1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Vendors should document their modifier usage in as much detail as
61  * possible, to ensure maximum compatibility across devices, drivers and
62  * applications.
63  *
64  * The authoritative list of format modifier codes is found in
65  * `include/uapi/drm/drm_fourcc.h`
66  */
67 
68 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
69 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
70 
71 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
72 
73 /* Reserve 0 for the invalid format specifier */
74 #define DRM_FORMAT_INVALID	0
75 
76 /* color index */
77 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
78 
79 /* 8 bpp Red */
80 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
81 
82 /* 16 bpp Red */
83 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
84 
85 /* 16 bpp RG */
86 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
87 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
88 
89 /* 32 bpp RG */
90 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
91 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
92 
93 /* 8 bpp RGB */
94 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
95 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
96 
97 /* 16 bpp RGB */
98 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
99 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
100 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
101 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
102 
103 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
104 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
105 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
106 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
107 
108 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
109 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
110 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
111 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
112 
113 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
114 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
115 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
116 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
117 
118 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
119 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
120 
121 /* 24 bpp RGB */
122 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
123 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
124 
125 /* 32 bpp RGB */
126 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
127 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
128 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
129 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
130 
131 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
132 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
133 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
134 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
135 
136 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
137 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
138 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
139 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
140 
141 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
142 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
143 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
144 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
145 
146 /*
147  * Floating point 64bpp RGB
148  * IEEE 754-2008 binary16 half-precision float
149  * [15:0] sign:exponent:mantissa 1:5:10
150  */
151 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
152 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
153 
154 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
155 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
156 
157 /* packed YCbCr */
158 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
159 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
161 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
162 
163 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
164 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
166 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
167 
168 /*
169  * packed Y2xx indicate for each component, xx valid data occupy msb
170  * 16-xx padding occupy lsb
171  */
172 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
173 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
175 
176 /*
177  * packed Y4xx indicate for each component, xx valid data occupy msb
178  * 16-xx padding occupy lsb except Y410
179  */
180 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
181 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
182 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
183 
184 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
185 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
186 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
187 
188 /*
189  * packed YCbCr420 2x2 tiled formats
190  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
191  */
192 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
193 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
194 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
195 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
196 
197 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
198 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
199 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
200 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
201 
202 /*
203  * 1-plane YUV 4:2:0
204  * In these formats, the component ordering is specified (Y, followed by U
205  * then V), but the exact Linear layout is undefined.
206  * These formats can only be used with a non-Linear modifier.
207  */
208 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
209 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
210 
211 /*
212  * 2 plane RGB + A
213  * index 0 = RGB plane, same format as the corresponding non _A8 format has
214  * index 1 = A plane, [7:0] A
215  */
216 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
217 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
218 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
219 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
220 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
221 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
222 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
223 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
224 
225 /*
226  * 2 plane YCbCr
227  * index 0 = Y plane, [7:0] Y
228  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
229  * or
230  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
231  */
232 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
233 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
234 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
235 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
236 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
237 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
238 
239 /*
240  * 2 plane YCbCr MSB aligned
241  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
242  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
243  */
244 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
245 
246 /*
247  * 2 plane YCbCr MSB aligned
248  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
249  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
250  */
251 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
252 
253 /*
254  * 2 plane YCbCr MSB aligned
255  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
256  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
257  */
258 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
259 
260 /*
261  * 2 plane YCbCr MSB aligned
262  * index 0 = Y plane, [15:0] Y little endian
263  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
264  */
265 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
266 
267 /*
268  * 3 plane YCbCr
269  * index 0: Y plane, [7:0] Y
270  * index 1: Cb plane, [7:0] Cb
271  * index 2: Cr plane, [7:0] Cr
272  * or
273  * index 1: Cr plane, [7:0] Cr
274  * index 2: Cb plane, [7:0] Cb
275  */
276 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
277 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
278 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
279 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
280 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
281 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
282 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
283 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
284 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
285 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
286 
287 
288 /*
289  * Format Modifiers:
290  *
291  * Format modifiers describe, typically, a re-ordering or modification
292  * of the data in a plane of an FB.  This can be used to express tiled/
293  * swizzled formats, or compression, or a combination of the two.
294  *
295  * The upper 8 bits of the format modifier are a vendor-id as assigned
296  * below.  The lower 56 bits are assigned as vendor sees fit.
