1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include <glib.h> 18 #include <stdint.h> 19 #include <stdbool.h> 20 #include "qemu/queue.h" 21 #include "qapi/error.h" 22 23 struct Visitor; 24 25 struct TypeImpl; 26 typedef struct TypeImpl *Type; 27 28 typedef struct ObjectClass ObjectClass; 29 typedef struct Object Object; 30 31 typedef struct TypeInfo TypeInfo; 32 33 typedef struct InterfaceClass InterfaceClass; 34 typedef struct InterfaceInfo InterfaceInfo; 35 36 #define TYPE_OBJECT "object" 37 38 /** 39 * SECTION:object.h 40 * @title:Base Object Type System 41 * @short_description: interfaces for creating new types and objects 42 * 43 * The QEMU Object Model provides a framework for registering user creatable 44 * types and instantiating objects from those types. QOM provides the following 45 * features: 46 * 47 * - System for dynamically registering types 48 * - Support for single-inheritance of types 49 * - Multiple inheritance of stateless interfaces 50 * 51 * <example> 52 * <title>Creating a minimal type</title> 53 * <programlisting> 54 * #include "qdev.h" 55 * 56 * #define TYPE_MY_DEVICE "my-device" 57 * 58 * // No new virtual functions: we can reuse the typedef for the 59 * // superclass. 60 * typedef DeviceClass MyDeviceClass; 61 * typedef struct MyDevice 62 * { 63 * DeviceState parent; 64 * 65 * int reg0, reg1, reg2; 66 * } MyDevice; 67 * 68 * static const TypeInfo my_device_info = { 69 * .name = TYPE_MY_DEVICE, 70 * .parent = TYPE_DEVICE, 71 * .instance_size = sizeof(MyDevice), 72 * }; 73 * 74 * static void my_device_register_types(void) 75 * { 76 * type_register_static(&my_device_info); 77 * } 78 * 79 * type_init(my_device_register_types) 80 * </programlisting> 81 * </example> 82 * 83 * In the above example, we create a simple type that is described by #TypeInfo. 84 * #TypeInfo describes information about the type including what it inherits 85 * from, the instance and class size, and constructor/destructor hooks. 86 * 87 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 88 * are instantiated dynamically but there is only ever one instance for any 89 * given type. The #ObjectClass typically holds a table of function pointers 90 * for the virtual methods implemented by this type. 91 * 92 * Using object_new(), a new #Object derivative will be instantiated. You can 93 * cast an #Object to a subclass (or base-class) type using 94 * object_dynamic_cast(). You typically want to define macro wrappers around 95 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 96 * specific type: 97 * 98 * <example> 99 * <title>Typecasting macros</title> 100 * <programlisting> 101 * #define MY_DEVICE_GET_CLASS(obj) \ 102 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 103 * #define MY_DEVICE_CLASS(klass) \ 104 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 105 * #define MY_DEVICE(obj) \ 106 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 107 * </programlisting> 108 * </example> 109 * 110 * # Class Initialization # 111 * 112 * Before an object is initialized, the class for the object must be 113 * initialized. There is only one class object for all instance objects 114 * that is created lazily. 115 * 116 * Classes are initialized by first initializing any parent classes (if 117 * necessary). After the parent class object has initialized, it will be 118 * copied into the current class object and any additional storage in the 119 * class object is zero filled. 120 * 121 * The effect of this is that classes automatically inherit any virtual 122 * function pointers that the parent class has already initialized. All 123 * other fields will be zero filled. 124 * 125 * Once all of the parent classes have been initialized, #TypeInfo::class_init 126 * is called to let the class being instantiated provide default initialize for 127 * its virtual functions. Here is how the above example might be modified 128 * to introduce an overridden virtual function: 129 * 130 * <example> 131 * <title>Overriding a virtual function</title> 132 * <programlisting> 133 * #include "qdev.h" 134 * 135 * void my_device_class_init(ObjectClass *klass, void *class_data) 136 * { 137 * DeviceClass *dc = DEVICE_CLASS(klass); 138 * dc->reset = my_device_reset; 139 * } 140 * 141 * static const TypeInfo my_device_info = { 142 * .name = TYPE_MY_DEVICE, 143 * .parent = TYPE_DEVICE, 144 * .instance_size = sizeof(MyDevice), 145 * .class_init = my_device_class_init, 146 * }; 147 * </programlisting> 148 * </example> 149 * 150 * Introducing new virtual methods requires a class to define its own 151 * struct and to add a .class_size member to the #TypeInfo. Each method 152 * will also have a wrapper function to call it easily: 153 * 154 * <example> 155 * <title>Defining an abstract class</title> 156 * <programlisting> 157 * #include "qdev.h" 158 * 159 * typedef struct MyDeviceClass 160 * { 161 * DeviceClass parent; 162 * 163 * void (*frobnicate) (MyDevice *obj); 164 * } MyDeviceClass; 165 * 166 * static const TypeInfo my_device_info = { 167 * .name = TYPE_MY_DEVICE, 168 * .parent = TYPE_DEVICE, 169 * .instance_size = sizeof(MyDevice), 170 * .abstract = true, // or set a default in my_device_class_init 171 * .class_size = sizeof(MyDeviceClass), 172 * }; 173 * 174 * void my_device_frobnicate(MyDevice *obj) 175 * { 176 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 177 * 178 * klass->frobnicate(obj); 179 * } 180 * </programlisting> 181 * </example> 182 * 183 * # Interfaces # 184 * 185 * Interfaces allow a limited form of multiple inheritance. Instances are 186 * similar to normal types except for the fact that are only defined by 187 * their classes and never carry any state. You can dynamically cast an object 188 * to one of its #Interface types and vice versa. 189 * 190 * # Methods # 191 * 192 * A <emphasis>method</emphasis> is a function within the namespace scope of 193 * a class. It usually operates on the object instance by passing it as a 194 * strongly-typed first argument. 195 * If it does not operate on an object instance, it is dubbed 196 * <emphasis>class method</emphasis>. 197 * 198 * Methods cannot be overloaded. That is, the #ObjectClass and method name 199 * uniquely identity the function to be called; the signature does not vary 200 * except for trailing varargs. 201 * 202 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 203 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 204 * via OBJECT_GET_CLASS() accessing the overridden function. 205 * The original function is not automatically invoked. It is the responsibility 206 * of the overriding class to determine whether and when to invoke the method 207 * being overridden. 208 * 209 * To invoke the method being overridden, the preferred solution is to store 210 * the original value in the overriding class before overriding the method. 211 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 212 * respectively; this frees the overriding class from hardcoding its parent 213 * class, which someone might choose to change at some point. 214 * 215 * <example> 216 * <title>Overriding a virtual method</title> 217 * <programlisting> 218 * typedef struct MyState MyState; 219 * 220 * typedef void (*MyDoSomething)(MyState *obj); 221 * 222 * typedef struct MyClass { 223 * ObjectClass parent_class; 224 * 225 * MyDoSomething do_something; 226 * } MyClass; 227 * 228 * static void my_do_something(MyState *obj) 229 * { 230 * // do something 231 * } 232 * 233 * static void my_class_init(ObjectClass *oc, void *data) 234 * { 235 * MyClass *mc = MY_CLASS(oc); 236 * 237 * mc->do_something = my_do_something; 238 * } 239 * 240 * static const TypeInfo my_type_info = { 241 * .name = TYPE_MY, 242 * .parent = TYPE_OBJECT, 243 * .instance_size = sizeof(MyState), 244 * .class_size = sizeof(MyClass), 245 * .class_init = my_class_init, 246 * }; 247 * 248 * typedef struct DerivedClass { 249 * MyClass parent_class; 250 * 251 * MyDoSomething parent_do_something; 252 * } DerivedClass; 253 * 254 * static void derived_do_something(MyState *obj) 255 * { 256 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 257 * 258 * // do something here 259 * dc->parent_do_something(obj); 260 * // do something else here 261 * } 262 * 263 * static void derived_class_init(ObjectClass *oc, void *data) 264 * { 265 * MyClass *mc = MY_CLASS(oc); 266 * DerivedClass *dc = DERIVED_CLASS(oc); 267 * 268 * dc->parent_do_something = mc->do_something; 269 * mc->do_something = derived_do_something; 270 * } 271 * 272 * static const TypeInfo derived_type_info = { 273 * .name = TYPE_DERIVED, 274 * .parent = TYPE_MY, 275 * .class_size = sizeof(DerivedClass), 276 * .class_init = derived_class_init, 277 * }; 278 * </programlisting> 279 * </example> 280 * 281 * Alternatively, object_class_by_name() can be used to obtain the class and 282 * its non-overridden methods for a specific type. This would correspond to 283 * |[ MyClass::method(...) ]| in C++. 284 * 285 * The first example of such a QOM method was #CPUClass.reset, 286 * another example is #DeviceClass.realize. 