1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include "qapi/qapi-builtin-types.h" 18 #include "qemu/module.h" 19 20 struct TypeImpl; 21 typedef struct TypeImpl *Type; 22 23 typedef struct Object Object; 24 25 typedef struct TypeInfo TypeInfo; 26 27 typedef struct InterfaceClass InterfaceClass; 28 typedef struct InterfaceInfo InterfaceInfo; 29 30 #define TYPE_OBJECT "object" 31 32 /** 33 * SECTION:object.h 34 * @title:Base Object Type System 35 * @short_description: interfaces for creating new types and objects 36 * 37 * The QEMU Object Model provides a framework for registering user creatable 38 * types and instantiating objects from those types. QOM provides the following 39 * features: 40 * 41 * - System for dynamically registering types 42 * - Support for single-inheritance of types 43 * - Multiple inheritance of stateless interfaces 44 * 45 * <example> 46 * <title>Creating a minimal type</title> 47 * <programlisting> 48 * #include "qdev.h" 49 * 50 * #define TYPE_MY_DEVICE "my-device" 51 * 52 * // No new virtual functions: we can reuse the typedef for the 53 * // superclass. 54 * typedef DeviceClass MyDeviceClass; 55 * typedef struct MyDevice 56 * { 57 * DeviceState parent; 58 * 59 * int reg0, reg1, reg2; 60 * } MyDevice; 61 * 62 * static const TypeInfo my_device_info = { 63 * .name = TYPE_MY_DEVICE, 64 * .parent = TYPE_DEVICE, 65 * .instance_size = sizeof(MyDevice), 66 * }; 67 * 68 * static void my_device_register_types(void) 69 * { 70 * type_register_static(&my_device_info); 71 * } 72 * 73 * type_init(my_device_register_types) 74 * </programlisting> 75 * </example> 76 * 77 * In the above example, we create a simple type that is described by #TypeInfo. 78 * #TypeInfo describes information about the type including what it inherits 79 * from, the instance and class size, and constructor/destructor hooks. 80 * 81 * Alternatively several static types could be registered using helper macro 82 * DEFINE_TYPES() 83 * 84 * <example> 85 * <programlisting> 86 * static const TypeInfo device_types_info[] = { 87 * { 88 * .name = TYPE_MY_DEVICE_A, 89 * .parent = TYPE_DEVICE, 90 * .instance_size = sizeof(MyDeviceA), 91 * }, 92 * { 93 * .name = TYPE_MY_DEVICE_B, 94 * .parent = TYPE_DEVICE, 95 * .instance_size = sizeof(MyDeviceB), 96 * }, 97 * }; 98 * 99 * DEFINE_TYPES(device_types_info) 100 * </programlisting> 101 * </example> 102 * 103 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 104 * are instantiated dynamically but there is only ever one instance for any 105 * given type. The #ObjectClass typically holds a table of function pointers 106 * for the virtual methods implemented by this type. 107 * 108 * Using object_new(), a new #Object derivative will be instantiated. You can 109 * cast an #Object to a subclass (or base-class) type using 110 * object_dynamic_cast(). You typically want to define macro wrappers around 111 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 112 * specific type: 113 * 114 * <example> 115 * <title>Typecasting macros</title> 116 * <programlisting> 117 * #define MY_DEVICE_GET_CLASS(obj) \ 118 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 119 * #define MY_DEVICE_CLASS(klass) \ 120 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 121 * #define MY_DEVICE(obj) \ 122 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 123 * </programlisting> 124 * </example> 125 * 126 * # Class Initialization # 127 * 128 * Before an object is initialized, the class for the object must be 129 * initialized. There is only one class object for all instance objects 130 * that is created lazily. 131 * 132 * Classes are initialized by first initializing any parent classes (if 133 * necessary). After the parent class object has initialized, it will be 134 * copied into the current class object and any additional storage in the 135 * class object is zero filled. 136 * 137 * The effect of this is that classes automatically inherit any virtual 138 * function pointers that the parent class has already initialized. All 139 * other fields will be zero filled. 140 * 141 * Once all of the parent classes have been initialized, #TypeInfo::class_init 142 * is called to let the class being instantiated provide default initialize for 143 * its virtual functions. Here is how the above example might be modified 144 * to introduce an overridden virtual function: 145 * 146 * <example> 147 * <title>Overriding a virtual function</title> 148 * <programlisting> 149 * #include "qdev.h" 150 * 151 * void my_device_class_init(ObjectClass *klass, void *class_data) 152 * { 153 * DeviceClass *dc = DEVICE_CLASS(klass); 154 * dc->reset = my_device_reset; 155 * } 156 * 157 * static const TypeInfo my_device_info = { 158 * .name = TYPE_MY_DEVICE, 159 * .parent = TYPE_DEVICE, 160 * .instance_size = sizeof(MyDevice), 161 * .class_init = my_device_class_init, 162 * }; 163 * </programlisting> 164 * </example> 165 * 166 * Introducing new virtual methods requires a class to define its own 167 * struct and to add a .class_size member to the #TypeInfo. Each method 168 * will also have a wrapper function to call it easily: 169 * 170 * <example> 171 * <title>Defining an abstract class</title> 172 * <programlisting> 173 * #include "qdev.h" 174 * 175 * typedef struct MyDeviceClass 176 * { 177 * DeviceClass parent; 178 * 179 * void (*frobnicate) (MyDevice *obj); 180 * } MyDeviceClass; 181 * 182 * static const TypeInfo my_device_info = { 183 * .name = TYPE_MY_DEVICE, 184 * .parent = TYPE_DEVICE, 185 * .instance_size = sizeof(MyDevice), 186 * .abstract = true, // or set a default in my_device_class_init 187 * .class_size = sizeof(MyDeviceClass), 188 * }; 189 * 190 * void my_device_frobnicate(MyDevice *obj) 191 * { 192 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 193 * 194 * klass->frobnicate(obj); 195 * } 196 * </programlisting> 197 * </example> 198 * 199 * # Interfaces # 200 * 201 * Interfaces allow a limited form of multiple inheritance. Instances are 202 * similar to normal types except for the fact that are only defined by 203 * their classes and never carry any state. You can dynamically cast an object 204 * to one of its #Interface types and vice versa. 205 * 206 * # Methods # 207 * 208 * A <emphasis>method</emphasis> is a function within the namespace scope of 209 * a class. It usually operates on the object instance by passing it as a 210 * strongly-typed first argument. 211 * If it does not operate on an object instance, it is dubbed 212 * <emphasis>class method</emphasis>. 213 * 214 * Methods cannot be overloaded. That is, the #ObjectClass and method name 215 * uniquely identity the function to be called; the signature does not vary 216 * except for trailing varargs. 217 * 218 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 219 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 220 * via OBJECT_GET_CLASS() accessing the overridden function. 221 * The original function is not automatically invoked. It is the responsibility 222 * of the overriding class to determine whether and when to invoke the method 223 * being overridden. 224 * 225 * To invoke the method being overridden, the preferred solution is to store 226 * the original value in the overriding class before overriding the method. 227 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 228 * respectively; this frees the overriding class from hardcoding its parent 229 * class, which someone might choose to change at some point. 