It might also be
473  * used to report an error back to userspace for certain APIs.
474  */
475 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
476 
477 /*
478  * Linear Layout
479  *
480  * Just plain linear layout. Note that this is different from no specifying any
481  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
482  * which tells the driver to also take driver-internal information into account
483  * and so might actually result in a tiled framebuffer.
484  */
485 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
486 
487 /*
488  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
489  *
490  * The "none" format modifier doesn't actually mean that the modifier is
491  * implicit, instead it means that the layout is linear. Whether modifiers are
492  * used is out-of-band information carried in an API-specific way (e.g. in a
493  * flag for drm_mode_fb_cmd2).
494  */
495 #define DRM_FORMAT_MOD_NONE	0
496 
497 /* Intel framebuffer modifiers */
498 
499 /*
500  * Intel X-tiling layout
501  *
502  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
503  * in row-major layout. Within the tile bytes are laid out row-major, with
504  * a platform-dependent stride. On top of that the memory can apply
505  * platform-depending swizzling of some higher address bits into bit6.
506  *
507  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
508  * On earlier platforms the is highly platforms specific and not useful for
509  * cross-driver sharing. It exists since on a given platform it does uniquely
510  * identify the layout in a simple way for i915-specific userspace, which
511  * facilitated conversion of userspace to modifiers. Additionally the exact
512  * format on some really old platforms is not known.
513  */
514 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
515 
516 /*
517  * Intel Y-tiling layout
518  *
519  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
520  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
521  * chunks column-major, with a platform-dependent height. On top of that the
522  * memory can apply platform-depending swizzling of some higher address bits
523  * into bit6.
524  *
525  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
526  * On earlier platforms the is highly platforms specific and not useful for
527  * cross-driver sharing. It exists since on a given platform it does uniquely
528  * identify the layout in a simple way for i915-specific userspace, which
529  * facilitated conversion of userspace to modifiers. Additionally the exact
530  * format on some really old platforms is not known.
531  */
532 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
533 
534 /*
535  * Intel Yf-tiling layout
536  *
537  * This is a tiled layout using 4Kb tiles in row-major layout.
538  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
539  * are arranged in four groups (two wide, two high) with column-major layout.
540  * Each group therefore consits out of four 256 byte units, which are also laid
541  * out as 2x2 column-major.
542  * 256 byte units are made out of four 64 byte blocks of pixels, producing
543  * either a square block or a 2:1 unit.
544  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
545  * in pixel depends on the pixel depth.
546  */
547 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
548 
549 /*
550  * Intel color control surface (CCS) for render compression
551  *
552  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
553  * The main surface will be plane index 0 and must be Y/Yf-tiled,
554  * the CCS will be plane index 1.
555  *
556  * Each CCS tile matches a 1024x512 pixel area of the main surface.
557  * To match certain aspects of the 3D hardware the CCS is
558  * considered to be made up of normal 128Bx32 Y tiles, Thus
559  * the CCS pitch must be specified in multiples of 128 bytes.
560  *
561  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
562  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
563  * But that fact is not relevant unless the memory is accessed
564  * directly.
565  */
566 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
567 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
568 
569 /*
570  * Intel color control surfaces (CCS) for Gen-12 render compression.
571  *
572  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
573  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
574  * main surface. In other words, 4 bits in CCS map to a main surface cache
575  * line pair. The main surface pitch is required to be a multiple of four
576  * Y-tile widths.
577  */
578 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
579 
580 /*
581  * Intel color control surfaces (CCS) for Gen-12 media compression
582  *
583  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
584  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
585  * main surface. In other words, 4 bits in CCS map to a main surface cache
586  * line pair. The main surface pitch is required to be a multiple of four
587  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
588  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
589  * planes 2 and 3 for the respective CCS.
590  */
591 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
592 
593 /*
594  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
595  * compression.
596  *
597  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
598  * and at index 1. The clear color is stored at index 2, and the pitch should
599  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
600  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
601  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
602  * the converted clear color of size 64 bits. The first 32 bits store the Lower
603  * Converted Clear Color value and the next 32 bits store the Higher Converted
604  * Clear Color value when applicable. The Converted Clear Color values are
605  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
606  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
607  * corresponds to an area of 4x1 tiles in the main surface. The main surface
608  * pitch is required to be a multiple of 4 tile widths.