297  */
298 
299 /* Vendor Ids: */
300 #define DRM_FORMAT_MOD_NONE           0
301 #define DRM_FORMAT_MOD_VENDOR_NONE    0
302 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
303 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
304 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
305 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
306 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
307 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
308 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
309 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
310 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
311 
312 /* add more to the end as needed */
313 
314 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
315 
316 #define fourcc_mod_code(vendor, val) \
317 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
318 
319 /*
320  * Format Modifier tokens:
321  *
322  * When adding a new token please document the layout with a code comment,
323  * similar to the fourcc codes above. drm_fourcc.h is considered the
324  * authoritative source for all of these.
325  */
326 
327 /*
328  * Invalid Modifier
329  *
330  * This modifier can be used as a sentinel to terminate the format modifiers
331  * list, or to initialize a variable with an invalid modifier. It might also be
332  * used to report an error back to userspace for certain APIs.
333  */
334 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
335 
336 /*
337  * Linear Layout
338  *
339  * Just plain linear layout. Note that this is different from no specifying any
340  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
341  * which tells the driver to also take driver-internal information into account
342  * and so might actually result in a tiled framebuffer.
343  */
344 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
345 
346 /* Intel framebuffer modifiers */
347 
348 /*
349  * Intel X-tiling layout
350  *
351  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
352  * in row-major layout. Within the tile bytes are laid out row-major, with
353  * a platform-dependent stride. On top of that the memory can apply
354  * platform-depending swizzling of some higher address bits into bit6.
355  *
356  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
357  * On earlier platforms the is highly platforms specific and not useful for
358  * cross-driver sharing. It exists since on a given platform it does uniquely
359  * identify the layout in a simple way for i915-specific userspace, which
360  * facilitated conversion of userspace to modifiers. Additionally the exact
361  * format on some really old platforms is not known.
362  */
363 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
364 
365 /*
366  * Intel Y-tiling layout
367  *
368  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
369  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
370  * chunks column-major, with a platform-dependent height. On top of that the
371  * memory can apply platform-depending swizzling of some higher address bits
372  * into bit6.
373  *
374  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
375  * On earlier platforms the is highly platforms specific and not useful for
376  * cross-driver sharing. It exists since on a given platform it does uniquely
377  * identify the layout in a simple way for i915-specific userspace, which
378  * facilitated conversion of userspace to modifiers. Additionally the exact
379  * format on some really old platforms is not known.
380  */
381 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
382 
383 /*
384  * Intel Yf-tiling layout
385  *
386  * This is a tiled layout using 4Kb tiles in row-major layout.
387  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
388  * are arranged in four groups (two wide, two high) with column-major layout.
389  * Each group therefore consits out of four 256 byte units, which are also laid
390  * out as 2x2 column-major.
391  * 256 byte units are made out of four 64 byte blocks of pixels, producing
392  * either a square block or a 2:1 unit.
393  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
394  * in pixel depends on the pixel depth.
395  */
396 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
397 
398 /*
399  * Intel color control surface (CCS) for render compression
400  *
401  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
402  * The main surface will be plane index 0 and must be Y/Yf-tiled,
403  * the CCS will be plane index 1.
404  *
405  * Each CCS tile matches a 1024x512 pixel area of the main surface.
406  * To match certain aspects of the 3D hardware the CCS is
407  * considered to be made up of normal 128Bx32 Y tiles, Thus
408  * the CCS pitch must be specified in multiples of 128 bytes.
409  *
410  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
411  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
412  * But that fact is not relevant unless the memory is accessed
413  * directly.
414  */
415 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
416 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
417 
418 /*
419  * Intel color control surfaces (CCS) for Gen-12 render compression.
420  *
421  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
422  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
423  * main surface. In other words, 4 bits in CCS map to a main surface cache
424  * line pair. The main surface pitch is required to be a multiple of four
425  * Y-tile widths.
426  */
427 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
428 
429 /*
430  * Intel color control surfaces (CCS) for Gen-12 media compression
431  *
432  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
433  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
434  * main surface. In other words, 4 bits in CCS map to a main surface cache
435  * line pair. The main surface pitch is required to be a multiple of four
436  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
437  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
438  * planes 2 and 3 for the respective CCS.