230 * 231 * <example> 232 * <title>Overriding a virtual method</title> 233 * <programlisting> 234 * typedef struct MyState MyState; 235 * 236 * typedef void (*MyDoSomething)(MyState *obj); 237 * 238 * typedef struct MyClass { 239 * ObjectClass parent_class; 240 * 241 * MyDoSomething do_something; 242 * } MyClass; 243 * 244 * static void my_do_something(MyState *obj) 245 * { 246 * // do something 247 * } 248 * 249 * static void my_class_init(ObjectClass *oc, void *data) 250 * { 251 * MyClass *mc = MY_CLASS(oc); 252 * 253 * mc->do_something = my_do_something; 254 * } 255 * 256 * static const TypeInfo my_type_info = { 257 * .name = TYPE_MY, 258 * .parent = TYPE_OBJECT, 259 * .instance_size = sizeof(MyState), 260 * .class_size = sizeof(MyClass), 261 * .class_init = my_class_init, 262 * }; 263 * 264 * typedef struct DerivedClass { 265 * MyClass parent_class; 266 * 267 * MyDoSomething parent_do_something; 268 * } DerivedClass; 269 * 270 * static void derived_do_something(MyState *obj) 271 * { 272 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 273 * 274 * // do something here 275 * dc->parent_do_something(obj); 276 * // do something else here 277 * } 278 * 279 * static void derived_class_init(ObjectClass *oc, void *data) 280 * { 281 * MyClass *mc = MY_CLASS(oc); 282 * DerivedClass *dc = DERIVED_CLASS(oc); 283 * 284 * dc->parent_do_something = mc->do_something; 285 * mc->do_something = derived_do_something; 286 * } 287 * 288 * static const TypeInfo derived_type_info = { 289 * .name = TYPE_DERIVED, 290 * .parent = TYPE_MY, 291 * .class_size = sizeof(DerivedClass), 292 * .class_init = derived_class_init, 293 * }; 294 * </programlisting> 295 * </example> 296 * 297 * Alternatively, object_class_by_name() can be used to obtain the class and 298 * its non-overridden methods for a specific type. This would correspond to 299 * |[ MyClass::method(...) ]| in C++. 300 * 301 * The first example of such a QOM method was #CPUClass.reset, 302 * another example is #DeviceClass.realize. 303 */ 304 305 306 /** 307 * ObjectPropertyAccessor: 308 * @obj: the object that owns the property 309 * @v: the visitor that contains the property data 310 * @name: the name of the property 311 * @opaque: the object property opaque 312 * @errp: a pointer to an Error that is filled if getting/setting fails. 313 * 314 * Called when trying to get/set a property. 315 */ 316 typedef void (ObjectPropertyAccessor)(Object *obj, 317 Visitor *v, 318 const char *name, 319 void *opaque, 320 Error **errp); 321 322 /** 323 * ObjectPropertyResolve: 324 * @obj: the object that owns the property 325 * @opaque: the opaque registered with the property 326 * @part: the name of the property 327 * 328 * Resolves the #Object corresponding to property @part. 329 * 330 * The returned object can also be used as a starting point 331 * to resolve a relative path starting with "@part". 332 * 333 * Returns: If @path is the path that led to @obj, the function 334 * returns the #Object corresponding to "@path/@part". 335 * If "@path/@part" is not a valid object path, it returns #NULL. 336 */ 337 typedef Object *(ObjectPropertyResolve)(Object *obj, 338 void *opaque, 339 const char *part); 340 341 /** 342 * ObjectPropertyRelease: 343 * @obj: the object that owns the property 344 * @name: the name of the property 345 * @opaque: the opaque registered with the property 346 * 347 * Called when a property is removed from a object. 348 */ 349 typedef void (ObjectPropertyRelease)(Object *obj, 350 const char *name, 351 void *opaque); 352 353 typedef struct ObjectProperty 354 { 355 gchar *name; 356 gchar *type; 357 gchar *description; 358 ObjectPropertyAccessor *get; 359 ObjectPropertyAccessor *set; 360 ObjectPropertyResolve *resolve; 361 ObjectPropertyRelease *release; 362 void *opaque; 363 } ObjectProperty; 364 365 /** 366 * ObjectUnparent: 367 * @obj: the object that is being removed from the composition tree 368 * 369 * Called when an object is being removed from the QOM composition tree. 370 * The function should remove any backlinks from children objects to @obj. 371 */ 372 typedef void (ObjectUnparent)(Object *obj); 373 374 /** 375 * ObjectFree: 376 * @obj: the object being freed 377 * 378 * Called when an object's last reference is removed. 379 */ 380 typedef void (ObjectFree)(void *obj); 381 382 #define OBJECT_CLASS_CAST_CACHE 4 383 384 /** 385 * ObjectClass: 386 * 387 * The base for all classes. The only thing that #ObjectClass contains is an 388 * integer type handle. 389 */ 390 struct ObjectClass 391 { 392 /*< private >*/ 393 Type type; 394 GSList *interfaces; 395 396 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE]; 397 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE]; 398 399 ObjectUnparent *unparent; 400 401 GHashTable *properties; 402 }; 403 404 /** 405 * Object: 406 * 407 * The base for all objects. The first member of this object is a pointer to 408 * a #ObjectClass. Since C guarantees that the first member of a structure 409 * always begins at byte 0 of that structure, as long as any sub-object places 410 * its parent as the first member, we can cast directly to a #Object. 411 * 412 * As a result, #Object contains a reference to the objects type as its 413 * first member. This allows identification of the real type of the object at 414 * run time. 415 */ 416 struct Object 417 { 418 /*< private >*/ 419 ObjectClass *class; 420 ObjectFree *free; 421 GHashTable *properties; 422 uint32_t ref; 423 Object *parent; 424 }; 425 426 /** 427 * TypeInfo: 428 * @name: The name of the type. 429 * @parent: The name of the parent type. 430 * @instance_size: The size of the object (derivative of #Object). If 431 * @instance_size is 0, then the size of the object will be the size of the 432 * parent object. 433 * @instance_init: This function is called to initialize an object. The parent 434 * class will have already been initialized so the type is only responsible 435 * for initializing its own members. 436 * @instance_post_init: This function is called to finish initialization of 437 * an object, after all @instance_init functions were called. 438 * @instance_finalize: This function is called during object destruction. This 439 * is called before the parent @instance_finalize function has been called. 440 * An object should only free the members that are unique to its type in this 441 * function. 442 * @abstract: If this field is true, then the class is considered abstract and 443 * cannot be directly instantiated. 444 * @class_size: The size of the class object (derivative of #ObjectClass) 445 * for this object. If @class_size is 0, then the size of the class will be 446 * assumed to be the size of the parent class. This allows a type to avoid 447 * implementing an explicit class type if they are not adding additional 448 * virtual functions. 449 * @class_init: This function is called after all parent class initialization 450 * has occurred to allow a class to set its default virtual method pointers. 451 * This is also the function to use to override virtual methods from a parent 452 * class. 453 * @class_base_init: This function is called for all base classes after all 454 * parent class initialization has occurred, but before the class itself 455 * is initialized. This is the function to use to undo the effects of 456 * memcpy from the parent class to the descendants. 457 * @class_data: Data to pass to the @class_init, 458 * @class_base_init. This can be useful when building dynamic 459 * classes. 460 * @interfaces: The list of interfaces associated with this type. This 461 * should point to a static array that's terminated with a zero filled 462 * element. 