1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include "qapi/qapi-builtin-types.h" 18 #include "qemu/module.h" 19 #include "qom/object.h" 20 21 struct TypeImpl; 22 typedef struct TypeImpl *Type; 23 24 typedef struct TypeInfo TypeInfo; 25 26 typedef struct InterfaceClass InterfaceClass; 27 typedef struct InterfaceInfo InterfaceInfo; 28 29 #define TYPE_OBJECT "object" 30 31 /** 32 * SECTION:object.h 33 * @title:Base Object Type System 34 * @short_description: interfaces for creating new types and objects 35 * 36 * The QEMU Object Model provides a framework for registering user creatable 37 * types and instantiating objects from those types. QOM provides the following 38 * features: 39 * 40 * - System for dynamically registering types 41 * - Support for single-inheritance of types 42 * - Multiple inheritance of stateless interfaces 43 * 44 * <example> 45 * <title>Creating a minimal type</title> 46 * <programlisting> 47 * #include "qdev.h" 48 * 49 * #define TYPE_MY_DEVICE "my-device" 50 * 51 * // No new virtual functions: we can reuse the typedef for the 52 * // superclass. 53 * typedef DeviceClass MyDeviceClass; 54 * typedef struct MyDevice 55 * { 56 * DeviceState parent; 57 * 58 * int reg0, reg1, reg2; 59 * } MyDevice; 60 * 61 * static const TypeInfo my_device_info = { 62 * .name = TYPE_MY_DEVICE, 63 * .parent = TYPE_DEVICE, 64 * .instance_size = sizeof(MyDevice), 65 * }; 66 * 67 * static void my_device_register_types(void) 68 * { 69 * type_register_static(&my_device_info); 70 * } 71 * 72 * type_init(my_device_register_types) 73 * </programlisting> 74 * </example> 75 * 76 * In the above example, we create a simple type that is described by #TypeInfo. 77 * #TypeInfo describes information about the type including what it inherits 78 * from, the instance and class size, and constructor/destructor hooks. 79 * 80 * Alternatively several static types could be registered using helper macro 81 * DEFINE_TYPES() 82 * 83 * <example> 84 * <programlisting> 85 * static const TypeInfo device_types_info[] = { 86 * { 87 * .name = TYPE_MY_DEVICE_A, 88 * .parent = TYPE_DEVICE, 89 * .instance_size = sizeof(MyDeviceA), 90 * }, 91 * { 92 * .name = TYPE_MY_DEVICE_B, 93 * .parent = TYPE_DEVICE, 94 * .instance_size = sizeof(MyDeviceB), 95 * }, 96 * }; 97 * 98 * DEFINE_TYPES(device_types_info) 99 * </programlisting> 100 * </example> 101 * 102 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 103 * are instantiated dynamically but there is only ever one instance for any 104 * given type. The #ObjectClass typically holds a table of function pointers 105 * for the virtual methods implemented by this type. 106 * 107 * Using object_new(), a new #Object derivative will be instantiated. You can 108 * cast an #Object to a subclass (or base-class) type using 109 * object_dynamic_cast(). You typically want to define macro wrappers around 110 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 111 * specific type: 112 * 113 * <example> 114 * <title>Typecasting macros</title> 115 * <programlisting> 116 * #define MY_DEVICE_GET_CLASS(obj) \ 117 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 118 * #define MY_DEVICE_CLASS(klass) \ 119 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 120 * #define MY_DEVICE(obj) \ 121 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 122 * </programlisting> 123 * </example> 124 * 125 * # Class Initialization # 126 * 127 * Before an object is initialized, the class for the object must be 128 * initialized. There is only one class object for all instance objects 129 * that is created lazily. 130 * 131 * Classes are initialized by first initializing any parent classes (if 132 * necessary). After the parent class object has initialized, it will be 133 * copied into the current class object and any additional storage in the 134 * class object is zero filled. 135 * 136 * The effect of this is that classes automatically inherit any virtual 137 * function pointers that the parent class has already initialized. All 138 * other fields will be zero filled. 139 * 140 * Once all of the parent classes have been initialized, #TypeInfo::class_init 141 * is called to let the class being instantiated provide default initialize for 142 * its virtual functions. Here is how the above example might be modified 143 * to introduce an overridden virtual function: 144 * 145 * <example> 146 * <title>Overriding a virtual function</title> 147 * <programlisting> 148 * #include "qdev.h" 149 * 150 * void my_device_class_init(ObjectClass *klass, void *class_data) 151 * { 152 * DeviceClass *dc = DEVICE_CLASS(klass); 153 * dc->reset = my_device_reset; 154 * } 155 * 156 * static const TypeInfo my_device_info = { 157 * .name = TYPE_MY_DEVICE, 158 * .parent = TYPE_DEVICE, 159 * .instance_size = sizeof(MyDevice), 160 * .class_init = my_device_class_init, 161 * }; 162 * </programlisting> 163 * </example> 164 * 165 * Introducing new virtual methods requires a class to define its own 166 * struct and to add a .class_size member to the #TypeInfo. Each method 167 * will also have a wrapper function to call it easily: 168 * 169 * <example> 170 * <title>Defining an abstract class</title> 171 * <programlisting> 172 * #include "qdev.h" 173 * 174 * typedef struct MyDeviceClass 175 * { 176 * DeviceClass parent; 177 * 178 * void (*frobnicate) (MyDevice *obj); 179 * } MyDeviceClass; 180 * 181 * static const TypeInfo my_device_info = { 182 * .name = TYPE_MY_DEVICE, 183 * .parent = TYPE_DEVICE, 184 * .instance_size = sizeof(MyDevice), 185 * .abstract = true, // or set a default in my_device_class_init 186 * .class_size = sizeof(MyDeviceClass), 187 * }; 188 * 189 * void my_device_frobnicate(MyDevice *obj) 190 * { 191 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 192 * 193 * klass->frobnicate(obj); 194 * } 195 * </programlisting> 196 * </example> 197 * 198 * # Interfaces # 199 * 200 * Interfaces allow a limited form of multiple inheritance. Instances are 201 * similar to normal types except for the fact that are only defined by 202 * their classes and never carry any state. As a consequence, a pointer to 203 * an interface instance should always be of incomplete type in order to be 204 * sure it cannot be dereferenced. That is, you should define the 205 * 'typedef struct SomethingIf SomethingIf' so that you can pass around 206 * 'SomethingIf *si' arguments, but not define a 'struct SomethingIf { ... }'. 207 * The only things you can validly do with a 'SomethingIf *' are to pass it as 208 * an argument to a method on its corresponding SomethingIfClass, or to 209 * dynamically cast it to an object that implements the interface. 210 * 211 * # Methods # 212 * 213 * A <emphasis>method</emphasis> is a function within the namespace scope of 214 * a class. It usually operates on the object instance by passing it as a 215 * strongly-typed first argument. 216 * If it does not operate on an object instance, it is dubbed 217 * <emphasis>class method</emphasis>. 218 * 219 * Methods cannot be overloaded. That is, the #ObjectClass and method name 220 * uniquely identity the function to be called; the signature does not vary 221 * except for trailing varargs. 222 * 223 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 224 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 225 * via OBJECT_GET_CLASS() accessing the overridden function. 226 * The original function is not automatically invoked. It is the responsibility 227 * of the overriding class to determine whether and when to invoke the method 228 * being overridden. 229 * 230 * To invoke the method being overridden, the preferred solution is to store 231 * the original value in the overriding class before overriding the method. 232 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 233 * respectively; this frees the overriding class from hardcoding its parent 234 * class, which someone might choose to change at some point. 235 * 236 * <example> 237 * <title>Overriding a virtual method</title> 238 * <programlisting> 239 * typedef struct MyState MyState; 240 * 241 * typedef void (*MyDoSomething)(MyState *obj); 242 * 243 * typedef struct MyClass { 244 * ObjectClass parent_class; 245 * 246 * MyDoSomething do_something; 247 * } MyClass; 248 * 249 * static void my_do_something(MyState *obj) 250 * { 251 * // do something 252 * } 253 * 254 * static void my_class_init(ObjectClass *oc, void *data) 255 * { 256 * MyClass *mc = MY_CLASS(oc); 257 * 258 * mc->do_something = my_do_something; 259 * } 260 * 261 * static const TypeInfo my_type_info = { 262 * .name = TYPE_MY, 263 * .parent = TYPE_OBJECT, 264 * .instance_size = sizeof(MyState), 265 * .class_size = sizeof(MyClass), 266 * .class_init = my_class_init, 267 * }; 268 * 269 * typedef struct DerivedClass { 270 * MyClass parent_class; 271 * 272 * MyDoSomething parent_do_something; 273 * } DerivedClass; 274 * 275 * static void derived_do_something(MyState *obj) 276 * { 277 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 278 * 279 * // do something here 280 * dc->parent_do_something(obj); 281 * // do something else here 282 * } 283 * 284 * static void derived_class_init(ObjectClass *oc, void *data) 285 * { 286 * MyClass *mc = MY_CLASS(oc); 287 * DerivedClass *dc = DERIVED_CLASS(oc); 288 * 289 * dc->parent_do_something = mc->do_something; 290 * mc->do_something = derived_do_something; 291 * } 292 * 293 * static const TypeInfo derived_type_info = { 294 * .name = TYPE_DERIVED, 295 * .parent = TYPE_MY, 296 * .class_size = sizeof(DerivedClass), 297 * .class_init = derived_class_init, 298 * }; 299 * </programlisting> 300 * </example> 301 * 302 * Alternatively, object_class_by_name() can be used to obtain the class and 303 * its non-overridden methods for a specific type. This would correspond to 304 * |[ MyClass::method(...) ]| in C++. 305 * 306 * The first example of such a QOM method was #CPUClass.reset, 307 * another example is #DeviceClass.realize. 