439  */
440 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
441 
442 /*
443  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
444  *
445  * Macroblocks are laid in a Z-shape, and each pixel data is following the
446  * standard NV12 style.
447  * As for NV12, an image is the result of two frame buffers: one for Y,
448  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
449  * Alignment requirements are (for each buffer):
450  * - multiple of 128 pixels for the width
451  * - multiple of  32 pixels for the height
452  *
453  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
454  */
455 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
456 
457 /*
458  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
459  *
460  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
461  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
462  * they correspond to their 16x16 luma block.
463  */
464 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
465 
466 /*
467  * Qualcomm Compressed Format
468  *
469  * Refers to a compressed variant of the base format that is compressed.
470  * Implementation may be platform and base-format specific.
471  *
472  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
473  * Pixel data pitch/stride is aligned with macrotile width.
474  * Pixel data height is aligned with macrotile height.
475  * Entire pixel data buffer is aligned with 4k(bytes).
476  */
477 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
478 
479 /* Vivante framebuffer modifiers */
480 
481 /*
482  * Vivante 4x4 tiling layout
483  *
484  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
485  * layout.
486  */
487 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
488 
489 /*
490  * Vivante 64x64 super-tiling layout
491  *
492  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
493  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
494  * major layout.
495  *
496  * For more information: see
497  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
498  */
499 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
500 
501 /*
502  * Vivante 4x4 tiling layout for dual-pipe
503  *
504  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
505  * different base address. Offsets from the base addresses are therefore halved
506  * compared to the non-split tiled layout.
507  */
508 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
509 
510 /*
511  * Vivante 64x64 super-tiling layout for dual-pipe
512  *
513  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
514  * starts at a different base address. Offsets from the base addresses are
515  * therefore halved compared to the non-split super-tiled layout.
516  */
517 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
518 
519 /* NVIDIA frame buffer modifiers */
520 
521 /*
522  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
523  *
524  * Pixels are arranged in simple tiles of 16 x 16 bytes.
525  */
526 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
527 
528 /*
529  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
530  * and Tegra GPUs starting with Tegra K1.
531  *
532  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
533  * based on the architecture generation.  GOBs themselves are then arranged in
534  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
535  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
536  * a block depth or height of "4").
537  *
538  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
539  * in full detail.
540  *
541  *       Macro
542  * Bits  Param Description
543  * ----  ----- -----------------------------------------------------------------
544  *
545  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
546  *             compatibility with the existing
547  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
548  *
549  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
550  *             compatibility with the existing
551  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
552  *
553  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
554  *             size).  Must be zero.
555  *
556  *             Note there is no log2(width) parameter.  Some portions of the
557  *             hardware support a block width of two gobs, but it is impractical
558  *             to use due to lack of support elsewhere, and has no known
559  *             benefits.
560  *
561  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
562  *             in blocks, specified via log2(tile width in blocks)).  Must be
563  *             zero.
564  *
565  * 19:12 k     Page Kind.  This value directly maps to a field in the page
566  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
567  *             in memory and can be derived from the tuple
568  *
569  *               (format, GPU model, compression type, samples per pixel)
570  *
571  *             Where compression type is defined below.  If GPU model were
572  *             implied by the format modifier, format, or memory buffer, page
573  *             kind would not need to be included in the modifier itself, but
574  *             since the modifier should define the layout of the associated
575  *             memory buffer independent from any device or other context, it
576  *             must be included here.
577  *
578  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
579  *             starting with Fermi GPUs.  Additionally, the mapping between page
580  *             kind and bit layout has changed at various points.
581  *
582  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
583  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
584  *               2 = Gob Height 8, Turing+ Page Kind mapping
585  *               3 = Reserved for future use.
586  *
587  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
588  *             bit remapping step that occurs at an even lower level than the
589  *             page kind and block linear swizzles.  This causes the layout of
590  *             surfaces mapped in those SOC's GPUs to be incompatible with the
591  *             equivalent mapping on other GPUs in the same system.
592  *
593  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
594  *               1 = Desktop GPU and Tegra Xavier+ Layout
595  *
596  * 25:23 c     Lossless Framebuffer Compression type.