609  */
610 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
611 
612 /*
613  * Intel Tile 4 layout
614  *
615  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
616  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
617  * only differs from Tile Y at the 256B granularity in between. At this
618  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
619  * of 64B x 8 rows.
620  */
621 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
622 
623 /*
624  * Intel color control surfaces (CCS) for DG2 render compression.
625  *
626  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
627  * outside of the GEM object in a reserved memory area dedicated for the
628  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
629  * main surface pitch is required to be a multiple of four Tile 4 widths.
630  */
631 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
632 
633 /*
634  * Intel color control surfaces (CCS) for DG2 media compression.
635  *
636  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
637  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
638  * 0 and 1, respectively. The CCS for all planes are stored outside of the
639  * GEM object in a reserved memory area dedicated for the storage of the
640  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
641  * pitch is required to be a multiple of four Tile 4 widths.
642  */
643 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
644 
645 /*
646  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
647  *
648  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
649  * outside of the GEM object in a reserved memory area dedicated for the
650  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
651  * main surface pitch is required to be a multiple of four Tile 4 widths. The
652  * clear color is stored at plane index 1 and the pitch should be 64 bytes
653  * aligned. The format of the 256 bits of clear color data matches the one used
654  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
655  * for details.
656  */
657 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
658 
659 /*
660  * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
661  *
662  * The main surface is tile4 and at plane index 0, the CCS is linear and
663  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
664  * main surface. In other words, 4 bits in CCS map to a main surface cache
665  * line pair. The main surface pitch is required to be a multiple of four
666  * tile4 widths.
667  */
668 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
669 
670 /*
671  * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
672  *
673  * The main surface is tile4 and at plane index 0, the CCS is linear and
674  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
675  * main surface. In other words, 4 bits in CCS map to a main surface cache
676  * line pair. The main surface pitch is required to be a multiple of four
677  * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
678  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
679  * planes 2 and 3 for the respective CCS.
680  */
681 #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
682 
683 /*
684  * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
685  * compression.
686  *
687  * The main surface is tile4 and is at plane index 0 whereas CCS is linear
688  * and at index 1. The clear color is stored at index 2, and the pitch should
689  * be ignored. The clear color structure is 256 bits. The first 128 bits
690  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
691  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
692  * the converted clear color of size 64 bits. The first 32 bits store the Lower
693  * Converted Clear Color value and the next 32 bits store the Higher Converted
694  * Clear Color value when applicable. The Converted Clear Color values are
695  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
696  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
697  * corresponds to an area of 4x1 tiles in the main surface. The main surface
698  * pitch is required to be a multiple of 4 tile widths.
699  */
700 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
701 
702 /*
703  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
704  *
705  * Macroblocks are laid in a Z-shape, and each pixel data is following the
706  * standard NV12 style.
707  * As for NV12, an image is the result of two frame buffers: one for Y,
708  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
709  * Alignment requirements are (for each buffer):
710  * - multiple of 128 pixels for the width
711  * - multiple of  32 pixels for the height
712  *
713  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
714  */
715 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
716 
717 /*
718  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
719  *
720  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
721  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
722  * they correspond to their 16x16 luma block.
723  */
724 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
725 
726 /*
727  * Qualcomm Compressed Format
728  *
729  * Refers to a compressed variant of the base format that is compressed.
730  * Implementation may be platform and base-format specific.
731  *
732  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
733  * Pixel data pitch/stride is aligned with macrotile width.
734  * Pixel data height is aligned with macrotile height.
735  * Entire pixel data buffer is aligned with 4k(bytes).
736  */
737 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
738 
739 /*
740  * Qualcomm Tiled Format
741  *
742  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
743  * Implementation may be platform and base-format specific.
744  *
745  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
746  * Pixel data pitch/stride is aligned with macrotile width.
747  * Pixel data height is aligned with macrotile height.
748  * Entire pixel data buffer is aligned with 4k(bytes).