308 * 309 * # Standard type declaration and definition macros # 310 * 311 * A lot of the code outlined above follows a standard pattern and naming 312 * convention. To reduce the amount of boilerplate code that needs to be 313 * written for a new type there are two sets of macros to generate the 314 * common parts in a standard format. 315 * 316 * A type is declared using the OBJECT_DECLARE macro family. In types 317 * which do not require any virtual functions in the class, the 318 * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed 319 * in the header file: 320 * 321 * <example> 322 * <title>Declaring a simple type</title> 323 * <programlisting> 324 * OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 325 * </programlisting> 326 * </example> 327 * 328 * This is equivalent to the following: 329 * 330 * <example> 331 * <title>Expansion from declaring a simple type</title> 332 * <programlisting> 333 * typedef struct MyDevice MyDevice; 334 * typedef struct MyDeviceClass MyDeviceClass; 335 * 336 * G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref) 337 * 338 * #define MY_DEVICE_GET_CLASS(void *obj) \ 339 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 340 * #define MY_DEVICE_CLASS(void *klass) \ 341 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 342 * #define MY_DEVICE(void *obj) 343 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 344 * 345 * struct MyDeviceClass { 346 * DeviceClass parent_class; 347 * }; 348 * </programlisting> 349 * </example> 350 * 351 * The 'struct MyDevice' needs to be declared separately. 352 * If the type requires virtual functions to be declared in the class 353 * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be 354 * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without 355 * the 'struct MyDeviceClass' definition. 356 * 357 * To implement the type, the OBJECT_DEFINE macro family is available. 358 * In the simple case the OBJECT_DEFINE_TYPE macro is suitable: 359 * 360 * <example> 361 * <title>Defining a simple type</title> 362 * <programlisting> 363 * OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 364 * </programlisting> 365 * </example> 366 * 367 * This is equivalent to the following: 368 * 369 * <example> 370 * <title>Expansion from defining a simple type</title> 371 * <programlisting> 372 * static void my_device_finalize(Object *obj); 373 * static void my_device_class_init(ObjectClass *oc, void *data); 374 * static void my_device_init(Object *obj); 375 * 376 * static const TypeInfo my_device_info = { 377 * .parent = TYPE_DEVICE, 378 * .name = TYPE_MY_DEVICE, 379 * .instance_size = sizeof(MyDevice), 380 * .instance_init = my_device_init, 381 * .instance_finalize = my_device_finalize, 382 * .class_size = sizeof(MyDeviceClass), 383 * .class_init = my_device_class_init, 384 * }; 385 * 386 * static void 387 * my_device_register_types(void) 388 * { 389 * type_register_static(&my_device_info); 390 * } 391 * type_init(my_device_register_types); 392 * </programlisting> 393 * </example> 394 * 395 * This is sufficient to get the type registered with the type 396 * system, and the three standard methods now need to be implemented 397 * along with any other logic required for the type. 398 * 399 * If the type needs to implement one or more interfaces, then the 400 * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead. 401 * This accepts an array of interface type names. 402 * 403 * <example> 404 * <title>Defining a simple type implementing interfaces</title> 405 * <programlisting> 406 * OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device, 407 * MY_DEVICE, DEVICE, 408 * { TYPE_USER_CREATABLE }, { NULL }) 409 * </programlisting> 410 * </example> 411 * 412 * If the type is not intended to be instantiated, then then 413 * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead: 414 * 415 * <example> 416 * <title>Defining a simple type</title> 417 * <programlisting> 418 * OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 419 * </programlisting> 420 * </example> 421 */ 422 423 424 typedef struct ObjectProperty ObjectProperty; 425 426 /** 427 * ObjectPropertyAccessor: 428 * @obj: the object that owns the property 429 * @v: the visitor that contains the property data 430 * @name: the name of the property 431 * @opaque: the object property opaque 432 * @errp: a pointer to an Error that is filled if getting/setting fails. 433 * 434 * Called when trying to get/set a property. 435 */ 436 typedef void (ObjectPropertyAccessor)(Object *obj, 437 Visitor *v, 438 const char *name, 439 void *opaque, 440 Error **errp); 441 442 /** 443 * ObjectPropertyResolve: 444 * @obj: the object that owns the property 445 * @opaque: the opaque registered with the property 446 * @part: the name of the property 447 * 448 * Resolves the #Object corresponding to property @part. 449 * 450 * The returned object can also be used as a starting point 451 * to resolve a relative path starting with "@part". 452 * 453 * Returns: If @path is the path that led to @obj, the function 454 * returns the #Object corresponding to "@path/@part". 455 * If "@path/@part" is not a valid object path, it returns #NULL. 456 */ 457 typedef Object *(ObjectPropertyResolve)(Object *obj, 458 void *opaque, 459 const char *part); 460 461 /** 462 * ObjectPropertyRelease: 463 * @obj: the object that owns the property 464 * @name: the name of the property 465 * @opaque: the opaque registered with the property 466 * 467 * Called when a property is removed from a object. 468 */ 469 typedef void (ObjectPropertyRelease)(Object *obj, 470 const char *name, 471 void *opaque); 472 473 /** 474 * ObjectPropertyInit: 475 * @obj: the object that owns the property 476 * @prop: the property to set 477 * 478 * Called when a property is initialized. 479 */ 480 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop); 481 482 struct ObjectProperty 483 { 484 char *name; 485 char *type; 486 char *description; 487 ObjectPropertyAccessor *get; 488 ObjectPropertyAccessor *set; 489 ObjectPropertyResolve *resolve; 490 ObjectPropertyRelease *release; 491 ObjectPropertyInit *init; 492 void *opaque; 493 QObject *defval; 494 }; 495 496 /** 497 * ObjectUnparent: 498 * @obj: the object that is being removed from the composition tree 499 * 500 * Called when an object is being removed from the QOM composition tree. 501 * The function should remove any backlinks from children objects to @obj. 502 */ 503 typedef void (ObjectUnparent)(Object *obj); 504 505 /** 506 * ObjectFree: 507 * @obj: the object being freed 508 * 509 * Called when an object's last reference is removed. 510 */ 511 typedef void (ObjectFree)(void *obj); 512 513 #define OBJECT_CLASS_CAST_CACHE 4 514 515 /** 516 * ObjectClass: 517 * 518 * The base for all classes. The only thing that #ObjectClass contains is an 519 * integer type handle. 520 */ 521 struct ObjectClass 522 { 523 /*< private >*/ 524 Type type; 525 GSList *interfaces; 526 527 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE]; 528 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE]; 529 530 ObjectUnparent *unparent; 531 532 GHashTable *properties; 533 }; 534 535 /** 536 * Object: 537 * 538 * The base for all objects. The first member of this object is a pointer to 539 * a #ObjectClass. Since C guarantees that the first member of a structure 540 * always begins at byte 0 of that structure, as long as any sub-object places 541 * its parent as the first member, we can cast directly to a #Object. 542 * 543 * As a result, #Object contains a reference to the objects type as its 544 * first member. This allows identification of the real type of the object at 545 * run time. 546 */ 547 struct Object 548 { 549 /*< private >*/ 550 ObjectClass *class; 551 ObjectFree *free; 552 GHashTable *properties; 553 uint32_t ref; 554 Object *parent; 555 }; 556 557 /** 558 * DECLARE_INSTANCE_CHECKER: 559 * @InstanceType: instance struct name 560 * @OBJ_NAME: the object name in uppercase with underscore separators 561 * @TYPENAME: type name 562 * 563 * Direct usage of this macro should be avoided, and the complete 564 * OBJECT_DECLARE_TYPE macro is recommended instead. 565 * 566 * This macro will provide the three standard type cast functions for a 567 * QOM type. 568 */ 569 #define DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \ 570 static inline G_GNUC_UNUSED InstanceType * \ 571 OBJ_NAME(const void *obj) \ 572 { return OBJECT_CHECK(InstanceType, obj, TYPENAME); } 573 574 /** 575 * DECLARE_CLASS_CHECKERS: 576 * @ClassType: class struct name 577 * @OBJ_NAME: the object name in uppercase with underscore separators 578 * @TYPENAME: type name 579 * 580 * Direct usage of this macro should be avoided, and the complete 581 * OBJECT_DECLARE_TYPE macro is recommended instead. 582 * 583 * This macro will provide the three standard type cast functions for a 584 * QOM type. 585 */ 586 #define DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) \ 587 static inline G_GNUC_UNUSED ClassType * \ 588 OBJ_NAME##_GET_CLASS(const void *obj) \ 589 { return OBJECT_GET_CLASS(ClassType, obj, TYPENAME); } \ 590 \ 591 static inline G_GNUC_UNUSED ClassType * \ 592 OBJ_NAME##_CLASS(const void *klass) \ 593 { return OBJECT_CLASS_CHECK(ClassType, klass, TYPENAME); } 594 595 /** 596 * DECLARE_OBJ_CHECKERS: 597 * @InstanceType: instance struct name 598 * @ClassType: class struct name 599 * @OBJ_NAME: the object name in uppercase with underscore separators 600 * @TYPENAME: type name 601 * 602 * Direct usage of this macro should be avoided, and the complete 603 * OBJECT_DECLARE_TYPE macro is recommended instead. 