597  *
598  *               0 = none
599  *               1 = ROP/3D, layout 1, exact compression format implied by Page
600  *                   Kind field
601  *               2 = ROP/3D, layout 2, exact compression format implied by Page
602  *                   Kind field
603  *               3 = CDE horizontal
604  *               4 = CDE vertical
605  *               5 = Reserved for future use
606  *               6 = Reserved for future use
607  *               7 = Reserved for future use
608  *
609  * 55:25 -     Reserved for future use.  Must be zero.
610  */
611 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
612 	fourcc_mod_code(NVIDIA, (0x10 | \
613 				 ((h) & 0xf) | \
614 				 (((k) & 0xff) << 12) | \
615 				 (((g) & 0x3) << 20) | \
616 				 (((s) & 0x1) << 22) | \
617 				 (((c) & 0x7) << 23)))
618 
619 /* To grandfather in prior block linear format modifiers to the above layout,
620  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
621  * with block-linear layouts, is remapped within drivers to the value 0xfe,
622  * which corresponds to the "generic" kind used for simple single-sample
623  * uncompressed color formats on Fermi - Volta GPUs.
624  */
625 static inline uint64_t
626 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
627 {
628 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
629 		return modifier;
630 	else
631 		return modifier | (0xfe << 12);
632 }
633 
634 /*
635  * 16Bx2 Block Linear layout, used by Tegra K1 and later
636  *
637  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
638  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
639  *
640  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
641  *
642  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
643  * Valid values are:
644  *
645  * 0 == ONE_GOB
646  * 1 == TWO_GOBS
647  * 2 == FOUR_GOBS
648  * 3 == EIGHT_GOBS
649  * 4 == SIXTEEN_GOBS
650  * 5 == THIRTYTWO_GOBS
651  *
652  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
653  * in full detail.
654  */
655 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
656 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
657 
658 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
659 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
660 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
661 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
662 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
663 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
664 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
665 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
666 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
667 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
668 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
669 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
670 
671 /*
672  * Some Broadcom modifiers take parameters, for example the number of
673  * vertical lines in the image. Reserve the lower 32 bits for modifier
674  * type, and the next 24 bits for parameters. Top 8 bits are the
675  * vendor code.
676  */
677 #define __fourcc_mod_broadcom_param_shift 8
678 #define __fourcc_mod_broadcom_param_bits 48
679 #define fourcc_mod_broadcom_code(val, params) \
680 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
681 #define fourcc_mod_broadcom_param(m) \
682 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
683 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
684 #define fourcc_mod_broadcom_mod(m) \
685 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
686 		 __fourcc_mod_broadcom_param_shift))
687 
688 /*
689  * Broadcom VC4 "T" format
690  *
691  * This is the primary layout that the V3D GPU can texture from (it
692  * can't do linear).  The T format has:
693  *
694  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
695  *   pixels at 32 bit depth.
696  *
697  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
698  *   16x16 pixels).
699  *
700  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
701  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
702  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
703  *
704  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
705  *   tiles) or right-to-left (odd rows of 4k tiles).
706  */
707 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
708 
709 /*
710  * Broadcom SAND format
711  *
712  * This is the native format that the H.264 codec block uses.  For VC4
713  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
714  *
715  * The image can be considered to be split into columns, and the
716  * columns are placed consecutively into memory.  The width of those
717  * columns can be either 32, 64, 128, or 256 pixels, but in practice
718  * only 128 pixel columns are used.
719  *
720  * The pitch between the start of each column is set to optimally
721  * switch between SDRAM banks. This is passed as the number of lines
722  * of column width in the modifier (we can't use the stride value due
723  * to various core checks that look at it , so you should set the
724  * stride to width*cpp).
725  *
726  * Note that the column height for this format modifier is the same
727  * for all of the planes, assuming that each column contains both Y
728  * and UV.  Some SAND-using hardware stores UV in a separate tiled
729  * image from Y to reduce the column height, which is not supported
730  * with these modifiers.
731  */
732 
733 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
734 	fourcc_mod_broadcom_code(2, v)
735 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
736 	fourcc_mod_broadcom_code(3, v)
737 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
738 	fourcc_mod_broadcom_code(4, v)
739 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
740 	fourcc_mod_broadcom_code(5, v)
741 
742 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
743 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
744 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
745 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
746 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
747 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
748 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
749 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
750 
751 /* Broadcom UIF format
752  *
753  * This is the common format for the current Broadcom multimedia
754  * blocks, including V3D 3.x and newer, newer video codecs, and
755  * displays.
