1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Vendors should document their modifier usage in as much detail as
61  * possible, to ensure maximum compatibility across devices, drivers and
62  * applications.
63  *
64  * The authoritative list of format modifier codes is found in
65  * `include/uapi/drm/drm_fourcc.h`
66  */
67 
68 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
69 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
70 
71 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */
72 
73 /* Reserve 0 for the invalid format specifier */
74 #define DRM_FORMAT_INVALID	0
75 
76 /* color index */
77 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
78 
79 /* 8 bpp Red */
80 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
81 
82 /* 16 bpp Red */
83 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
84 
85 /* 16 bpp RG */
86 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
87 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
88 
89 /* 32 bpp RG */
90 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
91 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
92 
93 /* 8 bpp RGB */
94 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
95 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
96 
97 /* 16 bpp RGB */
98 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
99 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
100 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
101 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
102 
103 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
104 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
105 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
106 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
107 
108 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
109 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
110 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
111 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
112 
113 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
114 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
115 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
116 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
117 
118 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
119 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
120 
121 /* 24 bpp RGB */
122 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
123 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
124 
125 /* 32 bpp RGB */
126 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
127 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
128 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
129 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
130 
131 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
132 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
133 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
134 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
135 
136 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
137 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
138 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
139 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
140 
141 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
142 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
143 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
144 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
145 
146 /* packed YCbCr */
147 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
148 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
149 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
150 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
151 
152 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
153 #define DRM_FORMAT_XYUV8888		fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
154 
155 /*
156  * packed YCbCr420 2x2 tiled formats
157  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
158  */
159 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
160 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
161 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
162 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
163 
164 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
165 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
166 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
167 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
168 
169 /*
170  * 2 plane RGB + A
171  * index 0 = RGB plane, same format as the corresponding non _A8 format has
172  * index 1 = A plane, [7:0] A
173  */
174 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
175 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
176 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
177 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
178 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
179 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
180 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
181 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
182 
183 /*
184  * 2 plane YCbCr
185  * index 0 = Y plane, [7:0] Y
186  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
187  * or
188  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
189  */
190 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
191 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
192 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
193 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
194 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
195 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
196 
197 /*
198  * 3 plane YCbCr
199  * index 0: Y plane, [7:0] Y
200  * index 1: Cb plane, [7:0] Cb
201  * index 2: Cr plane, [7:0] Cr
202  * or
203  * index 1: Cr plane, [7:0] Cr
204  * index 2: Cb plane, [7:0] Cb
205  */
206 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
207 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
208 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
209 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
210 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
211 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
212 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
213 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
214 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
215 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
216 
217 
218 /*
219  * Format Modifiers:
220  *
221  * Format modifiers describe, typically, a re-ordering or modification
222  * of the data in a plane of an FB.  This can be used to express tiled/
223  * swizzled formats, or compression, or a combination of the two.
224  *
225  * The upper 8 bits of the format modifier are a vendor-id as assigned
226  * below.  The lower 56 bits are assigned as vendor sees fit.
227  */
228 
229 /* Vendor Ids: */
230 #define DRM_FORMAT_MOD_NONE           0
231 #define DRM_FORMAT_MOD_VENDOR_NONE    0
232 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
233 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
234 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
235 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
236 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
237 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
238 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
239 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
240 /* add more to the end as needed */
241 
242 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
243 
244 #define fourcc_mod_code(vendor, val) \
245 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
246 
247 /*
248  * Format Modifier tokens:
249  *
250  * When adding a new token please document the layout with a code comment,
251  * similar to the fourcc codes above. drm_fourcc.h is considered the
252  * authoritative source for all of these.
253  */
254 
255 /*
256  * Invalid Modifier
257  *
258  * This modifier can be used as a sentinel to terminate the format modifiers
259  * list, or to initialize a variable with an invalid modifier. It might also be
260  * used to report an error back to userspace for certain APIs.
261  */
262 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
263 
264 /*
265  * Linear Layout
266  *
267  * Just plain linear layout. Note that this is different from no specifying any
268  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
269  * which tells the driver to also take driver-internal information into account
270  * and so might actually result in a tiled framebuffer.
271  */
272 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
273 
274 /* Intel framebuffer modifiers */
275 
276 /*
277  * Intel X-tiling layout
278  *
279  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
280  * in row-major layout. Within the tile bytes are laid out row-major, with
281  * a platform-dependent stride. On top of that the memory can apply
282  * platform-depending swizzling of some higher address bits into bit6.
283  *
284  * This format is highly platforms specific and not useful for cross-driver
285  * sharing. It exists since on a given platform it does uniquely identify the
286  * layout in a simple way for i915-specific userspace.
287  */
288 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
289 
290 /*
291  * Intel Y-tiling layout
292  *
293  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
294  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
295  * chunks column-major, with a platform-dependent height. On top of that the
296  * memory can apply platform-depending swizzling of some higher address bits
297  * into bit6.