463 */ 464 struct TypeInfo 465 { 466 const char *name; 467 const char *parent; 468 469 size_t instance_size; 470 void (*instance_init)(Object *obj); 471 void (*instance_post_init)(Object *obj); 472 void (*instance_finalize)(Object *obj); 473 474 bool abstract; 475 size_t class_size; 476 477 void (*class_init)(ObjectClass *klass, void *data); 478 void (*class_base_init)(ObjectClass *klass, void *data); 479 void *class_data; 480 481 InterfaceInfo *interfaces; 482 }; 483 484 /** 485 * OBJECT: 486 * @obj: A derivative of #Object 487 * 488 * Converts an object to a #Object. Since all objects are #Objects, 489 * this function will always succeed. 490 */ 491 #define OBJECT(obj) \ 492 ((Object *)(obj)) 493 494 /** 495 * OBJECT_CLASS: 496 * @class: A derivative of #ObjectClass. 497 * 498 * Converts a class to an #ObjectClass. Since all objects are #Objects, 499 * this function will always succeed. 500 */ 501 #define OBJECT_CLASS(class) \ 502 ((ObjectClass *)(class)) 503 504 /** 505 * OBJECT_CHECK: 506 * @type: The C type to use for the return value. 507 * @obj: A derivative of @type to cast. 508 * @name: The QOM typename of @type 509 * 510 * A type safe version of @object_dynamic_cast_assert. Typically each class 511 * will define a macro based on this type to perform type safe dynamic_casts to 512 * this object type. 513 * 514 * If an invalid object is passed to this function, a run time assert will be 515 * generated. 516 */ 517 #define OBJECT_CHECK(type, obj, name) \ 518 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 519 __FILE__, __LINE__, __func__)) 520 521 /** 522 * OBJECT_CLASS_CHECK: 523 * @class_type: The C type to use for the return value. 524 * @class: A derivative class of @class_type to cast. 525 * @name: the QOM typename of @class_type. 526 * 527 * A type safe version of @object_class_dynamic_cast_assert. This macro is 528 * typically wrapped by each type to perform type safe casts of a class to a 529 * specific class type. 530 */ 531 #define OBJECT_CLASS_CHECK(class_type, class, name) \ 532 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \ 533 __FILE__, __LINE__, __func__)) 534 535 /** 536 * OBJECT_GET_CLASS: 537 * @class: The C type to use for the return value. 538 * @obj: The object to obtain the class for. 539 * @name: The QOM typename of @obj. 540 * 541 * This function will return a specific class for a given object. Its generally 542 * used by each type to provide a type safe macro to get a specific class type 543 * from an object. 544 */ 545 #define OBJECT_GET_CLASS(class, obj, name) \ 546 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 547 548 /** 549 * InterfaceInfo: 550 * @type: The name of the interface. 551 * 552 * The information associated with an interface. 553 */ 554 struct InterfaceInfo { 555 const char *type; 556 }; 557 558 /** 559 * InterfaceClass: 560 * @parent_class: the base class 561 * 562 * The class for all interfaces. Subclasses of this class should only add 563 * virtual methods. 564 */ 565 struct InterfaceClass 566 { 567 ObjectClass parent_class; 568 /*< private >*/ 569 ObjectClass *concrete_class; 570 Type interface_type; 571 }; 572 573 #define TYPE_INTERFACE "interface" 574 575 /** 576 * INTERFACE_CLASS: 577 * @klass: class to cast from 578 * Returns: An #InterfaceClass or raise an error if cast is invalid 579 */ 580 #define INTERFACE_CLASS(klass) \ 581 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 582 583 /** 584 * INTERFACE_CHECK: 585 * @interface: the type to return 586 * @obj: the object to convert to an interface 587 * @name: the interface type name 588 * 589 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 590 */ 591 #define INTERFACE_CHECK(interface, obj, name) \ 592 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 593 __FILE__, __LINE__, __func__)) 594 595 /** 596 * object_new: 597 * @typename: The name of the type of the object to instantiate. 598 * 599 * This function will initialize a new object using heap allocated memory. 600 * The returned object has a reference count of 1, and will be freed when 601 * the last reference is dropped. 602 * 603 * Returns: The newly allocated and instantiated object. 604 */ 605 Object *object_new(const char *typename); 606 607 /** 608 * object_new_with_props: 609 * @typename: The name of the type of the object to instantiate. 610 * @parent: the parent object 611 * @id: The unique ID of the object 612 * @errp: pointer to error object 613 * @...: list of property names and values 614 * 615 * This function will initialize a new object using heap allocated memory. 616 * The returned object has a reference count of 1, and will be freed when 617 * the last reference is dropped. 618 * 619 * The @id parameter will be used when registering the object as a 620 * child of @parent in the composition tree. 621 * 622 * The variadic parameters are a list of pairs of (propname, propvalue) 623 * strings. The propname of %NULL indicates the end of the property 624 * list. If the object implements the user creatable interface, the 625 * object will be marked complete once all the properties have been 626 * processed. 627 * 628 * <example> 629 * <title>Creating an object with properties</title> 630 * <programlisting> 631 * Error *err = NULL; 632 * Object *obj; 633 * 634 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE, 635 * object_get_objects_root(), 636 * "hostmem0", 637 * &err, 638 * "share", "yes", 639 * "mem-path", "/dev/shm/somefile", 640 * "prealloc", "yes", 641 * "size", "1048576", 642 * NULL); 643 * 644 * if (!obj) { 645 * g_printerr("Cannot create memory backend: %s\n", 646 * error_get_pretty(err)); 647 * } 648 * </programlisting> 649 * </example> 650 * 651 * The returned object will have one stable reference maintained 652 * for as long as it is present in the object hierarchy. 653 * 654 * Returns: The newly allocated, instantiated & initialized object. 655 */ 656 Object *object_new_with_props(const char *typename, 657 Object *parent, 658 const char *id, 659 Error **errp, 660 ...) QEMU_SENTINEL; 661 662 /** 663 * object_new_with_propv: 664 * @typename: The name of the type of the object to instantiate. 665 * @parent: the parent object 666 * @id: The unique ID of the object 667 * @errp: pointer to error object 668 * @vargs: list of property names and values 669 * 670 * See object_new_with_props() for documentation. 671 */ 672 Object *object_new_with_propv(const char *typename, 673 Object *parent, 674 const char *id, 675 Error **errp, 676 va_list vargs); 677 678 void object_apply_global_props(Object *obj, const GPtrArray *props, 679 Error **errp); 680 void object_set_machine_compat_props(GPtrArray *compat_props); 681 void object_set_accelerator_compat_props(GPtrArray *compat_props); 682 void object_apply_compat_props(Object *obj); 683 684 /** 685 * object_set_props: 686 * @obj: the object instance to set properties on 687 * @errp: pointer to error object 688 * @...: list of property names and values 689 * 690 * This function will set a list of properties on an existing object 691 * instance. 692 * 693 * The variadic parameters are a list of pairs of (propname, propvalue) 694 * strings. The propname of %NULL indicates the end of the property 695 * list. 696 * 697 * <example> 698 * <title>Update an object's properties</title> 699 * <programlisting> 700 * Error *err = NULL; 701 * Object *obj = ...get / create object...; 702 * 703 * obj = object_set_props(obj, 704 * &err, 705 * "share", "yes", 706 * "mem-path", "/dev/shm/somefile", 707 * "prealloc", "yes", 708 * "size", "1048576", 709 * NULL); 710 * 711 * if (!obj) { 712 * g_printerr("Cannot set properties: %s\n", 713 * error_get_pretty(err)); 714 * } 715 * </programlisting> 716 * </example> 717 * 718 * The returned object will have one stable reference maintained 719 * for as long as it is present in the object hierarchy. 