604 * 605 * This macro will provide the three standard type cast functions for a 606 * QOM type. 607 */ 608 #define DECLARE_OBJ_CHECKERS(InstanceType, ClassType, OBJ_NAME, TYPENAME) \ 609 DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \ 610 \ 611 DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) 612 613 /** 614 * OBJECT_DECLARE_TYPE: 615 * @InstanceType: instance struct name 616 * @ClassType: class struct name 617 * @module_obj_name: the object name in lowercase with underscore separators 618 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 619 * 620 * This macro is typically used in a header file, and will: 621 * 622 * - create the typedefs for the object and class structs 623 * - register the type for use with g_autoptr 624 * - provide three standard type cast functions 625 * 626 * The object struct and class struct need to be declared manually. 627 */ 628 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, module_obj_name, MODULE_OBJ_NAME) \ 629 typedef struct InstanceType InstanceType; \ 630 typedef struct ClassType ClassType; \ 631 \ 632 G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \ 633 \ 634 DECLARE_OBJ_CHECKERS(InstanceType, ClassType, \ 635 MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME) 636 637 /** 638 * OBJECT_DECLARE_SIMPLE_TYPE: 639 * @InstanceType: instance struct name 640 * @module_obj_name: the object name in lowercase with underscore separators 641 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 642 * @ParentClassType: class struct name of parent type 643 * 644 * This does the same as OBJECT_DECLARE_TYPE(), but also declares 645 * the class struct, thus only the object struct needs to be declare 646 * manually. 647 * 648 * This macro should be used unless the class struct needs to have 649 * virtual methods declared. 650 */ 651 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, module_obj_name, \ 652 MODULE_OBJ_NAME, ParentClassType) \ 653 OBJECT_DECLARE_TYPE(InstanceType, InstanceType##Class, module_obj_name, MODULE_OBJ_NAME) \ 654 struct InstanceType##Class { ParentClassType parent_class; }; 655 656 657 /** 658 * OBJECT_DEFINE_TYPE_EXTENDED: 659 * @ModuleObjName: the object name with initial caps 660 * @module_obj_name: the object name in lowercase with underscore separators 661 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 662 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 663 * separators 664 * @ABSTRACT: boolean flag to indicate whether the object can be instantiated 665 * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces 666 * 667 * This macro is typically used in a source file, and will: 668 * 669 * - declare prototypes for _finalize, _class_init and _init methods 670 * - declare the TypeInfo struct instance 671 * - provide the constructor to register the type 672 * 673 * After using this macro, implementations of the _finalize, _class_init, 674 * and _init methods need to be written. Any of these can be zero-line 675 * no-op impls if no special logic is required for a given type. 676 * 677 * This macro should rarely be used, instead one of the more specialized 678 * macros is usually a better choice. 679 */ 680 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 681 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 682 ABSTRACT, ...) \ 683 static void \ 684 module_obj_name##_finalize(Object *obj); \ 685 static void \ 686 module_obj_name##_class_init(ObjectClass *oc, void *data); \ 687 static void \ 688 module_obj_name##_init(Object *obj); \ 689 \ 690 static const TypeInfo module_obj_name##_info = { \ 691 .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \ 692 .name = TYPE_##MODULE_OBJ_NAME, \ 693 .instance_size = sizeof(ModuleObjName), \ 694 .instance_init = module_obj_name##_init, \ 695 .instance_finalize = module_obj_name##_finalize, \ 696 .class_size = sizeof(ModuleObjName##Class), \ 697 .class_init = module_obj_name##_class_init, \ 698 .abstract = ABSTRACT, \ 699 .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \ 700 }; \ 701 \ 702 static void \ 703 module_obj_name##_register_types(void) \ 704 { \ 705 type_register_static(&module_obj_name##_info); \ 706 } \ 707 type_init(module_obj_name##_register_types); 708 709 /** 710 * OBJECT_DEFINE_TYPE: 711 * @ModuleObjName: the object name with initial caps 712 * @module_obj_name: the object name in lowercase with underscore separators 713 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 714 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 715 * separators 716 * 717 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 718 * for the common case of a non-abstract type, without any interfaces. 719 */ 720 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \ 721 PARENT_MODULE_OBJ_NAME) \ 722 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 723 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 724 false, { NULL }) 725 726 /** 727 * OBJECT_DEFINE_TYPE_WITH_INTERFACES: 728 * @ModuleObjName: the object name with initial caps 729 * @module_obj_name: the object name in lowercase with underscore separators 730 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 731 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 732 * separators 733 * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces 734 * 735 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 736 * for the common case of a non-abstract type, with one or more implemented 737 * interfaces. 738 * 739 * Note when passing the list of interfaces, be sure to include the final 740 * NULL entry, e.g. { TYPE_USER_CREATABLE }, { NULL } 741 */ 742 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \ 743 MODULE_OBJ_NAME, \ 744 PARENT_MODULE_OBJ_NAME, ...) \ 745 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 746 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 747 false, __VA_ARGS__) 748 749 /** 750 * OBJECT_DEFINE_ABSTRACT_TYPE: 751 * @ModuleObjName: the object name with initial caps 752 * @module_obj_name: the object name in lowercase with underscore separators 753 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 754 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 755 * separators 756 * 757 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 758 * for defining an abstract type, without any interfaces. 759 */ 760 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \ 761 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \ 762 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 763 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 764 true, { NULL }) 765 766 /** 767 * TypeInfo: 768 * @name: The name of the type. 769 * @parent: The name of the parent type. 770 * @instance_size: The size of the object (derivative of #Object). If 771 * @instance_size is 0, then the size of the object will be the size of the 772 * parent object. 773 * @instance_init: This function is called to initialize an object. The parent 774 * class will have already been initialized so the type is only responsible 775 * for initializing its own members. 776 * @instance_post_init: This function is called to finish initialization of 777 * an object, after all @instance_init functions were called. 778 * @instance_finalize: This function is called during object destruction. This 779 * is called before the parent @instance_finalize function has been called. 780 * An object should only free the members that are unique to its type in this 781 * function. 782 * @abstract: If this field is true, then the class is considered abstract and 783 * cannot be directly instantiated. 784 * @class_size: The size of the class object (derivative of #ObjectClass) 785 * for this object. If @class_size is 0, then the size of the class will be 786 * assumed to be the size of the parent class. This allows a type to avoid 787 * implementing an explicit class type if they are not adding additional 788 * virtual functions. 789 * @class_init: This function is called after all parent class initialization 790 * has occurred to allow a class to set its default virtual method pointers. 791 * This is also the function to use to override virtual methods from a parent 792 * class. 793 * @class_base_init: This function is called for all base classes after all 794 * parent class initialization has occurred, but before the class itself 795 * is initialized. This is the function to use to undo the effects of 796 * memcpy from the parent class to the descendants. 797 * @class_data: Data to pass to the @class_init, 798 * @class_base_init. This can be useful when building dynamic 799 * classes. 800 * @interfaces: The list of interfaces associated with this type. This 801 * should point to a static array that's terminated with a zero filled 802 * element. 803 */ 804 struct TypeInfo 805 { 806 const char *name; 807 const char *parent; 808 809 size_t instance_size; 810 void (*instance_init)(Object *obj); 811 void (*instance_post_init)(Object *obj); 812 void (*instance_finalize)(Object *obj); 813 814 bool abstract; 815 size_t class_size; 816 817 void (*class_init)(ObjectClass *klass, void *data); 818 void (*class_base_init)(ObjectClass *klass, void *data); 819 void *class_data; 820 821 InterfaceInfo *interfaces; 822 }; 823 824 /** 825 * OBJECT: 826 * @obj: A derivative of #Object 827 * 828 * Converts an object to a #Object. Since all objects are #Objects, 829 * this function will always succeed. 830 */ 831 #define OBJECT(obj) \ 832 ((Object *)(obj)) 833 834 /** 835 * OBJECT_CLASS: 836 * @class: A derivative of #ObjectClass. 837 * 838 * Converts a class to an #ObjectClass. Since all objects are #Objects, 839 * this function will always succeed. 840 */ 841 #define OBJECT_CLASS(class) \ 842 ((ObjectClass *)(class)) 843 844 /** 845 * OBJECT_CHECK: 846 * @type: The C type to use for the return value. 847 * @obj: A derivative of @type to cast. 848 * @name: The QOM typename of @type 849 * 850 * A type safe version of @object_dynamic_cast_assert. Typically each class 851 * will define a macro based on this type to perform type safe dynamic_casts to 852 * this object type. 853 * 854 * If an invalid object is passed to this function, a run time assert will be 855 * generated. 856 */ 857 #define OBJECT_CHECK(type, obj, name) \ 858 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 859 __FILE__, __LINE__, __func__)) 860 861 /** 862 * OBJECT_CLASS_CHECK: 863 * @class_type: The C type to use for the return value. 