298  *
299  * This format is highly platforms specific and not useful for cross-driver
300  * sharing. It exists since on a given platform it does uniquely identify the
301  * layout in a simple way for i915-specific userspace.
302  */
303 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
304 
305 /*
306  * Intel Yf-tiling layout
307  *
308  * This is a tiled layout using 4Kb tiles in row-major layout.
309  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
310  * are arranged in four groups (two wide, two high) with column-major layout.
311  * Each group therefore consits out of four 256 byte units, which are also laid
312  * out as 2x2 column-major.
313  * 256 byte units are made out of four 64 byte blocks of pixels, producing
314  * either a square block or a 2:1 unit.
315  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
316  * in pixel depends on the pixel depth.
317  */
318 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
319 
320 /*
321  * Intel color control surface (CCS) for render compression
322  *
323  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
324  * The main surface will be plane index 0 and must be Y/Yf-tiled,
325  * the CCS will be plane index 1.
326  *
327  * Each CCS tile matches a 1024x512 pixel area of the main surface.
328  * To match certain aspects of the 3D hardware the CCS is
329  * considered to be made up of normal 128Bx32 Y tiles, Thus
330  * the CCS pitch must be specified in multiples of 128 bytes.
331  *
332  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
333  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
334  * But that fact is not relevant unless the memory is accessed
335  * directly.
336  */
337 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
338 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
339 
340 /*
341  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
342  *
343  * Macroblocks are laid in a Z-shape, and each pixel data is following the
344  * standard NV12 style.
345  * As for NV12, an image is the result of two frame buffers: one for Y,
346  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
347  * Alignment requirements are (for each buffer):
348  * - multiple of 128 pixels for the width
349  * - multiple of  32 pixels for the height
350  *
351  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
352  */
353 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
354 
355 /*
356  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
357  *
358  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
359  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
360  * they correspond to their 16x16 luma block.
361  */
362 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
363 
364 /*
365  * Qualcomm Compressed Format
366  *
367  * Refers to a compressed variant of the base format that is compressed.
368  * Implementation may be platform and base-format specific.
369  *
370  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
371  * Pixel data pitch/stride is aligned with macrotile width.
372  * Pixel data height is aligned with macrotile height.
373  * Entire pixel data buffer is aligned with 4k(bytes).
374  */
375 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
376 
377 /* Vivante framebuffer modifiers */
378 
379 /*
380  * Vivante 4x4 tiling layout
381  *
382  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
383  * layout.
384  */
385 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
386 
387 /*
388  * Vivante 64x64 super-tiling layout
389  *
390  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
391  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
392  * major layout.
393  *
394  * For more information: see
395  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
396  */
397 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
398 
399 /*
400  * Vivante 4x4 tiling layout for dual-pipe
401  *
402  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
403  * different base address. Offsets from the base addresses are therefore halved
404  * compared to the non-split tiled layout.
405  */
406 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
407 
408 /*
409  * Vivante 64x64 super-tiling layout for dual-pipe
410  *
411  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
412  * starts at a different base address. Offsets from the base addresses are
413  * therefore halved compared to the non-split super-tiled layout.
414  */
415 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
416 
417 /* NVIDIA frame buffer modifiers */
418 
419 /*
420  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
421  *
422  * Pixels are arranged in simple tiles of 16 x 16 bytes.
423  */
424 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
425 
426 /*
427  * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
428  *
429  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
430  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
431  *
432  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
433  *
434  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
435  * Valid values are:
436  *
437  * 0 == ONE_GOB
438  * 1 == TWO_GOBS
439  * 2 == FOUR_GOBS
440  * 3 == EIGHT_GOBS
441  * 4 == SIXTEEN_GOBS
442  * 5 == THIRTYTWO_GOBS
443  *
444  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
445  * in full detail.
446  */
447 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
448 	fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
449 
450 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
451 	fourcc_mod_code(NVIDIA, 0x10)
452 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
453 	fourcc_mod_code(NVIDIA, 0x11)
454 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
455 	fourcc_mod_code(NVIDIA, 0x12)
456 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
457 	fourcc_mod_code(NVIDIA, 0x13)
458 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
459 	fourcc_mod_code(NVIDIA, 0x14)
460 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
461 	fourcc_mod_code(NVIDIA, 0x15)
462 
463 /*
464  * Some Broadcom modifiers take parameters, for example the number of
465  * vertical lines in the image. Reserve the lower 32 bits for modifier
466  * type, and the next 24 bits for parameters. Top 8 bits are the
467  * vendor code.
468  */
469 #define __fourcc_mod_broadcom_param_shift 8
470 #define __fourcc_mod_broadcom_param_bits 48
471 #define fourcc_mod_broadcom_code(val, params) \
472 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
473 #define fourcc_mod_broadcom_param(m) \
474 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
475 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
476 #define fourcc_mod_broadcom_mod(m) \
477 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
478 		 __fourcc_mod_broadcom_param_shift))
479 
480 /*
481  * Broadcom VC4 "T" format
482  *
483  * This is the primary layout that the V3D GPU can texture from (it
484  * can't do linear).  The T format has:
485  *
486  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
487  *   pixels at 32 bit depth.