749  */
750 #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
751 
752 /*
753  * Qualcomm Alternate Tiled Format
754  *
755  * Alternate tiled format typically only used within GMEM.
756  * Implementation may be platform and base-format specific.
757  */
758 #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
759 
760 
761 /* Vivante framebuffer modifiers */
762 
763 /*
764  * Vivante 4x4 tiling layout
765  *
766  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
767  * layout.
768  */
769 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
770 
771 /*
772  * Vivante 64x64 super-tiling layout
773  *
774  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
775  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
776  * major layout.
777  *
778  * For more information: see
779  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
780  */
781 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
782 
783 /*
784  * Vivante 4x4 tiling layout for dual-pipe
785  *
786  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
787  * different base address. Offsets from the base addresses are therefore halved
788  * compared to the non-split tiled layout.
789  */
790 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
791 
792 /*
793  * Vivante 64x64 super-tiling layout for dual-pipe
794  *
795  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
796  * starts at a different base address. Offsets from the base addresses are
797  * therefore halved compared to the non-split super-tiled layout.
798  */
799 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
800 
801 /*
802  * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
803  * the color buffer tiling modifiers defined above. When TS is present it's a
804  * separate buffer containing the clear/compression status of each tile. The
805  * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
806  * tile size in bytes covered by one entry in the status buffer and s is the
807  * number of status bits per entry.
808  * We reserve the top 8 bits of the Vivante modifier space for tile status
809  * clear/compression modifiers, as future cores might add some more TS layout
810  * variations.
811  */
812 #define VIVANTE_MOD_TS_64_4               (1ULL << 48)
813 #define VIVANTE_MOD_TS_64_2               (2ULL << 48)
814 #define VIVANTE_MOD_TS_128_4              (3ULL << 48)
815 #define VIVANTE_MOD_TS_256_4              (4ULL << 48)
816 #define VIVANTE_MOD_TS_MASK               (0xfULL << 48)
817 
818 /*
819  * Vivante compression modifiers. Those depend on a TS modifier being present
820  * as the TS bits get reinterpreted as compression tags instead of simple
821  * clear markers when compression is enabled.
822  */
823 #define VIVANTE_MOD_COMP_DEC400           (1ULL << 52)
824 #define VIVANTE_MOD_COMP_MASK             (0xfULL << 52)
825 
826 /* Masking out the extension bits will yield the base modifier. */
827 #define VIVANTE_MOD_EXT_MASK              (VIVANTE_MOD_TS_MASK | \
828                                            VIVANTE_MOD_COMP_MASK)
829 
830 /* NVIDIA frame buffer modifiers */
831 
832 /*
833  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
834  *
835  * Pixels are arranged in simple tiles of 16 x 16 bytes.
836  */
837 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
838 
839 /*
840  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
841  * and Tegra GPUs starting with Tegra K1.
842  *
843  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
844  * based on the architecture generation.  GOBs themselves are then arranged in
845  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
846  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
847  * a block depth or height of "4").
848  *
849  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
850  * in full detail.
851  *
852  *       Macro
853  * Bits  Param Description
854  * ----  ----- -----------------------------------------------------------------
855  *
856  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
857  *             compatibility with the existing
858  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
859  *
860  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
861  *             compatibility with the existing
862  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
863  *
864  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
865  *             size).  Must be zero.
866  *
867  *             Note there is no log2(width) parameter.  Some portions of the
868  *             hardware support a block width of two gobs, but it is impractical
869  *             to use due to lack of support elsewhere, and has no known
870  *             benefits.
871  *
872  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
873  *             in blocks, specified via log2(tile width in blocks)).  Must be
874  *             zero.
875  *
876  * 19:12 k     Page Kind.  This value directly maps to a field in the page
877  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
878  *             in memory and can be derived from the tuple
879  *
880  *               (format, GPU model, compression type, samples per pixel)
881  *
882  *             Where compression type is defined below.  If GPU model were
883  *             implied by the format modifier, format, or memory buffer, page
884  *             kind would not need to be included in the modifier itself, but
885  *             since the modifier should define the layout of the associated
886  *             memory buffer independent from any device or other context, it
887  *             must be included here.