864 * @class: A derivative class of @class_type to cast. 865 * @name: the QOM typename of @class_type. 866 * 867 * A type safe version of @object_class_dynamic_cast_assert. This macro is 868 * typically wrapped by each type to perform type safe casts of a class to a 869 * specific class type. 870 */ 871 #define OBJECT_CLASS_CHECK(class_type, class, name) \ 872 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \ 873 __FILE__, __LINE__, __func__)) 874 875 /** 876 * OBJECT_GET_CLASS: 877 * @class: The C type to use for the return value. 878 * @obj: The object to obtain the class for. 879 * @name: The QOM typename of @obj. 880 * 881 * This function will return a specific class for a given object. Its generally 882 * used by each type to provide a type safe macro to get a specific class type 883 * from an object. 884 */ 885 #define OBJECT_GET_CLASS(class, obj, name) \ 886 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 887 888 /** 889 * InterfaceInfo: 890 * @type: The name of the interface. 891 * 892 * The information associated with an interface. 893 */ 894 struct InterfaceInfo { 895 const char *type; 896 }; 897 898 /** 899 * InterfaceClass: 900 * @parent_class: the base class 901 * 902 * The class for all interfaces. Subclasses of this class should only add 903 * virtual methods. 904 */ 905 struct InterfaceClass 906 { 907 ObjectClass parent_class; 908 /*< private >*/ 909 ObjectClass *concrete_class; 910 Type interface_type; 911 }; 912 913 #define TYPE_INTERFACE "interface" 914 915 /** 916 * INTERFACE_CLASS: 917 * @klass: class to cast from 918 * Returns: An #InterfaceClass or raise an error if cast is invalid 919 */ 920 #define INTERFACE_CLASS(klass) \ 921 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 922 923 /** 924 * INTERFACE_CHECK: 925 * @interface: the type to return 926 * @obj: the object to convert to an interface 927 * @name: the interface type name 928 * 929 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 930 */ 931 #define INTERFACE_CHECK(interface, obj, name) \ 932 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 933 __FILE__, __LINE__, __func__)) 934 935 /** 936 * object_new_with_class: 937 * @klass: The class to instantiate. 938 * 939 * This function will initialize a new object using heap allocated memory. 940 * The returned object has a reference count of 1, and will be freed when 941 * the last reference is dropped. 942 * 943 * Returns: The newly allocated and instantiated object. 944 */ 945 Object *object_new_with_class(ObjectClass *klass); 946 947 /** 948 * object_new: 949 * @typename: The name of the type of the object to instantiate. 950 * 951 * This function will initialize a new object using heap allocated memory. 952 * The returned object has a reference count of 1, and will be freed when 953 * the last reference is dropped. 954 * 955 * Returns: The newly allocated and instantiated object. 956 */ 957 Object *object_new(const char *typename); 958 959 /** 960 * object_new_with_props: 961 * @typename: The name of the type of the object to instantiate. 962 * @parent: the parent object 963 * @id: The unique ID of the object 964 * @errp: pointer to error object 965 * @...: list of property names and values 966 * 967 * This function will initialize a new object using heap allocated memory. 968 * The returned object has a reference count of 1, and will be freed when 969 * the last reference is dropped. 970 * 971 * The @id parameter will be used when registering the object as a 972 * child of @parent in the composition tree. 973 * 974 * The variadic parameters are a list of pairs of (propname, propvalue) 975 * strings. The propname of %NULL indicates the end of the property 976 * list. If the object implements the user creatable interface, the 977 * object will be marked complete once all the properties have been 978 * processed. 979 * 980 * <example> 981 * <title>Creating an object with properties</title> 982 * <programlisting> 983 * Error *err = NULL; 984 * Object *obj; 985 * 986 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE, 987 * object_get_objects_root(), 988 * "hostmem0", 989 * &err, 990 * "share", "yes", 991 * "mem-path", "/dev/shm/somefile", 992 * "prealloc", "yes", 993 * "size", "1048576", 994 * NULL); 995 * 996 * if (!obj) { 997 * error_reportf_err(err, "Cannot create memory backend: "); 998 * } 999 * </programlisting> 1000 * </example> 1001 * 1002 * The returned object will have one stable reference maintained 1003 * for as long as it is present in the object hierarchy. 1004 * 1005 * Returns: The newly allocated, instantiated & initialized object. 1006 */ 1007 Object *object_new_with_props(const char *typename, 1008 Object *parent, 1009 const char *id, 1010 Error **errp, 1011 ...) QEMU_SENTINEL; 1012 1013 /** 1014 * object_new_with_propv: 1015 * @typename: The name of the type of the object to instantiate. 1016 * @parent: the parent object 1017 * @id: The unique ID of the object 1018 * @errp: pointer to error object 1019 * @vargs: list of property names and values 1020 * 1021 * See object_new_with_props() for documentation. 1022 */ 1023 Object *object_new_with_propv(const char *typename, 1024 Object *parent, 1025 const char *id, 1026 Error **errp, 1027 va_list vargs); 1028 1029 bool object_apply_global_props(Object *obj, const GPtrArray *props, 1030 Error **errp); 1031 void object_set_machine_compat_props(GPtrArray *compat_props); 1032 void object_set_accelerator_compat_props(GPtrArray *compat_props); 1033 void object_register_sugar_prop(const char *driver, const char *prop, const char *value); 1034 void object_apply_compat_props(Object *obj); 1035 1036 /** 1037 * object_set_props: 1038 * @obj: the object instance to set properties on 1039 * @errp: pointer to error object 1040 * @...: list of property names and values 1041 * 1042 * This function will set a list of properties on an existing object 1043 * instance. 1044 * 1045 * The variadic parameters are a list of pairs of (propname, propvalue) 1046 * strings. The propname of %NULL indicates the end of the property 1047 * list. 1048 * 1049 * <example> 1050 * <title>Update an object's properties</title> 1051 * <programlisting> 1052 * Error *err = NULL; 1053 * Object *obj = ...get / create object...; 1054 * 1055 * if (!object_set_props(obj, 1056 * &err, 1057 * "share", "yes", 1058 * "mem-path", "/dev/shm/somefile", 1059 * "prealloc", "yes", 1060 * "size", "1048576", 1061 * NULL)) { 1062 * error_reportf_err(err, "Cannot set properties: "); 1063 * } 1064 * </programlisting> 1065 * </example> 1066 * 1067 * The returned object will have one stable reference maintained 1068 * for as long as it is present in the object hierarchy. 1069 * 1070 * Returns: %true on success, %false on error. 1071 */ 1072 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL; 1073 1074 /** 1075 * object_set_propv: 1076 * @obj: the object instance to set properties on 1077 * @errp: pointer to error object 1078 * @vargs: list of property names and values 1079 * 1080 * See object_set_props() for documentation. 1081 * 1082 * Returns: %true on success, %false on error. 1083 */ 1084 bool object_set_propv(Object *obj, Error **errp, va_list vargs); 1085 1086 /** 1087 * object_initialize: 1088 * @obj: A pointer to the memory to be used for the object. 1089 * @size: The maximum size available at @obj for the object. 1090 * @typename: The name of the type of the object to instantiate. 1091 * 1092 * This function will initialize an object. The memory for the object should 1093 * have already been allocated. The returned object has a reference count of 1, 1094 * and will be finalized when the last reference is dropped. 1095 */ 1096 void object_initialize(void *obj, size_t size, const char *typename); 1097 1098 /** 1099 * object_initialize_child_with_props: 1100 * @parentobj: The parent object to add a property to 1101 * @propname: The name of the property 1102 * @childobj: A pointer to the memory to be used for the object. 1103 * @size: The maximum size available at @childobj for the object. 1104 * @type: The name of the type of the object to instantiate. 1105 * @errp: If an error occurs, a pointer to an area to store the error 1106 * @...: list of property names and values 1107 * 1108 * This function will initialize an object. The memory for the object should 1109 * have already been allocated. The object will then be added as child property 1110 * to a parent with object_property_add_child() function. The returned object 1111 * has a reference count of 1 (for the "child<...>" property from the parent), 1112 * so the object will be finalized automatically when the parent gets removed. 1113 * 1114 * The variadic parameters are a list of pairs of (propname, propvalue) 1115 * strings. The propname of %NULL indicates the end of the property list. 1116 * If the object implements the user creatable interface, the object will 1117 * be marked complete once all the properties have been processed. 1118 * 1119 * Returns: %true on success, %false on failure. 1120 */ 1121 bool object_initialize_child_with_props(Object *parentobj, 1122 const char *propname, 1123 void *childobj, size_t size, const char *type, 1124 Error **errp, ...) QEMU_SENTINEL; 1125 1126 /** 1127 * object_initialize_child_with_propsv: 1128 * @parentobj: The parent object to add a property to 1129 * @propname: The name of the property 1130 * @childobj: A pointer to the memory to be used for the object. 1131 * @size: The maximum size available at @childobj for the object. 1132 * @type: The name of the type of the object to instantiate. 1133 * @errp: If an error occurs, a pointer to an area to store the error 1134 * @vargs: list of property names and values 1135 * 1136 * See object_initialize_child() for documentation. 1137 * 1138 * Returns: %true on success, %false on failure. 