488  *
489  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
490  *   16x16 pixels).
491  *
492  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
493  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
494  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
495  *
496  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
497  *   tiles) or right-to-left (odd rows of 4k tiles).
498  */
499 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
500 
501 /*
502  * Broadcom SAND format
503  *
504  * This is the native format that the H.264 codec block uses.  For VC4
505  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
506  *
507  * The image can be considered to be split into columns, and the
508  * columns are placed consecutively into memory.  The width of those
509  * columns can be either 32, 64, 128, or 256 pixels, but in practice
510  * only 128 pixel columns are used.
511  *
512  * The pitch between the start of each column is set to optimally
513  * switch between SDRAM banks. This is passed as the number of lines
514  * of column width in the modifier (we can't use the stride value due
515  * to various core checks that look at it , so you should set the
516  * stride to width*cpp).
517  *
518  * Note that the column height for this format modifier is the same
519  * for all of the planes, assuming that each column contains both Y
520  * and UV.  Some SAND-using hardware stores UV in a separate tiled
521  * image from Y to reduce the column height, which is not supported
522  * with these modifiers.
523  */
524 
525 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
526 	fourcc_mod_broadcom_code(2, v)
527 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
528 	fourcc_mod_broadcom_code(3, v)
529 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
530 	fourcc_mod_broadcom_code(4, v)
531 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
532 	fourcc_mod_broadcom_code(5, v)
533 
534 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
535 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
536 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
537 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
538 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
539 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
540 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
541 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
542 
543 /* Broadcom UIF format
544  *
545  * This is the common format for the current Broadcom multimedia
546  * blocks, including V3D 3.x and newer, newer video codecs, and
547  * displays.
548  *
549  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
550  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
551  * stored in columns, with padding between the columns to ensure that
552  * moving from one column to the next doesn't hit the same SDRAM page
553  * bank.
554  *
555  * To calculate the padding, it is assumed that each hardware block
556  * and the software driving it knows the platform's SDRAM page size,
557  * number of banks, and XOR address, and that it's identical between
558  * all blocks using the format.  This tiling modifier will use XOR as
559  * necessary to reduce the padding.  If a hardware block can't do XOR,
560  * the assumption is that a no-XOR tiling modifier will be created.
561  */
562 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
563 
564 /*
565  * Arm Framebuffer Compression (AFBC) modifiers
566  *
567  * AFBC is a proprietary lossless image compression protocol and format.
568  * It provides fine-grained random access and minimizes the amount of data
569  * transferred between IP blocks.
570  *
571  * AFBC has several features which may be supported and/or used, which are
572  * represented using bits in the modifier. Not all combinations are valid,
573  * and different devices or use-cases may support different combinations.
574  */
575 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode)	fourcc_mod_code(ARM, __afbc_mode)
576 
577 /*
578  * AFBC superblock size
579  *
580  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
581  * size (in pixels) must be aligned to a multiple of the superblock size.
582  * Four lowest significant bits(LSBs) are reserved for block size.
583  */
584 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
585 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
586 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
587 
588 /*
589  * AFBC lossless colorspace transform
590  *
591  * Indicates that the buffer makes use of the AFBC lossless colorspace
592  * transform.
593  */
594 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
595 
596 /*
597  * AFBC block-split
598  *
599  * Indicates that the payload of each superblock is split. The second
600  * half of the payload is positioned at a predefined offset from the start
601  * of the superblock payload.
602  */
603 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
604 
605 /*
606  * AFBC sparse layout
607  *
608  * This flag indicates that the payload of each superblock must be stored at a
609  * predefined position relative to the other superblocks in the same AFBC
610  * buffer. This order is the same order used by the header buffer. In this mode
611  * each superblock is given the same amount of space as an uncompressed
612  * superblock of the particular format would require, rounding up to the next
613  * multiple of 128 bytes in size.
614  */
615 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
616 
617 /*
618  * AFBC copy-block restrict
619  *
620  * Buffers with this flag must obey the copy-block restriction. The restriction
621  * is such that there are no copy-blocks referring across the border of 8x8
622  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
623  */
624 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
625 
626 /*
627  * AFBC tiled layout
628  *
629  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
630  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
631  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
632  * larger bpp formats. The order between the tiles is scan line.
633  * When the tiled layout is used, the buffer size (in pixels) must be aligned
634  * to the tile size.
635  */
636 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
637 
638 /*
639  * AFBC solid color blocks
640  *
641  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
642  * can be reduced if a whole superblock is a single color.
643  */
644 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
645 
646 #if defined(__cplusplus)
647 }
648 #endif
649 
650 #endif /* DRM_FOURCC_H */
651