888  *
889  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
890  *             starting with Fermi GPUs.  Additionally, the mapping between page
891  *             kind and bit layout has changed at various points.
892  *
893  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
894  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
895  *               2 = Gob Height 8, Turing+ Page Kind mapping
896  *               3 = Reserved for future use.
897  *
898  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
899  *             bit remapping step that occurs at an even lower level than the
900  *             page kind and block linear swizzles.  This causes the layout of
901  *             surfaces mapped in those SOC's GPUs to be incompatible with the
902  *             equivalent mapping on other GPUs in the same system.
903  *
904  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
905  *               1 = Desktop GPU and Tegra Xavier+ Layout
906  *
907  * 25:23 c     Lossless Framebuffer Compression type.
908  *
909  *               0 = none
910  *               1 = ROP/3D, layout 1, exact compression format implied by Page
911  *                   Kind field
912  *               2 = ROP/3D, layout 2, exact compression format implied by Page
913  *                   Kind field
914  *               3 = CDE horizontal
915  *               4 = CDE vertical
916  *               5 = Reserved for future use
917  *               6 = Reserved for future use
918  *               7 = Reserved for future use
919  *
920  * 55:25 -     Reserved for future use.  Must be zero.
921  */
922 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
923 	fourcc_mod_code(NVIDIA, (0x10 | \
924 				 ((h) & 0xf) | \
925 				 (((k) & 0xff) << 12) | \
926 				 (((g) & 0x3) << 20) | \
927 				 (((s) & 0x1) << 22) | \
928 				 (((c) & 0x7) << 23)))
929 
930 /* To grandfather in prior block linear format modifiers to the above layout,
931  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
932  * with block-linear layouts, is remapped within drivers to the value 0xfe,
933  * which corresponds to the "generic" kind used for simple single-sample
934  * uncompressed color formats on Fermi - Volta GPUs.
935  */
936 static inline uint64_t
937 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
938 {
939 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
940 		return modifier;
941 	else
942 		return modifier | (0xfe << 12);
943 }
944 
945 /*
946  * 16Bx2 Block Linear layout, used by Tegra K1 and later
947  *
948  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
949  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
950  *
951  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
952  *
953  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
954  * Valid values are:
955  *
956  * 0 == ONE_GOB
957  * 1 == TWO_GOBS
958  * 2 == FOUR_GOBS
959  * 3 == EIGHT_GOBS
960  * 4 == SIXTEEN_GOBS
961  * 5 == THIRTYTWO_GOBS
962  *
963  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
964  * in full detail.
965  */
966 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
967 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
968 
969 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
970 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
971 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
972 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
973 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
974 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
975 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
976 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
977 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
978 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
979 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
980 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
981 
982 /*
983  * Some Broadcom modifiers take parameters, for example the number of
984  * vertical lines in the image. Reserve the lower 32 bits for modifier
985  * type, and the next 24 bits for parameters. Top 8 bits are the
986  * vendor code.
987  */
988 #define __fourcc_mod_broadcom_param_shift 8
989 #define __fourcc_mod_broadcom_param_bits 48
990 #define fourcc_mod_broadcom_code(val, params) \
991 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
992 #define fourcc_mod_broadcom_param(m) \
993 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
994 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
995 #define fourcc_mod_broadcom_mod(m) \
996 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
997 		 __fourcc_mod_broadcom_param_shift))
998 
999 /*
1000  * Broadcom VC4 "T" format
1001  *
1002  * This is the primary layout that the V3D GPU can texture from (it
1003  * can't do linear).  The T format has:
1004  *
1005  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
1006  *   pixels at 32 bit depth.
1007  *
1008  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1009  *   16x16 pixels).
1010  *
1011  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
1012  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1013  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
1014  *
1015  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1016  *   tiles) or right-to-left (odd rows of 4k tiles).
1017  */
1018 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1019 
1020 /*
1021  * Broadcom SAND format
1022  *
1023  * This is the native format that the H.264 codec block uses.  For VC4
1024  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1025  *
1026  * The image can be considered to be split into columns, and the
1027  * columns are placed consecutively into memory.  The width of those
1028  * columns can be either 32, 64, 128, or 256 pixels, but in practice
1029  * only 128 pixel columns are used.