1139 */ 1140 bool object_initialize_child_with_propsv(Object *parentobj, 1141 const char *propname, 1142 void *childobj, size_t size, const char *type, 1143 Error **errp, va_list vargs); 1144 1145 /** 1146 * object_initialize_child: 1147 * @parent: The parent object to add a property to 1148 * @propname: The name of the property 1149 * @child: A precisely typed pointer to the memory to be used for the 1150 * object. 1151 * @type: The name of the type of the object to instantiate. 1152 * 1153 * This is like 1154 * object_initialize_child_with_props(parent, propname, 1155 * child, sizeof(*child), type, 1156 * &error_abort, NULL) 1157 */ 1158 #define object_initialize_child(parent, propname, child, type) \ 1159 object_initialize_child_internal((parent), (propname), \ 1160 (child), sizeof(*(child)), (type)) 1161 void object_initialize_child_internal(Object *parent, const char *propname, 1162 void *child, size_t size, 1163 const char *type); 1164 1165 /** 1166 * object_dynamic_cast: 1167 * @obj: The object to cast. 1168 * @typename: The @typename to cast to. 1169 * 1170 * This function will determine if @obj is-a @typename. @obj can refer to an 1171 * object or an interface associated with an object. 1172 * 1173 * Returns: This function returns @obj on success or #NULL on failure. 1174 */ 1175 Object *object_dynamic_cast(Object *obj, const char *typename); 1176 1177 /** 1178 * object_dynamic_cast_assert: 1179 * 1180 * See object_dynamic_cast() for a description of the parameters of this 1181 * function. The only difference in behavior is that this function asserts 1182 * instead of returning #NULL on failure if QOM cast debugging is enabled. 1183 * This function is not meant to be called directly, but only through 1184 * the wrapper macro OBJECT_CHECK. 1185 */ 1186 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 1187 const char *file, int line, const char *func); 1188 1189 /** 1190 * object_get_class: 1191 * @obj: A derivative of #Object 1192 * 1193 * Returns: The #ObjectClass of the type associated with @obj. 1194 */ 1195 ObjectClass *object_get_class(Object *obj); 1196 1197 /** 1198 * object_get_typename: 1199 * @obj: A derivative of #Object. 1200 * 1201 * Returns: The QOM typename of @obj. 1202 */ 1203 const char *object_get_typename(const Object *obj); 1204 1205 /** 1206 * type_register_static: 1207 * @info: The #TypeInfo of the new type. 1208 * 1209 * @info and all of the strings it points to should exist for the life time 1210 * that the type is registered. 1211 * 1212 * Returns: the new #Type. 1213 */ 1214 Type type_register_static(const TypeInfo *info); 1215 1216 /** 1217 * type_register: 1218 * @info: The #TypeInfo of the new type 1219 * 1220 * Unlike type_register_static(), this call does not require @info or its 1221 * string members to continue to exist after the call returns. 1222 * 1223 * Returns: the new #Type. 1224 */ 1225 Type type_register(const TypeInfo *info); 1226 1227 /** 1228 * type_register_static_array: 1229 * @infos: The array of the new type #TypeInfo structures. 1230 * @nr_infos: number of entries in @infos 1231 * 1232 * @infos and all of the strings it points to should exist for the life time 1233 * that the type is registered. 1234 */ 1235 void type_register_static_array(const TypeInfo *infos, int nr_infos); 1236 1237 /** 1238 * DEFINE_TYPES: 1239 * @type_array: The array containing #TypeInfo structures to register 1240 * 1241 * @type_array should be static constant that exists for the life time 1242 * that the type is registered. 1243 */ 1244 #define DEFINE_TYPES(type_array) \ 1245 static void do_qemu_init_ ## type_array(void) \ 1246 { \ 1247 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \ 1248 } \ 1249 type_init(do_qemu_init_ ## type_array) 1250 1251 /** 1252 * object_class_dynamic_cast_assert: 1253 * @klass: The #ObjectClass to attempt to cast. 1254 * @typename: The QOM typename of the class to cast to. 1255 * 1256 * See object_class_dynamic_cast() for a description of the parameters 1257 * of this function. The only difference in behavior is that this function 1258 * asserts instead of returning #NULL on failure if QOM cast debugging is 1259 * enabled. This function is not meant to be called directly, but only through 1260 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK. 1261 */ 1262 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 1263 const char *typename, 1264 const char *file, int line, 1265 const char *func); 1266 1267 /** 1268 * object_class_dynamic_cast: 1269 * @klass: The #ObjectClass to attempt to cast. 1270 * @typename: The QOM typename of the class to cast to. 1271 * 1272 * Returns: If @typename is a class, this function returns @klass if 1273 * @typename is a subtype of @klass, else returns #NULL. 1274 * 1275 * If @typename is an interface, this function returns the interface 1276 * definition for @klass if @klass implements it unambiguously; #NULL 1277 * is returned if @klass does not implement the interface or if multiple 1278 * classes or interfaces on the hierarchy leading to @klass implement 1279 * it. (FIXME: perhaps this can be detected at type definition time?) 1280 */ 1281 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 1282 const char *typename); 1283 1284 /** 1285 * object_class_get_parent: 1286 * @klass: The class to obtain the parent for. 1287 * 1288 * Returns: The parent for @klass or %NULL if none. 1289 */ 1290 ObjectClass *object_class_get_parent(ObjectClass *klass); 1291 1292 /** 1293 * object_class_get_name: 1294 * @klass: The class to obtain the QOM typename for. 1295 * 1296 * Returns: The QOM typename for @klass. 1297 */ 1298 const char *object_class_get_name(ObjectClass *klass); 1299 1300 /** 1301 * object_class_is_abstract: 1302 * @klass: The class to obtain the abstractness for. 1303 * 1304 * Returns: %true if @klass is abstract, %false otherwise. 1305 */ 1306 bool object_class_is_abstract(ObjectClass *klass); 1307 1308 /** 1309 * object_class_by_name: 1310 * @typename: The QOM typename to obtain the class for. 1311 * 1312 * Returns: The class for @typename or %NULL if not found. 1313 */ 1314 ObjectClass *object_class_by_name(const char *typename); 1315 1316 /** 1317 * module_object_class_by_name: 1318 * @typename: The QOM typename to obtain the class for. 1319 * 1320 * For objects which might be provided by a module. Behaves like 1321 * object_class_by_name, but additionally tries to load the module 1322 * needed in case the class is not available. 1323 * 1324 * Returns: The class for @typename or %NULL if not found. 1325 */ 1326 ObjectClass *module_object_class_by_name(const char *typename); 1327 1328 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 1329 const char *implements_type, bool include_abstract, 1330 void *opaque); 1331 1332 /** 1333 * object_class_get_list: 1334 * @implements_type: The type to filter for, including its derivatives. 1335 * @include_abstract: Whether to include abstract classes. 1336 * 1337 * Returns: A singly-linked list of the classes in reverse hashtable order. 1338 */ 1339 GSList *object_class_get_list(const char *implements_type, 1340 bool include_abstract); 1341 1342 /** 1343 * object_class_get_list_sorted: 1344 * @implements_type: The type to filter for, including its derivatives. 1345 * @include_abstract: Whether to include abstract classes. 1346 * 1347 * Returns: A singly-linked list of the classes in alphabetical 1348 * case-insensitive order. 1349 */ 1350 GSList *object_class_get_list_sorted(const char *implements_type, 1351 bool include_abstract); 1352 1353 /** 1354 * object_ref: 1355 * @obj: the object 1356 * 1357 * Increase the reference count of a object. A object cannot be freed as long 1358 * as its reference count is greater than zero. 1359 * Returns: @obj 1360 */ 1361 Object *object_ref(void *obj); 1362 1363 /** 1364 * object_unref: 1365 * @obj: the object 1366 * 1367 * Decrease the reference count of a object. A object cannot be freed as long 1368 * as its reference count is greater than zero. 1369 */ 1370 void object_unref(void *obj); 1371 1372 /** 1373 * object_property_try_add: 1374 * @obj: the object to add a property to 1375 * @name: the name of the property. This can contain any character except for 1376 * a forward slash. In general, you should use hyphens '-' instead of 1377 * underscores '_' when naming properties. 1378 * @type: the type name of the property. This namespace is pretty loosely 1379 * defined. Sub namespaces are constructed by using a prefix and then 1380 * to angle brackets. For instance, the type 'virtio-net-pci' in the 1381 * 'link' namespace would be 'link<virtio-net-pci>'. 1382 * @get: The getter to be called to read a property. If this is NULL, then 1383 * the property cannot be read. 1384 * @set: the setter to be called to write a property. If this is NULL, 1385 * then the property cannot be written. 1386 * @release: called when the property is removed from the object. This is 1387 * meant to allow a property to free its opaque upon object 1388 * destruction. This may be NULL. 1389 * @opaque: an opaque pointer to pass to the callbacks for the property 1390 * @errp: pointer to error object 1391 * 1392 * Returns: The #ObjectProperty; this can be used to set the @resolve 1393 * callback for child and link properties. 1394 */ 1395 ObjectProperty *object_property_try_add(Object *obj, const char *name, 1396 const char *type, 1397 ObjectPropertyAccessor *get, 1398 ObjectPropertyAccessor *set, 1399 ObjectPropertyRelease *release, 1400 void *opaque, Error **errp); 1401 1402 /** 1403 * object_property_add: 1404 * Same as object_property_try_add() with @errp hardcoded to 1405 * &error_abort. 1406 */ 1407 ObjectProperty *object_property_add(Object *obj, const char *name, 1408 const char *type, 1409 ObjectPropertyAccessor *get, 1410 ObjectPropertyAccessor *set, 1411 ObjectPropertyRelease *release, 1412 void *opaque); 1413 1414 void object_property_del(Object *obj, const char *name); 1415 1416 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name, 1417 const char *type, 1418 ObjectPropertyAccessor *get, 1419 ObjectPropertyAccessor *set, 1420 ObjectPropertyRelease *release, 1421 void *opaque); 1422 1423 /** 1424 * object_property_set_default_bool: 1425 * @prop: the property to set 1426 * @value: the value to be written to the property 1427 * 1428 * Set the property default value. 