720 * 721 * Returns: -1 on error, 0 on success 722 */ 723 int object_set_props(Object *obj, 724 Error **errp, 725 ...) QEMU_SENTINEL; 726 727 /** 728 * object_set_propv: 729 * @obj: the object instance to set properties on 730 * @errp: pointer to error object 731 * @vargs: list of property names and values 732 * 733 * See object_set_props() for documentation. 734 * 735 * Returns: -1 on error, 0 on success 736 */ 737 int object_set_propv(Object *obj, 738 Error **errp, 739 va_list vargs); 740 741 /** 742 * object_initialize: 743 * @obj: A pointer to the memory to be used for the object. 744 * @size: The maximum size available at @obj for the object. 745 * @typename: The name of the type of the object to instantiate. 746 * 747 * This function will initialize an object. The memory for the object should 748 * have already been allocated. The returned object has a reference count of 1, 749 * and will be finalized when the last reference is dropped. 750 */ 751 void object_initialize(void *obj, size_t size, const char *typename); 752 753 /** 754 * object_initialize_child: 755 * @parentobj: The parent object to add a property to 756 * @propname: The name of the property 757 * @childobj: A pointer to the memory to be used for the object. 758 * @size: The maximum size available at @childobj for the object. 759 * @type: The name of the type of the object to instantiate. 760 * @errp: If an error occurs, a pointer to an area to store the error 761 * @...: list of property names and values 762 * 763 * This function will initialize an object. The memory for the object should 764 * have already been allocated. The object will then be added as child property 765 * to a parent with object_property_add_child() function. The returned object 766 * has a reference count of 1 (for the "child<...>" property from the parent), 767 * so the object will be finalized automatically when the parent gets removed. 768 * 769 * The variadic parameters are a list of pairs of (propname, propvalue) 770 * strings. The propname of %NULL indicates the end of the property list. 771 * If the object implements the user creatable interface, the object will 772 * be marked complete once all the properties have been processed. 773 */ 774 void object_initialize_child(Object *parentobj, const char *propname, 775 void *childobj, size_t size, const char *type, 776 Error **errp, ...) QEMU_SENTINEL; 777 778 /** 779 * object_initialize_childv: 780 * @parentobj: The parent object to add a property to 781 * @propname: The name of the property 782 * @childobj: A pointer to the memory to be used for the object. 783 * @size: The maximum size available at @childobj for the object. 784 * @type: The name of the type of the object to instantiate. 785 * @errp: If an error occurs, a pointer to an area to store the error 786 * @vargs: list of property names and values 787 * 788 * See object_initialize_child() for documentation. 789 */ 790 void object_initialize_childv(Object *parentobj, const char *propname, 791 void *childobj, size_t size, const char *type, 792 Error **errp, va_list vargs); 793 794 /** 795 * object_dynamic_cast: 796 * @obj: The object to cast. 797 * @typename: The @typename to cast to. 798 * 799 * This function will determine if @obj is-a @typename. @obj can refer to an 800 * object or an interface associated with an object. 801 * 802 * Returns: This function returns @obj on success or #NULL on failure. 803 */ 804 Object *object_dynamic_cast(Object *obj, const char *typename); 805 806 /** 807 * object_dynamic_cast_assert: 808 * 809 * See object_dynamic_cast() for a description of the parameters of this 810 * function. The only difference in behavior is that this function asserts 811 * instead of returning #NULL on failure if QOM cast debugging is enabled. 812 * This function is not meant to be called directly, but only through 813 * the wrapper macro OBJECT_CHECK. 814 */ 815 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 816 const char *file, int line, const char *func); 817 818 /** 819 * object_get_class: 820 * @obj: A derivative of #Object 821 * 822 * Returns: The #ObjectClass of the type associated with @obj. 823 */ 824 ObjectClass *object_get_class(Object *obj); 825 826 /** 827 * object_get_typename: 828 * @obj: A derivative of #Object. 829 * 830 * Returns: The QOM typename of @obj. 831 */ 832 const char *object_get_typename(const Object *obj); 833 834 /** 835 * type_register_static: 836 * @info: The #TypeInfo of the new type. 837 * 838 * @info and all of the strings it points to should exist for the life time 839 * that the type is registered. 840 * 841 * Returns: the new #Type. 842 */ 843 Type type_register_static(const TypeInfo *info); 844 845 /** 846 * type_register: 847 * @info: The #TypeInfo of the new type 848 * 849 * Unlike type_register_static(), this call does not require @info or its 850 * string members to continue to exist after the call returns. 851 * 852 * Returns: the new #Type. 853 */ 854 Type type_register(const TypeInfo *info); 855 856 /** 857 * type_register_static_array: 858 * @infos: The array of the new type #TypeInfo structures. 859 * @nr_infos: number of entries in @infos 860 * 861 * @infos and all of the strings it points to should exist for the life time 862 * that the type is registered. 863 */ 864 void type_register_static_array(const TypeInfo *infos, int nr_infos); 865 866 /** 867 * DEFINE_TYPES: 868 * @type_array: The array containing #TypeInfo structures to register 869 * 870 * @type_array should be static constant that exists for the life time 871 * that the type is registered. 872 */ 873 #define DEFINE_TYPES(type_array) \ 874 static void do_qemu_init_ ## type_array(void) \ 875 { \ 876 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \ 877 } \ 878 type_init(do_qemu_init_ ## type_array) 879 880 /** 881 * object_class_dynamic_cast_assert: 882 * @klass: The #ObjectClass to attempt to cast. 883 * @typename: The QOM typename of the class to cast to. 884 * 885 * See object_class_dynamic_cast() for a description of the parameters 886 * of this function. The only difference in behavior is that this function 887 * asserts instead of returning #NULL on failure if QOM cast debugging is 888 * enabled. This function is not meant to be called directly, but only through 889 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK. 890 */ 891 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 892 const char *typename, 893 const char *file, int line, 894 const char *func); 895 896 /** 897 * object_class_dynamic_cast: 898 * @klass: The #ObjectClass to attempt to cast. 899 * @typename: The QOM typename of the class to cast to. 900 * 901 * Returns: If @typename is a class, this function returns @klass if 902 * @typename is a subtype of @klass, else returns #NULL. 903 * 904 * If @typename is an interface, this function returns the interface 905 * definition for @klass if @klass implements it unambiguously; #NULL 906 * is returned if @klass does not implement the interface or if multiple 907 * classes or interfaces on the hierarchy leading to @klass implement 908 * it. (FIXME: perhaps this can be detected at type definition time?) 909 */ 910 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 911 const char *typename); 912 913 /** 914 * object_class_get_parent: 915 * @klass: The class to obtain the parent for. 916 * 917 * Returns: The parent for @klass or %NULL if none. 918 */ 919 ObjectClass *object_class_get_parent(ObjectClass *klass); 920 921 /** 922 * object_class_get_name: 923 * @klass: The class to obtain the QOM typename for. 924 * 925 * Returns: The QOM typename for @klass. 