287 */ 288 289 290 /** 291 * ObjectPropertyAccessor: 292 * @obj: the object that owns the property 293 * @v: the visitor that contains the property data 294 * @opaque: the object property opaque 295 * @name: the name of the property 296 * @errp: a pointer to an Error that is filled if getting/setting fails. 297 * 298 * Called when trying to get/set a property. 299 */ 300 typedef void (ObjectPropertyAccessor)(Object *obj, 301 struct Visitor *v, 302 void *opaque, 303 const char *name, 304 Error **errp); 305 306 /** 307 * ObjectPropertyResolve: 308 * @obj: the object that owns the property 309 * @opaque: the opaque registered with the property 310 * @part: the name of the property 311 * 312 * Resolves the #Object corresponding to property @part. 313 * 314 * The returned object can also be used as a starting point 315 * to resolve a relative path starting with "@part". 316 * 317 * Returns: If @path is the path that led to @obj, the function 318 * returns the #Object corresponding to "@path/@part". 319 * If "@path/@part" is not a valid object path, it returns #NULL. 320 */ 321 typedef Object *(ObjectPropertyResolve)(Object *obj, 322 void *opaque, 323 const char *part); 324 325 /** 326 * ObjectPropertyRelease: 327 * @obj: the object that owns the property 328 * @name: the name of the property 329 * @opaque: the opaque registered with the property 330 * 331 * Called when a property is removed from a object. 332 */ 333 typedef void (ObjectPropertyRelease)(Object *obj, 334 const char *name, 335 void *opaque); 336 337 typedef struct ObjectProperty 338 { 339 gchar *name; 340 gchar *type; 341 gchar *description; 342 ObjectPropertyAccessor *get; 343 ObjectPropertyAccessor *set; 344 ObjectPropertyResolve *resolve; 345 ObjectPropertyRelease *release; 346 void *opaque; 347 } ObjectProperty; 348 349 /** 350 * ObjectUnparent: 351 * @obj: the object that is being removed from the composition tree 352 * 353 * Called when an object is being removed from the QOM composition tree. 354 * The function should remove any backlinks from children objects to @obj. 355 */ 356 typedef void (ObjectUnparent)(Object *obj); 357 358 /** 359 * ObjectFree: 360 * @obj: the object being freed 361 * 362 * Called when an object's last reference is removed. 363 */ 364 typedef void (ObjectFree)(void *obj); 365 366 #define OBJECT_CLASS_CAST_CACHE 4 367 368 /** 369 * ObjectClass: 370 * 371 * The base for all classes. The only thing that #ObjectClass contains is an 372 * integer type handle. 373 */ 374 struct ObjectClass 375 { 376 /*< private >*/ 377 Type type; 378 GSList *interfaces; 379 380 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE]; 381 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE]; 382 383 ObjectUnparent *unparent; 384 }; 385 386 /** 387 * Object: 388 * 389 * The base for all objects. The first member of this object is a pointer to 390 * a #ObjectClass. Since C guarantees that the first member of a structure 391 * always begins at byte 0 of that structure, as long as any sub-object places 392 * its parent as the first member, we can cast directly to a #Object. 393 * 394 * As a result, #Object contains a reference to the objects type as its 395 * first member. This allows identification of the real type of the object at 396 * run time. 397 * 398 * #Object also contains a list of #Interfaces that this object 399 * implements. 400 */ 401 struct Object 402 { 403 /*< private >*/ 404 ObjectClass *class; 405 ObjectFree *free; 406 GHashTable *properties; 407 uint32_t ref; 408 Object *parent; 409 }; 410 411 /** 412 * TypeInfo: 413 * @name: The name of the type. 414 * @parent: The name of the parent type. 415 * @instance_size: The size of the object (derivative of #Object). If 416 * @instance_size is 0, then the size of the object will be the size of the 417 * parent object. 418 * @instance_init: This function is called to initialize an object. The parent 419 * class will have already been initialized so the type is only responsible 420 * for initializing its own members. 421 * @instance_post_init: This function is called to finish initialization of 422 * an object, after all @instance_init functions were called. 423 * @instance_finalize: This function is called during object destruction. This 424 * is called before the parent @instance_finalize function has been called. 425 * An object should only free the members that are unique to its type in this 426 * function. 