1429 */ 1430 void object_property_set_default_bool(ObjectProperty *prop, bool value); 1431 1432 /** 1433 * object_property_set_default_str: 1434 * @prop: the property to set 1435 * @value: the value to be written to the property 1436 * 1437 * Set the property default value. 1438 */ 1439 void object_property_set_default_str(ObjectProperty *prop, const char *value); 1440 1441 /** 1442 * object_property_set_default_int: 1443 * @prop: the property to set 1444 * @value: the value to be written to the property 1445 * 1446 * Set the property default value. 1447 */ 1448 void object_property_set_default_int(ObjectProperty *prop, int64_t value); 1449 1450 /** 1451 * object_property_set_default_uint: 1452 * @prop: the property to set 1453 * @value: the value to be written to the property 1454 * 1455 * Set the property default value. 1456 */ 1457 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value); 1458 1459 /** 1460 * object_property_find: 1461 * @obj: the object 1462 * @name: the name of the property 1463 * @errp: returns an error if this function fails 1464 * 1465 * Look up a property for an object and return its #ObjectProperty if found. 1466 */ 1467 ObjectProperty *object_property_find(Object *obj, const char *name, 1468 Error **errp); 1469 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name, 1470 Error **errp); 1471 1472 typedef struct ObjectPropertyIterator { 1473 ObjectClass *nextclass; 1474 GHashTableIter iter; 1475 } ObjectPropertyIterator; 1476 1477 /** 1478 * object_property_iter_init: 1479 * @obj: the object 1480 * 1481 * Initializes an iterator for traversing all properties 1482 * registered against an object instance, its class and all parent classes. 1483 * 1484 * It is forbidden to modify the property list while iterating, 1485 * whether removing or adding properties. 1486 * 1487 * Typical usage pattern would be 1488 * 1489 * <example> 1490 * <title>Using object property iterators</title> 1491 * <programlisting> 1492 * ObjectProperty *prop; 1493 * ObjectPropertyIterator iter; 1494 * 1495 * object_property_iter_init(&iter, obj); 1496 * while ((prop = object_property_iter_next(&iter))) { 1497 * ... do something with prop ... 1498 * } 1499 * </programlisting> 1500 * </example> 1501 */ 1502 void object_property_iter_init(ObjectPropertyIterator *iter, 1503 Object *obj); 1504 1505 /** 1506 * object_class_property_iter_init: 1507 * @klass: the class 1508 * 1509 * Initializes an iterator for traversing all properties 1510 * registered against an object class and all parent classes. 1511 * 1512 * It is forbidden to modify the property list while iterating, 1513 * whether removing or adding properties. 1514 * 1515 * This can be used on abstract classes as it does not create a temporary 1516 * instance. 1517 */ 1518 void object_class_property_iter_init(ObjectPropertyIterator *iter, 1519 ObjectClass *klass); 1520 1521 /** 1522 * object_property_iter_next: 1523 * @iter: the iterator instance 1524 * 1525 * Return the next available property. If no further properties 1526 * are available, a %NULL value will be returned and the @iter 1527 * pointer should not be used again after this point without 1528 * re-initializing it. 1529 * 1530 * Returns: the next property, or %NULL when all properties 1531 * have been traversed. 1532 */ 1533 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter); 1534 1535 void object_unparent(Object *obj); 1536 1537 /** 1538 * object_property_get: 1539 * @obj: the object 1540 * @name: the name of the property 1541 * @v: the visitor that will receive the property value. This should be an 1542 * Output visitor and the data will be written with @name as the name. 1543 * @errp: returns an error if this function fails 1544 * 1545 * Reads a property from a object. 1546 * 1547 * Returns: %true on success, %false on failure. 1548 */ 1549 bool object_property_get(Object *obj, const char *name, Visitor *v, 1550 Error **errp); 1551 1552 /** 1553 * object_property_set_str: 1554 * @name: the name of the property 1555 * @value: the value to be written to the property 1556 * @errp: returns an error if this function fails 1557 * 1558 * Writes a string value to a property. 1559 * 1560 * Returns: %true on success, %false on failure. 1561 */ 1562 bool object_property_set_str(Object *obj, const char *name, 1563 const char *value, Error **errp); 1564 1565 /** 1566 * object_property_get_str: 1567 * @obj: the object 1568 * @name: the name of the property 1569 * @errp: returns an error if this function fails 1570 * 1571 * Returns: the value of the property, converted to a C string, or NULL if 1572 * an error occurs (including when the property value is not a string). 1573 * The caller should free the string. 1574 */ 1575 char *object_property_get_str(Object *obj, const char *name, 1576 Error **errp); 1577 1578 /** 1579 * object_property_set_link: 1580 * @name: the name of the property 1581 * @value: the value to be written to the property 1582 * @errp: returns an error if this function fails 1583 * 1584 * Writes an object's canonical path to a property. 1585 * 1586 * If the link property was created with 1587 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is 1588 * unreferenced, and a reference is added to the new target object. 1589 * 1590 * Returns: %true on success, %false on failure. 1591 */ 1592 bool object_property_set_link(Object *obj, const char *name, 1593 Object *value, Error **errp); 1594 1595 /** 1596 * object_property_get_link: 1597 * @obj: the object 1598 * @name: the name of the property 1599 * @errp: returns an error if this function fails 1600 * 1601 * Returns: the value of the property, resolved from a path to an Object, 1602 * or NULL if an error occurs (including when the property value is not a 1603 * string or not a valid object path). 1604 */ 1605 Object *object_property_get_link(Object *obj, const char *name, 1606 Error **errp); 1607 1608 /** 1609 * object_property_set_bool: 1610 * @name: the name of the property 1611 * @value: the value to be written to the property 1612 * @errp: returns an error if this function fails 1613 * 1614 * Writes a bool value to a property. 1615 * 1616 * Returns: %true on success, %false on failure. 1617 */ 1618 bool object_property_set_bool(Object *obj, const char *name, 1619 bool value, Error **errp); 1620 1621 /** 1622 * object_property_get_bool: 1623 * @obj: the object 1624 * @name: the name of the property 1625 * @errp: returns an error if this function fails 1626 * 1627 * Returns: the value of the property, converted to a boolean, or NULL if 1628 * an error occurs (including when the property value is not a bool). 1629 */ 1630 bool object_property_get_bool(Object *obj, const char *name, 1631 Error **errp); 1632 1633 /** 1634 * object_property_set_int: 1635 * @name: the name of the property 1636 * @value: the value to be written to the property 1637 * @errp: returns an error if this function fails 1638 * 1639 * Writes an integer value to a property. 1640 * 1641 * Returns: %true on success, %false on failure. 1642 */ 1643 bool object_property_set_int(Object *obj, const char *name, 1644 int64_t value, Error **errp); 1645 1646 /** 1647 * object_property_get_int: 1648 * @obj: the object 1649 * @name: the name of the property 1650 * @errp: returns an error if this function fails 1651 * 1652 * Returns: the value of the property, converted to an integer, or negative if 1653 * an error occurs (including when the property value is not an integer). 1654 */ 1655 int64_t object_property_get_int(Object *obj, const char *name, 1656 Error **errp); 1657 1658 /** 1659 * object_property_set_uint: 1660 * @name: the name of the property 1661 * @value: the value to be written to the property 1662 * @errp: returns an error if this function fails 1663 * 1664 * Writes an unsigned integer value to a property. 1665 * 1666 * Returns: %true on success, %false on failure. 1667 */ 1668 bool object_property_set_uint(Object *obj, const char *name, 1669 uint64_t value, Error **errp); 1670 1671 /** 1672 * object_property_get_uint: 1673 * @obj: the object 1674 * @name: the name of the property 1675 * @errp: returns an error if this function fails 1676 * 1677 * Returns: the value of the property, converted to an unsigned integer, or 0 1678 * an error occurs (including when the property value is not an integer). 1679 */ 1680 uint64_t object_property_get_uint(Object *obj, const char *name, 1681 Error **errp); 1682 1683 /** 1684 * object_property_get_enum: 1685 * @obj: the object 1686 * @name: the name of the property 1687 * @typename: the name of the enum data type 1688 * @errp: returns an error if this function fails 1689 * 1690 * Returns: the value of the property, converted to an integer, or 1691 * undefined if an error occurs (including when the property value is not 1692 * an enum). 1693 */ 1694 int object_property_get_enum(Object *obj, const char *name, 1695 const char *typename, Error **errp); 1696 1697 /** 1698 * object_property_set: 1699 * @obj: the object 1700 * @name: the name of the property 1701 * @v: the visitor that will be used to write the property value. This should 1702 * be an Input visitor and the data will be first read with @name as the 1703 * name and then written as the property value. 1704 * @errp: returns an error if this function fails 1705 * 1706 * Writes a property to a object. 1707 * 1708 * Returns: %true on success, %false on failure. 1709 */ 1710 bool object_property_set(Object *obj, const char *name, Visitor *v, 1711 Error **errp); 1712 1713 /** 1714 * object_property_parse: 1715 * @obj: the object 1716 * @name: the name of the property 1717 * @string: the string that will be used to parse the property value. 