926 */ 927 const char *object_class_get_name(ObjectClass *klass); 928 929 /** 930 * object_class_is_abstract: 931 * @klass: The class to obtain the abstractness for. 932 * 933 * Returns: %true if @klass is abstract, %false otherwise. 934 */ 935 bool object_class_is_abstract(ObjectClass *klass); 936 937 /** 938 * object_class_by_name: 939 * @typename: The QOM typename to obtain the class for. 940 * 941 * Returns: The class for @typename or %NULL if not found. 942 */ 943 ObjectClass *object_class_by_name(const char *typename); 944 945 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 946 const char *implements_type, bool include_abstract, 947 void *opaque); 948 949 /** 950 * object_class_get_list: 951 * @implements_type: The type to filter for, including its derivatives. 952 * @include_abstract: Whether to include abstract classes. 953 * 954 * Returns: A singly-linked list of the classes in reverse hashtable order. 955 */ 956 GSList *object_class_get_list(const char *implements_type, 957 bool include_abstract); 958 959 /** 960 * object_class_get_list_sorted: 961 * @implements_type: The type to filter for, including its derivatives. 962 * @include_abstract: Whether to include abstract classes. 963 * 964 * Returns: A singly-linked list of the classes in alphabetical 965 * case-insensitive order. 966 */ 967 GSList *object_class_get_list_sorted(const char *implements_type, 968 bool include_abstract); 969 970 /** 971 * object_ref: 972 * @obj: the object 973 * 974 * Increase the reference count of a object. A object cannot be freed as long 975 * as its reference count is greater than zero. 976 */ 977 void object_ref(Object *obj); 978 979 /** 980 * object_unref: 981 * @obj: the object 982 * 983 * Decrease the reference count of a object. A object cannot be freed as long 984 * as its reference count is greater than zero. 985 */ 986 void object_unref(Object *obj); 987 988 /** 989 * object_property_add: 990 * @obj: the object to add a property to 991 * @name: the name of the property. This can contain any character except for 992 * a forward slash. In general, you should use hyphens '-' instead of 993 * underscores '_' when naming properties. 994 * @type: the type name of the property. This namespace is pretty loosely 995 * defined. Sub namespaces are constructed by using a prefix and then 996 * to angle brackets. For instance, the type 'virtio-net-pci' in the 997 * 'link' namespace would be 'link<virtio-net-pci>'. 998 * @get: The getter to be called to read a property. If this is NULL, then 999 * the property cannot be read. 1000 * @set: the setter to be called to write a property. If this is NULL, 1001 * then the property cannot be written. 1002 * @release: called when the property is removed from the object. This is 1003 * meant to allow a property to free its opaque upon object 1004 * destruction. This may be NULL. 1005 * @opaque: an opaque pointer to pass to the callbacks for the property 1006 * @errp: returns an error if this function fails 1007 * 1008 * Returns: The #ObjectProperty; this can be used to set the @resolve 1009 * callback for child and link properties. 1010 */ 1011 ObjectProperty *object_property_add(Object *obj, const char *name, 1012 const char *type, 1013 ObjectPropertyAccessor *get, 1014 ObjectPropertyAccessor *set, 1015 ObjectPropertyRelease *release, 1016 void *opaque, Error **errp); 1017 1018 void object_property_del(Object *obj, const char *name, Error **errp); 1019 1020 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name, 1021 const char *type, 1022 ObjectPropertyAccessor *get, 1023 ObjectPropertyAccessor *set, 1024 ObjectPropertyRelease *release, 1025 void *opaque, Error **errp); 1026 1027 /** 1028 * object_property_find: 1029 * @obj: the object 1030 * @name: the name of the property 1031 * @errp: returns an error if this function fails 1032 * 1033 * Look up a property for an object and return its #ObjectProperty if found. 1034 */ 1035 ObjectProperty *object_property_find(Object *obj, const char *name, 1036 Error **errp); 1037 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name, 1038 Error **errp); 1039 1040 typedef struct ObjectPropertyIterator { 1041 ObjectClass *nextclass; 1042 GHashTableIter iter; 1043 } ObjectPropertyIterator; 1044 1045 /** 1046 * object_property_iter_init: 1047 * @obj: the object 1048 * 1049 * Initializes an iterator for traversing all properties 1050 * registered against an object instance, its class and all parent classes. 1051 * 1052 * It is forbidden to modify the property list while iterating, 1053 * whether removing or adding properties. 1054 * 1055 * Typical usage pattern would be 1056 * 1057 * <example> 1058 * <title>Using object property iterators</title> 1059 * <programlisting> 1060 * ObjectProperty *prop; 1061 * ObjectPropertyIterator iter; 1062 * 1063 * object_property_iter_init(&iter, obj); 1064 * while ((prop = object_property_iter_next(&iter))) { 1065 * ... do something with prop ... 1066 * } 1067 * </programlisting> 1068 * </example> 1069 */ 1070 void object_property_iter_init(ObjectPropertyIterator *iter, 1071 Object *obj); 1072 1073 /** 1074 * object_class_property_iter_init: 1075 * @klass: the class 1076 * 1077 * Initializes an iterator for traversing all properties 1078 * registered against an object class and all parent classes. 1079 * 1080 * It is forbidden to modify the property list while iterating, 1081 * whether removing or adding properties. 1082 * 1083 * This can be used on abstract classes as it does not create a temporary 1084 * instance. 1085 */ 1086 void object_class_property_iter_init(ObjectPropertyIterator *iter, 1087 ObjectClass *klass); 1088 1089 /** 1090 * object_property_iter_next: 1091 * @iter: the iterator instance 1092 * 1093 * Return the next available property. If no further properties 1094 * are available, a %NULL value will be returned and the @iter 1095 * pointer should not be used again after this point without 1096 * re-initializing it. 1097 * 1098 * Returns: the next property, or %NULL when all properties 1099 * have been traversed. 1100 */ 1101 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter); 1102 1103 void object_unparent(Object *obj); 1104 1105 /** 1106 * object_property_get: 1107 * @obj: the object 1108 * @v: the visitor that will receive the property value. This should be an 1109 * Output visitor and the data will be written with @name as the name. 1110 * @name: the name of the property 1111 * @errp: returns an error if this function fails 1112 * 1113 * Reads a property from a object. 1114 */ 1115 void object_property_get(Object *obj, Visitor *v, const char *name, 1116 Error **errp); 1117 1118 /** 1119 * object_property_set_str: 1120 * @value: the value to be written to the property 1121 * @name: the name of the property 1122 * @errp: returns an error if this function fails 1123 * 1124 * Writes a string value to a property. 1125 */ 1126 void object_property_set_str(Object *obj, const char *value, 1127 const char *name, Error **errp); 1128 1129 /** 1130 * object_property_get_str: 1131 * @obj: the object 1132 * @name: the name of the property 1133 * @errp: returns an error if this function fails 1134 * 1135 * Returns: the value of the property, converted to a C string, or NULL if 1136 * an error occurs (including when the property value is not a string). 1137 * The caller should free the string. 1138 */ 1139 char *object_property_get_str(Object *obj, const char *name, 1140 Error **errp); 1141 1142 /** 1143 * object_property_set_link: 1144 * @value: the value to be written to the property 1145 * @name: the name of the property 1146 * @errp: returns an error if this function fails 1147 * 1148 * Writes an object's canonical path to a property. 