1030  *
1031  * The pitch between the start of each column is set to optimally
1032  * switch between SDRAM banks. This is passed as the number of lines
1033  * of column width in the modifier (we can't use the stride value due
1034  * to various core checks that look at it , so you should set the
1035  * stride to width*cpp).
1036  *
1037  * Note that the column height for this format modifier is the same
1038  * for all of the planes, assuming that each column contains both Y
1039  * and UV.  Some SAND-using hardware stores UV in a separate tiled
1040  * image from Y to reduce the column height, which is not supported
1041  * with these modifiers.
1042  *
1043  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1044  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1045  * wide, but as this is a 10 bpp format that translates to 96 pixels.
1046  */
1047 
1048 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1049 	fourcc_mod_broadcom_code(2, v)
1050 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1051 	fourcc_mod_broadcom_code(3, v)
1052 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1053 	fourcc_mod_broadcom_code(4, v)
1054 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1055 	fourcc_mod_broadcom_code(5, v)
1056 
1057 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1058 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1059 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1060 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1061 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1062 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1063 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1064 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1065 
1066 /* Broadcom UIF format
1067  *
1068  * This is the common format for the current Broadcom multimedia
1069  * blocks, including V3D 3.x and newer, newer video codecs, and
1070  * displays.
1071  *
1072  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1073  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
1074  * stored in columns, with padding between the columns to ensure that
1075  * moving from one column to the next doesn't hit the same SDRAM page
1076  * bank.
1077  *
1078  * To calculate the padding, it is assumed that each hardware block
1079  * and the software driving it knows the platform's SDRAM page size,
1080  * number of banks, and XOR address, and that it's identical between
1081  * all blocks using the format.  This tiling modifier will use XOR as
1082  * necessary to reduce the padding.  If a hardware block can't do XOR,
1083  * the assumption is that a no-XOR tiling modifier will be created.
1084  */
1085 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1086 
1087 /*
1088  * Arm Framebuffer Compression (AFBC) modifiers
1089  *
1090  * AFBC is a proprietary lossless image compression protocol and format.
1091  * It provides fine-grained random access and minimizes the amount of data
1092  * transferred between IP blocks.
1093  *
1094  * AFBC has several features which may be supported and/or used, which are
1095  * represented using bits in the modifier. Not all combinations are valid,
1096  * and different devices or use-cases may support different combinations.
1097  *
1098  * Further information on the use of AFBC modifiers can be found in
1099  * Documentation/gpu/afbc.rst
1100  */
1101 
1102 /*
1103  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
1104  * modifiers) denote the category for modifiers. Currently we have three
1105  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1106  * sixteen different categories.
1107  */
1108 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1109 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1110 
1111 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1112 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1113 
1114 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1115 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1116 
1117 /*
1118  * AFBC superblock size
1119  *
1120  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1121  * size (in pixels) must be aligned to a multiple of the superblock size.
1122  * Four lowest significant bits(LSBs) are reserved for block size.
1123  *
1124  * Where one superblock size is specified, it applies to all planes of the
1125  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1126  * the first applies to the Luma plane and the second applies to the Chroma
1127  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1128  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1129  */
1130 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1131 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1132 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1133 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1134 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1135 
1136 /*
1137  * AFBC lossless colorspace transform
1138  *
1139  * Indicates that the buffer makes use of the AFBC lossless colorspace
1140  * transform.
1141  */
1142 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1143 
1144 /*
1145  * AFBC block-split
1146  *
1147  * Indicates that the payload of each superblock is split. The second
1148  * half of the payload is positioned at a predefined offset from the start
1149  * of the superblock payload.
1150  */
1151 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1152 
1153 /*
1154  * AFBC sparse layout
1155  *
1156  * This flag indicates that the payload of each superblock must be stored at a
1157  * predefined position relative to the other superblocks in the same AFBC
1158  * buffer. This order is the same order used by the header buffer. In this mode
1159  * each superblock is given the same amount of space as an uncompressed
1160  * superblock of the particular format would require, rounding up to the next
1161  * multiple of 128 bytes in size.