1718 * @errp: returns an error if this function fails 1719 * 1720 * Parses a string and writes the result into a property of an object. 1721 * 1722 * Returns: %true on success, %false on failure. 1723 */ 1724 bool object_property_parse(Object *obj, const char *name, 1725 const char *string, Error **errp); 1726 1727 /** 1728 * object_property_print: 1729 * @obj: the object 1730 * @name: the name of the property 1731 * @human: if true, print for human consumption 1732 * @errp: returns an error if this function fails 1733 * 1734 * Returns a string representation of the value of the property. The 1735 * caller shall free the string. 1736 */ 1737 char *object_property_print(Object *obj, const char *name, bool human, 1738 Error **errp); 1739 1740 /** 1741 * object_property_get_type: 1742 * @obj: the object 1743 * @name: the name of the property 1744 * @errp: returns an error if this function fails 1745 * 1746 * Returns: The type name of the property. 1747 */ 1748 const char *object_property_get_type(Object *obj, const char *name, 1749 Error **errp); 1750 1751 /** 1752 * object_get_root: 1753 * 1754 * Returns: the root object of the composition tree 1755 */ 1756 Object *object_get_root(void); 1757 1758 1759 /** 1760 * object_get_objects_root: 1761 * 1762 * Get the container object that holds user created 1763 * object instances. This is the object at path 1764 * "/objects" 1765 * 1766 * Returns: the user object container 1767 */ 1768 Object *object_get_objects_root(void); 1769 1770 /** 1771 * object_get_internal_root: 1772 * 1773 * Get the container object that holds internally used object 1774 * instances. Any object which is put into this container must not be 1775 * user visible, and it will not be exposed in the QOM tree. 1776 * 1777 * Returns: the internal object container 1778 */ 1779 Object *object_get_internal_root(void); 1780 1781 /** 1782 * object_get_canonical_path_component: 1783 * 1784 * Returns: The final component in the object's canonical path. The canonical 1785 * path is the path within the composition tree starting from the root. 1786 * %NULL if the object doesn't have a parent (and thus a canonical path). 1787 */ 1788 const char *object_get_canonical_path_component(const Object *obj); 1789 1790 /** 1791 * object_get_canonical_path: 1792 * 1793 * Returns: The canonical path for a object, newly allocated. This is 1794 * the path within the composition tree starting from the root. Use 1795 * g_free() to free it. 1796 */ 1797 char *object_get_canonical_path(const Object *obj); 1798 1799 /** 1800 * object_resolve_path: 1801 * @path: the path to resolve 1802 * @ambiguous: returns true if the path resolution failed because of an 1803 * ambiguous match 1804 * 1805 * There are two types of supported paths--absolute paths and partial paths. 1806 * 1807 * Absolute paths are derived from the root object and can follow child<> or 1808 * link<> properties. Since they can follow link<> properties, they can be 1809 * arbitrarily long. Absolute paths look like absolute filenames and are 1810 * prefixed with a leading slash. 1811 * 1812 * Partial paths look like relative filenames. They do not begin with a 1813 * prefix. The matching rules for partial paths are subtle but designed to make 1814 * specifying objects easy. At each level of the composition tree, the partial 1815 * path is matched as an absolute path. The first match is not returned. At 1816 * least two matches are searched for. A successful result is only returned if 1817 * only one match is found. If more than one match is found, a flag is 1818 * returned to indicate that the match was ambiguous. 1819 * 1820 * Returns: The matched object or NULL on path lookup failure. 1821 */ 1822 Object *object_resolve_path(const char *path, bool *ambiguous); 1823 1824 /** 1825 * object_resolve_path_type: 1826 * @path: the path to resolve 1827 * @typename: the type to look for. 1828 * @ambiguous: returns true if the path resolution failed because of an 1829 * ambiguous match 1830 * 1831 * This is similar to object_resolve_path. However, when looking for a 1832 * partial path only matches that implement the given type are considered. 1833 * This restricts the search and avoids spuriously flagging matches as 1834 * ambiguous. 1835 * 1836 * For both partial and absolute paths, the return value goes through 1837 * a dynamic cast to @typename. This is important if either the link, 1838 * or the typename itself are of interface types. 1839 * 1840 * Returns: The matched object or NULL on path lookup failure. 1841 */ 1842 Object *object_resolve_path_type(const char *path, const char *typename, 1843 bool *ambiguous); 1844 1845 /** 1846 * object_resolve_path_component: 1847 * @parent: the object in which to resolve the path 1848 * @part: the component to resolve. 1849 * 1850 * This is similar to object_resolve_path with an absolute path, but it 1851 * only resolves one element (@part) and takes the others from @parent. 1852 * 1853 * Returns: The resolved object or NULL on path lookup failure. 1854 */ 1855 Object *object_resolve_path_component(Object *parent, const char *part); 1856 1857 /** 1858 * object_property_try_add_child: 1859 * @obj: the object to add a property to 1860 * @name: the name of the property 1861 * @child: the child object 1862 * @errp: pointer to error object 1863 * 1864 * Child properties form the composition tree. All objects need to be a child 1865 * of another object. Objects can only be a child of one object. 1866 * 1867 * There is no way for a child to determine what its parent is. It is not 1868 * a bidirectional relationship. This is by design. 1869 * 1870 * The value of a child property as a C string will be the child object's 1871 * canonical path. It can be retrieved using object_property_get_str(). 1872 * The child object itself can be retrieved using object_property_get_link(). 1873 * 1874 * Returns: The newly added property on success, or %NULL on failure. 1875 */ 1876 ObjectProperty *object_property_try_add_child(Object *obj, const char *name, 1877 Object *child, Error **errp); 1878 1879 /** 1880 * object_property_add_child: 1881 * Same as object_property_try_add_child() with @errp hardcoded to 1882 * &error_abort 1883 */ 1884 ObjectProperty *object_property_add_child(Object *obj, const char *name, 1885 Object *child); 1886 1887 typedef enum { 1888 /* Unref the link pointer when the property is deleted */ 1889 OBJ_PROP_LINK_STRONG = 0x1, 1890 1891 /* private */ 1892 OBJ_PROP_LINK_DIRECT = 0x2, 1893 OBJ_PROP_LINK_CLASS = 0x4, 1894 } ObjectPropertyLinkFlags; 1895 1896 /** 1897 * object_property_allow_set_link: 1898 * 1899 * The default implementation of the object_property_add_link() check() 1900 * callback function. It allows the link property to be set and never returns 1901 * an error. 1902 */ 1903 void object_property_allow_set_link(const Object *, const char *, 1904 Object *, Error **); 1905 1906 /** 1907 * object_property_add_link: 1908 * @obj: the object to add a property to 1909 * @name: the name of the property 1910 * @type: the qobj type of the link 1911 * @targetp: a pointer to where the link object reference is stored 1912 * @check: callback to veto setting or NULL if the property is read-only 1913 * @flags: additional options for the link 1914 * 1915 * Links establish relationships between objects. Links are unidirectional 1916 * although two links can be combined to form a bidirectional relationship 1917 * between objects. 1918 * 1919 * Links form the graph in the object model. 1920 * 1921 * The <code>@check()</code> callback is invoked when 1922 * object_property_set_link() is called and can raise an error to prevent the 1923 * link being set. If <code>@check</code> is NULL, the property is read-only 1924 * and cannot be set. 1925 * 1926 * Ownership of the pointer that @child points to is transferred to the 1927 * link property. The reference count for <code>*@child</code> is 1928 * managed by the property from after the function returns till the 1929 * property is deleted with object_property_del(). If the 1930 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set, 1931 * the reference count is decremented when the property is deleted or 1932 * modified. 1933 * 1934 * Returns: The newly added property on success, or %NULL on failure. 1935 */ 1936 ObjectProperty *object_property_add_link(Object *obj, const char *name, 1937 const char *type, Object **targetp, 1938 void (*check)(const Object *obj, const char *name, 1939 Object *val, Error **errp), 1940 ObjectPropertyLinkFlags flags); 1941 1942 ObjectProperty *object_class_property_add_link(ObjectClass *oc, 1943 const char *name, 1944 const char *type, ptrdiff_t offset, 1945 void (*check)(const Object *obj, const char *name, 1946 Object *val, Error **errp), 1947 ObjectPropertyLinkFlags flags); 1948 1949 /** 1950 * object_property_add_str: 1951 * @obj: the object to add a property to 1952 * @name: the name of the property 1953 * @get: the getter or NULL if the property is write-only. This function must 1954 * return a string to be freed by g_free(). 1955 * @set: the setter or NULL if the property is read-only 1956 * 1957 * Add a string property using getters/setters. This function will add a 1958 * property of type 'string'. 1959 * 1960 * Returns: The newly added property on success, or %NULL on failure. 1961 */ 1962 ObjectProperty *object_property_add_str(Object *obj, const char *name, 1963 char *(*get)(Object *, Error **), 1964 void (*set)(Object *, const char *, Error **)); 1965 1966 ObjectProperty *object_class_property_add_str(ObjectClass *klass, 1967 const char *name, 1968 char *(*get)(Object *, Error **), 1969 void (*set)(Object *, const char *, 1970 Error **)); 1971 1972 /** 1973 * object_property_add_bool: 1974 * @obj: the object to add a property to 1975 * @name: the name of the property 1976 * @get: the getter or NULL if the property is write-only. 1977 * @set: the setter or NULL if the property is read-only 1978 * 1979 * Add a bool property using getters/setters. This function will add a 1980 * property of type 'bool'. 