756  *
757  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
758  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
759  * stored in columns, with padding between the columns to ensure that
760  * moving from one column to the next doesn't hit the same SDRAM page
761  * bank.
762  *
763  * To calculate the padding, it is assumed that each hardware block
764  * and the software driving it knows the platform's SDRAM page size,
765  * number of banks, and XOR address, and that it's identical between
766  * all blocks using the format.  This tiling modifier will use XOR as
767  * necessary to reduce the padding.  If a hardware block can't do XOR,
768  * the assumption is that a no-XOR tiling modifier will be created.
769  */
770 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
771 
772 /*
773  * Arm Framebuffer Compression (AFBC) modifiers
774  *
775  * AFBC is a proprietary lossless image compression protocol and format.
776  * It provides fine-grained random access and minimizes the amount of data
777  * transferred between IP blocks.
778  *
779  * AFBC has several features which may be supported and/or used, which are
780  * represented using bits in the modifier. Not all combinations are valid,
781  * and different devices or use-cases may support different combinations.
782  *
783  * Further information on the use of AFBC modifiers can be found in
784  * Documentation/gpu/afbc.rst
785  */
786 
787 /*
788  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
789  * modifiers) denote the category for modifiers. Currently we have only two
790  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
791  * different categories.
792  */
793 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
794 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
795 
796 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
797 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
798 
799 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
800 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
801 
802 /*
803  * AFBC superblock size
804  *
805  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
806  * size (in pixels) must be aligned to a multiple of the superblock size.
807  * Four lowest significant bits(LSBs) are reserved for block size.
808  *
809  * Where one superblock size is specified, it applies to all planes of the
810  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
811  * the first applies to the Luma plane and the second applies to the Chroma
812  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
813  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
814  */
815 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
816 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
817 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
818 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
819 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
820 
821 /*
822  * AFBC lossless colorspace transform
823  *
824  * Indicates that the buffer makes use of the AFBC lossless colorspace
825  * transform.
826  */
827 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
828 
829 /*
830  * AFBC block-split
831  *
832  * Indicates that the payload of each superblock is split. The second
833  * half of the payload is positioned at a predefined offset from the start
834  * of the superblock payload.
835  */
836 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
837 
838 /*
839  * AFBC sparse layout
840  *
841  * This flag indicates that the payload of each superblock must be stored at a
842  * predefined position relative to the other superblocks in the same AFBC
843  * buffer. This order is the same order used by the header buffer. In this mode
844  * each superblock is given the same amount of space as an uncompressed
845  * superblock of the particular format would require, rounding up to the next
846  * multiple of 128 bytes in size.
847  */
848 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
849 
850 /*
851  * AFBC copy-block restrict
852  *
853  * Buffers with this flag must obey the copy-block restriction. The restriction
854  * is such that there are no copy-blocks referring across the border of 8x8
855  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
856  */
857 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
858 
859 /*
860  * AFBC tiled layout
861  *
862  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
863  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
864  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
865  * larger bpp formats. The order between the tiles is scan line.
866  * When the tiled layout is used, the buffer size (in pixels) must be aligned
867  * to the tile size.
868  */
869 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
870 
871 /*
872  * AFBC solid color blocks
873  *
874  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
875  * can be reduced if a whole superblock is a single color.
876  */
877 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
878 
879 /*
880  * AFBC double-buffer
881  *
882  * Indicates that the buffer is allocated in a layout safe for front-buffer
883  * rendering.
884  */
885 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
886 
887 /*
888  * AFBC buffer content hints
889  *
890  * Indicates that the buffer includes per-superblock content hints.
891  */
892 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
893 
894 /*
895  * Arm 16x16 Block U-Interleaved modifier
896  *
897  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
898  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
899  * in the block are reordered.
900  */
901 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
902 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
903 
904 /*
905  * Allwinner tiled modifier
906  *
907  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
908  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
909  * planes.
910  *
911  * With this tiling, the luminance samples are disposed in tiles representing
912  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
913  * The pixel order in each tile is linear and the tiles are disposed linearly,
914  * both in row-major order.
915  */
916 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
917 
918 #if defined(__cplusplus)
919 }
920 #endif
921 
922 #endif /* DRM_FOURCC_H */
923