1149 * 1150 * If the link property was created with 1151 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is 1152 * unreferenced, and a reference is added to the new target object. 1153 * 1154 */ 1155 void object_property_set_link(Object *obj, Object *value, 1156 const char *name, Error **errp); 1157 1158 /** 1159 * object_property_get_link: 1160 * @obj: the object 1161 * @name: the name of the property 1162 * @errp: returns an error if this function fails 1163 * 1164 * Returns: the value of the property, resolved from a path to an Object, 1165 * or NULL if an error occurs (including when the property value is not a 1166 * string or not a valid object path). 1167 */ 1168 Object *object_property_get_link(Object *obj, const char *name, 1169 Error **errp); 1170 1171 /** 1172 * object_property_set_bool: 1173 * @value: the value to be written to the property 1174 * @name: the name of the property 1175 * @errp: returns an error if this function fails 1176 * 1177 * Writes a bool value to a property. 1178 */ 1179 void object_property_set_bool(Object *obj, bool value, 1180 const char *name, Error **errp); 1181 1182 /** 1183 * object_property_get_bool: 1184 * @obj: the object 1185 * @name: the name of the property 1186 * @errp: returns an error if this function fails 1187 * 1188 * Returns: the value of the property, converted to a boolean, or NULL if 1189 * an error occurs (including when the property value is not a bool). 1190 */ 1191 bool object_property_get_bool(Object *obj, const char *name, 1192 Error **errp); 1193 1194 /** 1195 * object_property_set_int: 1196 * @value: the value to be written to the property 1197 * @name: the name of the property 1198 * @errp: returns an error if this function fails 1199 * 1200 * Writes an integer value to a property. 1201 */ 1202 void object_property_set_int(Object *obj, int64_t value, 1203 const char *name, Error **errp); 1204 1205 /** 1206 * object_property_get_int: 1207 * @obj: the object 1208 * @name: the name of the property 1209 * @errp: returns an error if this function fails 1210 * 1211 * Returns: the value of the property, converted to an integer, or negative if 1212 * an error occurs (including when the property value is not an integer). 1213 */ 1214 int64_t object_property_get_int(Object *obj, const char *name, 1215 Error **errp); 1216 1217 /** 1218 * object_property_set_uint: 1219 * @value: the value to be written to the property 1220 * @name: the name of the property 1221 * @errp: returns an error if this function fails 1222 * 1223 * Writes an unsigned integer value to a property. 1224 */ 1225 void object_property_set_uint(Object *obj, uint64_t value, 1226 const char *name, Error **errp); 1227 1228 /** 1229 * object_property_get_uint: 1230 * @obj: the object 1231 * @name: the name of the property 1232 * @errp: returns an error if this function fails 1233 * 1234 * Returns: the value of the property, converted to an unsigned integer, or 0 1235 * an error occurs (including when the property value is not an integer). 1236 */ 1237 uint64_t object_property_get_uint(Object *obj, const char *name, 1238 Error **errp); 1239 1240 /** 1241 * object_property_get_enum: 1242 * @obj: the object 1243 * @name: the name of the property 1244 * @typename: the name of the enum data type 1245 * @errp: returns an error if this function fails 1246 * 1247 * Returns: the value of the property, converted to an integer, or 1248 * undefined if an error occurs (including when the property value is not 1249 * an enum). 1250 */ 1251 int object_property_get_enum(Object *obj, const char *name, 1252 const char *typename, Error **errp); 1253 1254 /** 1255 * object_property_get_uint16List: 1256 * @obj: the object 1257 * @name: the name of the property 1258 * @list: the returned int list 1259 * @errp: returns an error if this function fails 1260 * 1261 * Returns: the value of the property, converted to integers, or 1262 * undefined if an error occurs (including when the property value is not 1263 * an list of integers). 1264 */ 1265 void object_property_get_uint16List(Object *obj, const char *name, 1266 uint16List **list, Error **errp); 1267 1268 /** 1269 * object_property_set: 1270 * @obj: the object 1271 * @v: the visitor that will be used to write the property value. This should 1272 * be an Input visitor and the data will be first read with @name as the 1273 * name and then written as the property value. 1274 * @name: the name of the property 1275 * @errp: returns an error if this function fails 1276 * 1277 * Writes a property to a object. 1278 */ 1279 void object_property_set(Object *obj, Visitor *v, const char *name, 1280 Error **errp); 1281 1282 /** 1283 * object_property_parse: 1284 * @obj: the object 1285 * @string: the string that will be used to parse the property value. 1286 * @name: the name of the property 1287 * @errp: returns an error if this function fails 1288 * 1289 * Parses a string and writes the result into a property of an object. 1290 */ 1291 void object_property_parse(Object *obj, const char *string, 1292 const char *name, Error **errp); 1293 1294 /** 1295 * object_property_print: 1296 * @obj: the object 1297 * @name: the name of the property 1298 * @human: if true, print for human consumption 1299 * @errp: returns an error if this function fails 1300 * 1301 * Returns a string representation of the value of the property. The 1302 * caller shall free the string. 1303 */ 1304 char *object_property_print(Object *obj, const char *name, bool human, 1305 Error **errp); 1306 1307 /** 1308 * object_property_get_type: 1309 * @obj: the object 1310 * @name: the name of the property 1311 * @errp: returns an error if this function fails 1312 * 1313 * Returns: The type name of the property. 1314 */ 1315 const char *object_property_get_type(Object *obj, const char *name, 1316 Error **errp); 1317 1318 /** 1319 * object_get_root: 1320 * 1321 * Returns: the root object of the composition tree 1322 */ 1323 Object *object_get_root(void); 1324 1325 1326 /** 1327 * object_get_objects_root: 1328 * 1329 * Get the container object that holds user created 1330 * object instances. This is the object at path 1331 * "/objects" 1332 * 1333 * Returns: the user object container 1334 */ 1335 Object *object_get_objects_root(void); 1336 1337 /** 1338 * object_get_internal_root: 1339 * 1340 * Get the container object that holds internally used object 1341 * instances. Any object which is put into this container must not be 1342 * user visible, and it will not be exposed in the QOM tree. 1343 * 1344 * Returns: the internal object container 1345 */ 1346 Object *object_get_internal_root(void); 1347 1348 /** 1349 * object_get_canonical_path_component: 1350 * 1351 * Returns: The final component in the object's canonical path. The canonical 1352 * path is the path within the composition tree starting from the root. 1353 * %NULL if the object doesn't have a parent (and thus a canonical path). 1354 */ 1355 gchar *object_get_canonical_path_component(Object *obj); 1356 1357 /** 1358 * object_get_canonical_path: 1359 * 1360 * Returns: The canonical path for a object. This is the path within the 1361 * composition tree starting from the root. 1362 */ 1363 gchar *object_get_canonical_path(Object *obj); 1364 1365 /** 1366 * object_resolve_path: 1367 * @path: the path to resolve 1368 * @ambiguous: returns true if the path resolution failed because of an 1369 * ambiguous match 1370 * 1371 * There are two types of supported paths--absolute paths and partial paths. 