1981 * 1982 * Returns: The newly added property on success, or %NULL on failure. 1983 */ 1984 ObjectProperty *object_property_add_bool(Object *obj, const char *name, 1985 bool (*get)(Object *, Error **), 1986 void (*set)(Object *, bool, Error **)); 1987 1988 ObjectProperty *object_class_property_add_bool(ObjectClass *klass, 1989 const char *name, 1990 bool (*get)(Object *, Error **), 1991 void (*set)(Object *, bool, Error **)); 1992 1993 /** 1994 * object_property_add_enum: 1995 * @obj: the object to add a property to 1996 * @name: the name of the property 1997 * @typename: the name of the enum data type 1998 * @get: the getter or %NULL if the property is write-only. 1999 * @set: the setter or %NULL if the property is read-only 2000 * 2001 * Add an enum property using getters/setters. This function will add a 2002 * property of type '@typename'. 2003 * 2004 * Returns: The newly added property on success, or %NULL on failure. 2005 */ 2006 ObjectProperty *object_property_add_enum(Object *obj, const char *name, 2007 const char *typename, 2008 const QEnumLookup *lookup, 2009 int (*get)(Object *, Error **), 2010 void (*set)(Object *, int, Error **)); 2011 2012 ObjectProperty *object_class_property_add_enum(ObjectClass *klass, 2013 const char *name, 2014 const char *typename, 2015 const QEnumLookup *lookup, 2016 int (*get)(Object *, Error **), 2017 void (*set)(Object *, int, Error **)); 2018 2019 /** 2020 * object_property_add_tm: 2021 * @obj: the object to add a property to 2022 * @name: the name of the property 2023 * @get: the getter or NULL if the property is write-only. 2024 * 2025 * Add a read-only struct tm valued property using a getter function. 2026 * This function will add a property of type 'struct tm'. 2027 * 2028 * Returns: The newly added property on success, or %NULL on failure. 2029 */ 2030 ObjectProperty *object_property_add_tm(Object *obj, const char *name, 2031 void (*get)(Object *, struct tm *, Error **)); 2032 2033 ObjectProperty *object_class_property_add_tm(ObjectClass *klass, 2034 const char *name, 2035 void (*get)(Object *, struct tm *, Error **)); 2036 2037 typedef enum { 2038 /* Automatically add a getter to the property */ 2039 OBJ_PROP_FLAG_READ = 1 << 0, 2040 /* Automatically add a setter to the property */ 2041 OBJ_PROP_FLAG_WRITE = 1 << 1, 2042 /* Automatically add a getter and a setter to the property */ 2043 OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE), 2044 } ObjectPropertyFlags; 2045 2046 /** 2047 * object_property_add_uint8_ptr: 2048 * @obj: the object to add a property to 2049 * @name: the name of the property 2050 * @v: pointer to value 2051 * @flags: bitwise-or'd ObjectPropertyFlags 2052 * 2053 * Add an integer property in memory. This function will add a 2054 * property of type 'uint8'. 2055 * 2056 * Returns: The newly added property on success, or %NULL on failure. 2057 */ 2058 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name, 2059 const uint8_t *v, 2060 ObjectPropertyFlags flags); 2061 2062 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass, 2063 const char *name, 2064 const uint8_t *v, 2065 ObjectPropertyFlags flags); 2066 2067 /** 2068 * object_property_add_uint16_ptr: 2069 * @obj: the object to add a property to 2070 * @name: the name of the property 2071 * @v: pointer to value 2072 * @flags: bitwise-or'd ObjectPropertyFlags 2073 * 2074 * Add an integer property in memory. This function will add a 2075 * property of type 'uint16'. 2076 * 2077 * Returns: The newly added property on success, or %NULL on failure. 2078 */ 2079 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name, 2080 const uint16_t *v, 2081 ObjectPropertyFlags flags); 2082 2083 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass, 2084 const char *name, 2085 const uint16_t *v, 2086 ObjectPropertyFlags flags); 2087 2088 /** 2089 * object_property_add_uint32_ptr: 2090 * @obj: the object to add a property to 2091 * @name: the name of the property 2092 * @v: pointer to value 2093 * @flags: bitwise-or'd ObjectPropertyFlags 2094 * 2095 * Add an integer property in memory. This function will add a 2096 * property of type 'uint32'. 2097 * 2098 * Returns: The newly added property on success, or %NULL on failure. 2099 */ 2100 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name, 2101 const uint32_t *v, 2102 ObjectPropertyFlags flags); 2103 2104 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass, 2105 const char *name, 2106 const uint32_t *v, 2107 ObjectPropertyFlags flags); 2108 2109 /** 2110 * object_property_add_uint64_ptr: 2111 * @obj: the object to add a property to 2112 * @name: the name of the property 2113 * @v: pointer to value 2114 * @flags: bitwise-or'd ObjectPropertyFlags 2115 * 2116 * Add an integer property in memory. This function will add a 2117 * property of type 'uint64'. 2118 * 2119 * Returns: The newly added property on success, or %NULL on failure. 2120 */ 2121 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name, 2122 const uint64_t *v, 2123 ObjectPropertyFlags flags); 2124 2125 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass, 2126 const char *name, 2127 const uint64_t *v, 2128 ObjectPropertyFlags flags); 2129 2130 /** 2131 * object_property_add_alias: 2132 * @obj: the object to add a property to 2133 * @name: the name of the property 2134 * @target_obj: the object to forward property access to 2135 * @target_name: the name of the property on the forwarded object 2136 * 2137 * Add an alias for a property on an object. This function will add a property 2138 * of the same type as the forwarded property. 2139 * 2140 * The caller must ensure that <code>@target_obj</code> stays alive as long as 2141 * this property exists. In the case of a child object or an alias on the same 2142 * object this will be the case. For aliases to other objects the caller is 2143 * responsible for taking a reference. 2144 * 2145 * Returns: The newly added property on success, or %NULL on failure. 2146 */ 2147 ObjectProperty *object_property_add_alias(Object *obj, const char *name, 2148 Object *target_obj, const char *target_name); 2149 2150 /** 2151 * object_property_add_const_link: 2152 * @obj: the object to add a property to 2153 * @name: the name of the property 2154 * @target: the object to be referred by the link 2155 * 2156 * Add an unmodifiable link for a property on an object. This function will 2157 * add a property of type link<TYPE> where TYPE is the type of @target. 2158 * 2159 * The caller must ensure that @target stays alive as long as 2160 * this property exists. In the case @target is a child of @obj, 2161 * this will be the case. Otherwise, the caller is responsible for 2162 * taking a reference. 2163 * 2164 * Returns: The newly added property on success, or %NULL on failure. 2165 */ 2166 ObjectProperty *object_property_add_const_link(Object *obj, const char *name, 2167 Object *target); 2168 2169 /** 2170 * object_property_set_description: 2171 * @obj: the object owning the property 2172 * @name: the name of the property 2173 * @description: the description of the property on the object 2174 * 2175 * Set an object property's description. 2176 * 2177 * Returns: %true on success, %false on failure. 2178 */ 2179 void object_property_set_description(Object *obj, const char *name, 2180 const char *description); 2181 void object_class_property_set_description(ObjectClass *klass, const char *name, 2182 const char *description); 2183 2184 /** 2185 * object_child_foreach: 2186 * @obj: the object whose children will be navigated 2187 * @fn: the iterator function to be called 2188 * @opaque: an opaque value that will be passed to the iterator 2189 * 2190 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 2191 * non-zero. 2192 * 2193 * It is forbidden to add or remove children from @obj from the @fn 2194 * callback. 2195 * 2196 * Returns: The last value returned by @fn, or 0 if there is no child. 2197 */ 2198 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 2199 void *opaque); 2200 2201 /** 2202 * object_child_foreach_recursive: 2203 * @obj: the object whose children will be navigated 2204 * @fn: the iterator function to be called 2205 * @opaque: an opaque value that will be passed to the iterator 2206 * 2207 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 2208 * non-zero. Calls recursively, all child nodes of @obj will also be passed 2209 * all the way down to the leaf nodes of the tree. Depth first ordering. 2210 * 2211 * It is forbidden to add or remove children from @obj (or its 2212 * child nodes) from the @fn callback. 2213 * 2214 * Returns: The last value returned by @fn, or 0 if there is no child. 2215 */ 2216 int object_child_foreach_recursive(Object *obj, 2217 int (*fn)(Object *child, void *opaque), 2218 void *opaque); 2219 /** 2220 * container_get: 2221 * @root: root of the #path, e.g., object_get_root() 2222 * @path: path to the container 2223 * 2224 * Return a container object whose path is @path. Create more containers 2225 * along the path if necessary. 2226 * 2227 * Returns: the container object. 2228 */ 2229 Object *container_get(Object *root, const char *path); 2230 2231 /** 2232 * object_type_get_instance_size: 2233 * @typename: Name of the Type whose instance_size is required 2234 * 2235 * Returns the instance_size of the given @typename. 2236 */ 2237 size_t object_type_get_instance_size(const char *typename); 2238 2239 /** 2240 * object_property_help: 2241 * @name: the name of the property 2242 * @type: the type of the property 2243 * @defval: the default value 2244 * @description: description of the property 2245 * 2246 * Returns: a user-friendly formatted string describing the property 2247 * for help purposes. 2248 */ 2249 char *object_property_help(const char *name, const char *type, 2250 QObject *defval, const char *description); 2251 2252 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref) 2253 2254 #endif 2255