1162  */
1163 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1164 
1165 /*
1166  * AFBC copy-block restrict
1167  *
1168  * Buffers with this flag must obey the copy-block restriction. The restriction
1169  * is such that there are no copy-blocks referring across the border of 8x8
1170  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1171  */
1172 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1173 
1174 /*
1175  * AFBC tiled layout
1176  *
1177  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1178  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1179  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1180  * larger bpp formats. The order between the tiles is scan line.
1181  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1182  * to the tile size.
1183  */
1184 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1185 
1186 /*
1187  * AFBC solid color blocks
1188  *
1189  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1190  * can be reduced if a whole superblock is a single color.
1191  */
1192 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1193 
1194 /*
1195  * AFBC double-buffer
1196  *
1197  * Indicates that the buffer is allocated in a layout safe for front-buffer
1198  * rendering.
1199  */
1200 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1201 
1202 /*
1203  * AFBC buffer content hints
1204  *
1205  * Indicates that the buffer includes per-superblock content hints.
1206  */
1207 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1208 
1209 /* AFBC uncompressed storage mode
1210  *
1211  * Indicates that the buffer is using AFBC uncompressed storage mode.
1212  * In this mode all superblock payloads in the buffer use the uncompressed
1213  * storage mode, which is usually only used for data which cannot be compressed.
1214  * The buffer layout is the same as for AFBC buffers without USM set, this only
1215  * affects the storage mode of the individual superblocks. Note that even a
1216  * buffer without USM set may use uncompressed storage mode for some or all
1217  * superblocks, USM just guarantees it for all.
1218  */
1219 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1220 
1221 /*
1222  * Arm Fixed-Rate Compression (AFRC) modifiers
1223  *
1224  * AFRC is a proprietary fixed rate image compression protocol and format,
1225  * designed to provide guaranteed bandwidth and memory footprint
1226  * reductions in graphics and media use-cases.
1227  *
1228  * AFRC buffers consist of one or more planes, with the same components
1229  * and meaning as an uncompressed buffer using the same pixel format.
1230  *
1231  * Within each plane, the pixel/luma/chroma values are grouped into
1232  * "coding unit" blocks which are individually compressed to a
1233  * fixed size (in bytes). All coding units within a given plane of a buffer
1234  * store the same number of values, and have the same compressed size.
1235  *
1236  * The coding unit size is configurable, allowing different rates of compression.
1237  *
1238  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1239  * depends on the coding unit size.
1240  *
1241  * Coding Unit Size   Plane Alignment
1242  * ----------------   ---------------
1243  * 16 bytes           1024 bytes
1244  * 24 bytes           512  bytes
1245  * 32 bytes           2048 bytes
1246  *
1247  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1248  * to a multiple of the paging tile dimensions.
1249  * The dimensions of each paging tile depend on whether the buffer is optimised for
1250  * scanline (SCAN layout) or rotated (ROT layout) access.
1251  *
1252  * Layout   Paging Tile Width   Paging Tile Height
1253  * ------   -----------------   ------------------
1254  * SCAN     16 coding units     4 coding units
1255  * ROT      8  coding units     8 coding units
1256  *
1257  * The dimensions of each coding unit depend on the number of components
1258  * in the compressed plane and whether the buffer is optimised for
1259  * scanline (SCAN layout) or rotated (ROT layout) access.
1260  *
1261  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1262  * -----------------------------   ---------   -----------------   ------------------
1263  * 1                               SCAN        16 samples          4 samples
1264  * Example: 16x4 luma samples in a 'Y' plane
1265  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1266  * -----------------------------   ---------   -----------------   ------------------
1267  * 1                               ROT         8 samples           8 samples
1268  * Example: 8x8 luma samples in a 'Y' plane
1269  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1270  * -----------------------------   ---------   -----------------   ------------------
1271  * 2                               DONT CARE   8 samples           4 samples
1272  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1273  * -----------------------------   ---------   -----------------   ------------------
1274  * 3                               DONT CARE   4 samples           4 samples
1275  * Example: 4x4 pixels in an RGB buffer without alpha
1276  * -----------------------------   ---------   -----------------   ------------------
1277  * 4                               DONT CARE   4 samples           4 samples
1278  * Example: 4x4 pixels in an RGB buffer with alpha
1279  */
1280 
1281 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1282 
1283 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1284 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1285 
1286 /*
1287  * AFRC coding unit size modifier.