1372 * 1373 * Absolute paths are derived from the root object and can follow child<> or 1374 * link<> properties. Since they can follow link<> properties, they can be 1375 * arbitrarily long. Absolute paths look like absolute filenames and are 1376 * prefixed with a leading slash. 1377 * 1378 * Partial paths look like relative filenames. They do not begin with a 1379 * prefix. The matching rules for partial paths are subtle but designed to make 1380 * specifying objects easy. At each level of the composition tree, the partial 1381 * path is matched as an absolute path. The first match is not returned. At 1382 * least two matches are searched for. A successful result is only returned if 1383 * only one match is found. If more than one match is found, a flag is 1384 * returned to indicate that the match was ambiguous. 1385 * 1386 * Returns: The matched object or NULL on path lookup failure. 1387 */ 1388 Object *object_resolve_path(const char *path, bool *ambiguous); 1389 1390 /** 1391 * object_resolve_path_type: 1392 * @path: the path to resolve 1393 * @typename: the type to look for. 1394 * @ambiguous: returns true if the path resolution failed because of an 1395 * ambiguous match 1396 * 1397 * This is similar to object_resolve_path. However, when looking for a 1398 * partial path only matches that implement the given type are considered. 1399 * This restricts the search and avoids spuriously flagging matches as 1400 * ambiguous. 1401 * 1402 * For both partial and absolute paths, the return value goes through 1403 * a dynamic cast to @typename. This is important if either the link, 1404 * or the typename itself are of interface types. 1405 * 1406 * Returns: The matched object or NULL on path lookup failure. 1407 */ 1408 Object *object_resolve_path_type(const char *path, const char *typename, 1409 bool *ambiguous); 1410 1411 /** 1412 * object_resolve_path_component: 1413 * @parent: the object in which to resolve the path 1414 * @part: the component to resolve. 1415 * 1416 * This is similar to object_resolve_path with an absolute path, but it 1417 * only resolves one element (@part) and takes the others from @parent. 1418 * 1419 * Returns: The resolved object or NULL on path lookup failure. 1420 */ 1421 Object *object_resolve_path_component(Object *parent, const gchar *part); 1422 1423 /** 1424 * object_property_add_child: 1425 * @obj: the object to add a property to 1426 * @name: the name of the property 1427 * @child: the child object 1428 * @errp: if an error occurs, a pointer to an area to store the error 1429 * 1430 * Child properties form the composition tree. All objects need to be a child 1431 * of another object. Objects can only be a child of one object. 1432 * 1433 * There is no way for a child to determine what its parent is. It is not 1434 * a bidirectional relationship. This is by design. 1435 * 1436 * The value of a child property as a C string will be the child object's 1437 * canonical path. It can be retrieved using object_property_get_str(). 1438 * The child object itself can be retrieved using object_property_get_link(). 1439 */ 1440 void object_property_add_child(Object *obj, const char *name, 1441 Object *child, Error **errp); 1442 1443 typedef enum { 1444 /* Unref the link pointer when the property is deleted */ 1445 OBJ_PROP_LINK_STRONG = 0x1, 1446 } ObjectPropertyLinkFlags; 1447 1448 /** 1449 * object_property_allow_set_link: 1450 * 1451 * The default implementation of the object_property_add_link() check() 1452 * callback function. It allows the link property to be set and never returns 1453 * an error. 1454 */ 1455 void object_property_allow_set_link(const Object *, const char *, 1456 Object *, Error **); 1457 1458 /** 1459 * object_property_add_link: 1460 * @obj: the object to add a property to 1461 * @name: the name of the property 1462 * @type: the qobj type of the link 1463 * @child: a pointer to where the link object reference is stored 1464 * @check: callback to veto setting or NULL if the property is read-only 1465 * @flags: additional options for the link 1466 * @errp: if an error occurs, a pointer to an area to store the error 1467 * 1468 * Links establish relationships between objects. Links are unidirectional 1469 * although two links can be combined to form a bidirectional relationship 1470 * between objects. 1471 * 1472 * Links form the graph in the object model. 1473 * 1474 * The <code>@check()</code> callback is invoked when 1475 * object_property_set_link() is called and can raise an error to prevent the 1476 * link being set. If <code>@check</code> is NULL, the property is read-only 1477 * and cannot be set. 1478 * 1479 * Ownership of the pointer that @child points to is transferred to the 1480 * link property. The reference count for <code>*@child</code> is 1481 * managed by the property from after the function returns till the 1482 * property is deleted with object_property_del(). If the 1483 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set, 1484 * the reference count is decremented when the property is deleted or 1485 * modified. 1486 */ 1487 void object_property_add_link(Object *obj, const char *name, 1488 const char *type, Object **child, 1489 void (*check)(const Object *obj, const char *name, 1490 Object *val, Error **errp), 1491 ObjectPropertyLinkFlags flags, 1492 Error **errp); 1493 1494 /** 1495 * object_property_add_str: 1496 * @obj: the object to add a property to 1497 * @name: the name of the property 1498 * @get: the getter or NULL if the property is write-only. This function must 1499 * return a string to be freed by g_free(). 1500 * @set: the setter or NULL if the property is read-only 1501 * @errp: if an error occurs, a pointer to an area to store the error 1502 * 1503 * Add a string property using getters/setters. This function will add a 1504 * property of type 'string'. 1505 */ 1506 void object_property_add_str(Object *obj, const char *name, 1507 char *(*get)(Object *, Error **), 1508 void (*set)(Object *, const char *, Error **), 1509 Error **errp); 1510 1511 void object_class_property_add_str(ObjectClass *klass, const char *name, 1512 char *(*get)(Object *, Error **), 1513 void (*set)(Object *, const char *, 1514 Error **), 1515 Error **errp); 1516 1517 /** 1518 * object_property_add_bool: 1519 * @obj: the object to add a property to 1520 * @name: the name of the property 1521 * @get: the getter or NULL if the property is write-only. 1522 * @set: the setter or NULL if the property is read-only 1523 * @errp: if an error occurs, a pointer to an area to store the error 1524 * 1525 * Add a bool property using getters/setters. This function will add a 1526 * property of type 'bool'. 1527 */ 1528 void object_property_add_bool(Object *obj, const char *name, 1529 bool (*get)(Object *, Error **), 1530 void (*set)(Object *, bool, Error **), 1531 Error **errp); 1532 1533 void object_class_property_add_bool(ObjectClass *klass, const char *name, 1534 bool (*get)(Object *, Error **), 1535 void (*set)(Object *, bool, Error **), 1536 Error **errp); 1537 1538 /** 1539 * object_property_add_enum: 1540 * @obj: the object to add a property to 1541 * @name: the name of the property 1542 * @typename: the name of the enum data type 1543 * @get: the getter or %NULL if the property is write-only. 1544 * @set: the setter or %NULL if the property is read-only 1545 * @errp: if an error occurs, a pointer to an area to store the error 1546 * 1547 * Add an enum property using getters/setters. This function will add a 1548 * property of type '@typename'. 1549 */ 1550 void object_property_add_enum(Object *obj, const char *name, 1551 const char *typename, 1552 const QEnumLookup *lookup, 1553 int (*get)(Object *, Error **), 1554 void (*set)(Object *, int, Error **), 1555 Error **errp); 1556 1557 void object_class_property_add_enum(ObjectClass *klass, const char *name, 1558 const char *typename, 1559 const QEnumLookup *lookup, 1560 int (*get)(Object *, Error **), 1561 void (*set)(Object *, int, Error **), 1562 Error **errp); 1563 1564 /** 1565 * object_property_add_tm: 1566 * @obj: the object to add a property to 1567 * @name: the name of the property 1568 * @get: the getter or NULL if the property is write-only. 1569 * @errp: if an error occurs, a pointer to an area to store the error 1570 * 1571 * Add a read-only struct tm valued property using a getter function. 1572 * This function will add a property of type 'struct tm'. 1573 */ 1574 void object_property_add_tm(Object *obj, const char *name, 1575 void (*get)(Object *, struct tm *, Error **), 1576 Error **errp); 1577 1578 void object_class_property_add_tm(ObjectClass *klass, const char *name, 1579 void (*get)(Object *, struct tm *, Error **), 1580 Error **errp); 1581 1582 /** 1583 * object_property_add_uint8_ptr: 1584 * @obj: the object to add a property to 1585 * @name: the name of the property 1586 * @v: pointer to value 1587 * @errp: if an error occurs, a pointer to an area to store the error 1588 * 1589 * Add an integer property in memory. This function will add a 1590 * property of type 'uint8'. 1591 */ 1592 void object_property_add_uint8_ptr(Object *obj, const char *name, 1593 const uint8_t *v, Error **errp); 1594 void object_class_property_add_uint8_ptr(ObjectClass *klass, const char *name, 1595 const uint8_t *v, Error **errp); 1596 1597 /** 1598 * object_property_add_uint16_ptr: 1599 * @obj: the object to add a property to 1600 * @name: the name of the property 1601 * @v: pointer to value 1602 * @errp: if an error occurs, a pointer to an area to store the error 1603 * 1604 * Add an integer property in memory. This function will add a 1605 * property of type 'uint16'. 1606 */ 1607 void object_property_add_uint16_ptr(Object *obj, const char *name, 1608 const uint16_t *v, Error **errp); 1609 void object_class_property_add_uint16_ptr(ObjectClass *klass, const char *name, 1610 const uint16_t *v, Error **errp); 1611 1612 /** 1613 * object_property_add_uint32_ptr: 1614 * @obj: the object to add a property to 1615 * @name: the name of the property 1616 * @v: pointer to value 1617 * @errp: if an error occurs, a pointer to an area to store the error 1618 * 1619 * Add an integer property in memory. This function will add a 1620 * property of type 'uint32'. 1621 */ 1622 void object_property_add_uint32_ptr(Object *obj, const char *name, 1623 const uint32_t *v, Error **errp); 1624 void object_class_property_add_uint32_ptr(ObjectClass *klass, const char *name, 1625 const uint32_t *v, Error **errp); 1626 1627 /** 1628 * object_property_add_uint64_ptr: 1629 * @obj: the object to add a property to 1630 * @name: the name of the property 1631 * @v: pointer to value 1632 * @errp: if an error occurs, a pointer to an area to store the error 1633 * 1634 * Add an integer property in memory. This function will add a 1635 * property of type 'uint64'. 1636 */ 1637 void object_property_add_uint64_ptr(Object *obj, const char *name, 1638 const uint64_t *v, Error **Errp); 1639 void object_class_property_add_uint64_ptr(ObjectClass *klass, const char *name, 1640 const uint64_t *v, Error **Errp); 1641 1642 /** 1643 * object_property_add_alias: 1644 * @obj: the object to add a property to 1645 * @name: the name of the property 1646 * @target_obj: the object to forward property access to 1647 * @target_name: the name of the property on the forwarded object 1648 * @errp: if an error occurs, a pointer to an area to store the error 1649 * 1650 * Add an alias for a property on an object. This function will add a property 1651 * of the same type as the forwarded property. 1652 * 1653 * The caller must ensure that <code>@target_obj</code> stays alive as long as 1654 * this property exists. In the case of a child object or an alias on the same 1655 * object this will be the case. For aliases to other objects the caller is 1656 * responsible for taking a reference. 1657 */ 1658 void object_property_add_alias(Object *obj, const char *name, 1659 Object *target_obj, const char *target_name, 1660 Error **errp); 1661 1662 /** 1663 * object_property_add_const_link: 1664 * @obj: the object to add a property to 1665 * @name: the name of the property 1666 * @target: the object to be referred by the link 1667 * @errp: if an error occurs, a pointer to an area to store the error 1668 * 1669 * Add an unmodifiable link for a property on an object. This function will 1670 * add a property of type link<TYPE> where TYPE is the type of @target. 1671 * 1672 * The caller must ensure that @target stays alive as long as 1673 * this property exists. In the case @target is a child of @obj, 1674 * this will be the case. Otherwise, the caller is responsible for 1675 * taking a reference. 1676 */ 1677 void object_property_add_const_link(Object *obj, const char *name, 1678 Object *target, Error **errp); 1679 1680 /** 1681 * object_property_set_description: 1682 * @obj: the object owning the property 1683 * @name: the name of the property 1684 * @description: the description of the property on the object 1685 * @errp: if an error occurs, a pointer to an area to store the error 1686 * 1687 * Set an object property's description. 1688 * 1689 */ 1690 void object_property_set_description(Object *obj, const char *name, 1691 const char *description, Error **errp); 1692 void object_class_property_set_description(ObjectClass *klass, const char *name, 1693 const char *description, 1694 Error **errp); 1695 1696 /** 1697 * object_child_foreach: 1698 * @obj: the object whose children will be navigated 1699 * @fn: the iterator function to be called 1700 * @opaque: an opaque value that will be passed to the iterator 1701 * 1702 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1703 * non-zero. 1704 * 1705 * It is forbidden to add or remove children from @obj from the @fn 1706 * callback. 1707 * 1708 * Returns: The last value returned by @fn, or 0 if there is no child. 1709 */ 1710 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 1711 void *opaque); 1712 1713 /** 1714 * object_child_foreach_recursive: 1715 * @obj: the object whose children will be navigated 1716 * @fn: the iterator function to be called 1717 * @opaque: an opaque value that will be passed to the iterator 1718 * 1719 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1720 * non-zero. Calls recursively, all child nodes of @obj will also be passed 1721 * all the way down to the leaf nodes of the tree. Depth first ordering. 1722 * 1723 * It is forbidden to add or remove children from @obj (or its 1724 * child nodes) from the @fn callback. 1725 * 1726 * Returns: The last value returned by @fn, or 0 if there is no child. 1727 */ 1728 int object_child_foreach_recursive(Object *obj, 1729 int (*fn)(Object *child, void *opaque), 1730 void *opaque); 1731 /** 1732 * container_get: 1733 * @root: root of the #path, e.g., object_get_root() 1734 * @path: path to the container 1735 * 1736 * Return a container object whose path is @path. Create more containers 1737 * along the path if necessary. 1738 * 1739 * Returns: the container object. 1740 */ 1741 Object *container_get(Object *root, const char *path); 1742 1743 /** 1744 * object_type_get_instance_size: 1745 * @typename: Name of the Type whose instance_size is required 1746 * 1747 * Returns the instance_size of the given @typename. 1748 */ 1749 size_t object_type_get_instance_size(const char *typename); 1750 #endif 1751