1288  *
1289  * Indicates the number of bytes used to store each compressed coding unit for
1290  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1291  * is the same for both Cb and Cr, which may be stored in separate planes.
1292  *
1293  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1294  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1295  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1296  * this corresponds to the luma plane.
1297  *
1298  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1299  * each compressed coding unit in the second and third planes in the buffer.
1300  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1301  *
1302  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1303  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1304  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1305  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1306  */
1307 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1308 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1309 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1310 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1311 
1312 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1313 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1314 
1315 /*
1316  * AFRC scanline memory layout.
1317  *
1318  * Indicates if the buffer uses the scanline-optimised layout
1319  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1320  * The memory layout is the same for all planes.
1321  */
1322 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1323 
1324 /*
1325  * Arm 16x16 Block U-Interleaved modifier
1326  *
1327  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1328  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1329  * in the block are reordered.
1330  */
1331 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1332 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1333 
1334 /*
1335  * Allwinner tiled modifier
1336  *
1337  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1338  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1339  * planes.
1340  *
1341  * With this tiling, the luminance samples are disposed in tiles representing
1342  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1343  * The pixel order in each tile is linear and the tiles are disposed linearly,
1344  * both in row-major order.
1345  */
1346 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1347 
1348 /*
1349  * Amlogic Video Framebuffer Compression modifiers
1350  *
1351  * Amlogic uses a proprietary lossless image compression protocol and format
1352  * for their hardware video codec accelerators, either video decoders or
1353  * video input encoders.
1354  *
1355  * It considerably reduces memory bandwidth while writing and reading
1356  * frames in memory.
1357  *
1358  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1359  * per component YCbCr 420, single plane :
1360  * - DRM_FORMAT_YUV420_8BIT
1361  * - DRM_FORMAT_YUV420_10BIT
1362  *
1363  * The first 8 bits of the mode defines the layout, then the following 8 bits
1364  * defines the options changing the layout.
1365  *
1366  * Not all combinations are valid, and different SoCs may support different
1367  * combinations of layout and options.
1368  */
1369 #define __fourcc_mod_amlogic_layout_mask 0xff
1370 #define __fourcc_mod_amlogic_options_shift 8
1371 #define __fourcc_mod_amlogic_options_mask 0xff
1372 
1373 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1374 	fourcc_mod_code(AMLOGIC, \
1375 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1376 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1377 			 << __fourcc_mod_amlogic_options_shift))
1378 
1379 /* Amlogic FBC Layouts */
1380 
1381 /*
1382  * Amlogic FBC Basic Layout
1383  *
1384  * The basic layout is composed of:
1385  * - a body content organized in 64x32 superblocks with 4096 bytes per
1386  *   superblock in default mode.
1387  * - a 32 bytes per 128x64 header block
1388  *
1389  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1390  */
1391 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1392 
1393 /*
1394  * Amlogic FBC Scatter Memory layout
1395  *
1396  * Indicates the header contains IOMMU references to the compressed
1397  * frames content to optimize memory access and layout.
1398  *
1399  * In this mode, only the header memory address is needed, thus the
1400  * content memory organization is tied to the current producer
1401  * execution and cannot be saved/dumped neither transferrable between
1402  * Amlogic SoCs supporting this modifier.
1403  *
1404  * Due to the nature of the layout, these buffers are not expected to
1405  * be accessible by the user-space clients, but only accessible by the
1406  * hardware producers and consumers.
1407  *
1408  * The user-space clients should expect a failure while trying to mmap
1409  * the DMA-BUF handle returned by the producer.
1410  */
1411 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1412 
1413 /* Amlogic FBC Layout Options Bit Mask */
1414 
1415 /*
1416  * Amlogic FBC Memory Saving mode
1417  *
1418  * Indicates the storage is packed when pixel size is multiple of word
1419  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1420  * memory.
1421  *
1422  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1423  * the basic layout and 3200 bytes per 64x32 superblock combined with
1424  * the scatter layout.
1425  */
1426 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1427 
1428 /*
1429  * AMD modifiers
1430  *
1431  * Memory layout:
1432  *
1433  * without DCC:
1434  *   - main surface
1435  *
1436  * with DCC & without DCC_RETILE:
1437  *   - main surface in plane 0
1438  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1439  *
1440  * with DCC & DCC_RETILE:
1441  *   - main surface in plane 0
1442  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1443  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1444  *
1445  * For multi-plane formats the above surfaces get merged into one plane for
1446  * each format plane, based on the required alignment only.
1447  *
1448  * Bits  Parameter                Notes
1449  * ----- ------------------------ ---------------------------------------------
1450  *
1451  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1452  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1453  *    13 DCC
1454  *    14 DCC_RETILE
1455  *    15 DCC_PIPE_ALIGN
1456  *    16 DCC_INDEPENDENT_64B
1457  *    17 DCC_INDEPENDENT_128B
1458  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1459  *    20 DCC_CONSTANT_ENCODE
1460  * 23:21 PIPE_XOR_BITS            Only for some chips
1461  * 26:24 BANK_XOR_BITS            Only for some chips
1462  * 29:27 PACKERS                  Only for some chips
1463  * 32:30 RB                       Only for some chips
1464  * 35:33 PIPE                     Only for some chips
1465  * 55:36 -                        Reserved for future use, must be zero
1466  */
1467 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1468 
1469 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1470 
1471 /* Reserve 0 for GFX8 and older */
1472 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1473 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1474 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1475 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1476 
1477 /*
1478  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1479  * version.
1480  */
1481 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1482 
1483 /*
1484  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1485  * GFX9 as canonical version.
1486  */
1487 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1488 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1489 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1490 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1491 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1492 
1493 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1494 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1495 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1496 
1497 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1498 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1499 #define AMD_FMT_MOD_TILE_SHIFT 8
1500 #define AMD_FMT_MOD_TILE_MASK 0x1F
1501 
1502 /* Whether DCC compression is enabled. */
1503 #define AMD_FMT_MOD_DCC_SHIFT 13
1504 #define AMD_FMT_MOD_DCC_MASK 0x1
1505 
1506 /*
1507  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1508  * one which is not-aligned.
1509  */
1510 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1511 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1512 
1513 /* Only set if DCC_RETILE = false */
1514 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1515 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1516 
1517 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1518 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1519 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1520 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1521 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1522 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1523 
1524 /*
1525  * DCC supports embedding some clear colors directly in the DCC surface.
1526  * However, on older GPUs the rendering HW ignores the embedded clear color
1527  * and prefers the driver provided color. This necessitates doing a fastclear
1528  * eliminate operation before a process transfers control.
1529  *
1530  * If this bit is set that means the fastclear eliminate is not needed for these
1531  * embeddable colors.
1532  */
1533 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1534 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1535 
1536 /*
1537  * The below fields are for accounting for per GPU differences. These are only
1538  * relevant for GFX9 and later and if the tile field is *_X/_T.
1539  *
1540  * PIPE_XOR_BITS = always needed
1541  * BANK_XOR_BITS = only for TILE_VER_GFX9
1542  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1543  * RB = only for TILE_VER_GFX9 & DCC
1544  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1545  */
1546 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1547 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1548 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1549 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1550 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1551 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1552 #define AMD_FMT_MOD_RB_SHIFT 30
1553 #define AMD_FMT_MOD_RB_MASK 0x7
1554 #define AMD_FMT_MOD_PIPE_SHIFT 33
1555 #define AMD_FMT_MOD_PIPE_MASK 0x7
1556 
1557 #define AMD_FMT_MOD_SET(field, value) \
1558 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1559 #define AMD_FMT_MOD_GET(field, value) \
1560 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1561 #define AMD_FMT_MOD_CLEAR(field) \
1562 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1563 
1564 #if defined(__cplusplus)
1565 }
1566 #endif
1567 
1568 #endif /* DRM_FOURCC_H */
1569