427 * @abstract: If this field is true, then the class is considered abstract and 428 * cannot be directly instantiated. 429 * @class_size: The size of the class object (derivative of #ObjectClass) 430 * for this object. If @class_size is 0, then the size of the class will be 431 * assumed to be the size of the parent class. This allows a type to avoid 432 * implementing an explicit class type if they are not adding additional 433 * virtual functions. 434 * @class_init: This function is called after all parent class initialization 435 * has occurred to allow a class to set its default virtual method pointers. 436 * This is also the function to use to override virtual methods from a parent 437 * class. 438 * @class_base_init: This function is called for all base classes after all 439 * parent class initialization has occurred, but before the class itself 440 * is initialized. This is the function to use to undo the effects of 441 * memcpy from the parent class to the descendents. 442 * @class_finalize: This function is called during class destruction and is 443 * meant to release and dynamic parameters allocated by @class_init. 444 * @class_data: Data to pass to the @class_init, @class_base_init and 445 * @class_finalize functions. This can be useful when building dynamic 446 * classes. 447 * @interfaces: The list of interfaces associated with this type. This 448 * should point to a static array that's terminated with a zero filled 449 * element. 450 */ 451 struct TypeInfo 452 { 453 const char *name; 454 const char *parent; 455 456 size_t instance_size; 457 void (*instance_init)(Object *obj); 458 void (*instance_post_init)(Object *obj); 459 void (*instance_finalize)(Object *obj); 460 461 bool abstract; 462 size_t class_size; 463 464 void (*class_init)(ObjectClass *klass, void *data); 465 void (*class_base_init)(ObjectClass *klass, void *data); 466 void (*class_finalize)(ObjectClass *klass, void *data); 467 void *class_data; 468 469 InterfaceInfo *interfaces; 470 }; 471 472 /** 473 * OBJECT: 474 * @obj: A derivative of #Object 475 * 476 * Converts an object to a #Object. Since all objects are #Objects, 477 * this function will always succeed. 478 */ 479 #define OBJECT(obj) \ 480 ((Object *)(obj)) 481 482 /** 483 * OBJECT_CLASS: 484 * @class: A derivative of #ObjectClass. 485 * 486 * Converts a class to an #ObjectClass. Since all objects are #Objects, 487 * this function will always succeed. 488 */ 489 #define OBJECT_CLASS(class) \ 490 ((ObjectClass *)(class)) 491 492 /** 493 * OBJECT_CHECK: 494 * @type: The C type to use for the return value. 495 * @obj: A derivative of @type to cast. 496 * @name: The QOM typename of @type 497 * 498 * A type safe version of @object_dynamic_cast_assert. Typically each class 499 * will define a macro based on this type to perform type safe dynamic_casts to 500 * this object type. 501 * 502 * If an invalid object is passed to this function, a run time assert will be 503 * generated. 504 */ 505 #define OBJECT_CHECK(type, obj, name) \ 506 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 507 __FILE__, __LINE__, __func__)) 508 509 /** 510 * OBJECT_CLASS_CHECK: 511 * @class_type: The C type to use for the return value. 512 * @class: A derivative class of @class_type to cast. 513 * @name: the QOM typename of @class_type. 514 * 515 * A type safe version of @object_class_dynamic_cast_assert. This macro is 516 * typically wrapped by each type to perform type safe casts of a class to a 517 * specific class type. 518 */ 519 #define OBJECT_CLASS_CHECK(class_type, class, name) \ 520 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \ 521 __FILE__, __LINE__, __func__)) 522 523 /** 524 * OBJECT_GET_CLASS: 525 * @class: The C type to use for the return value. 526 * @obj: The object to obtain the class for. 527 * @name: The QOM typename of @obj. 528 * 529 * This function will return a specific class for a given object. Its generally 530 * used by each type to provide a type safe macro to get a specific class type 531 * from an object. 532 */ 533 #define OBJECT_GET_CLASS(class, obj, name) \ 534 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 535 536 /** 537 * InterfaceInfo: 538 * @type: The name of the interface. 539 * 540 * The information associated with an interface. 541 */ 542 struct InterfaceInfo { 543 const char *type; 544 }; 545 546 /** 547 * InterfaceClass: 548 * @parent_class: the base class 549 * 550 * The class for all interfaces. Subclasses of this class should only add 551 * virtual methods. 552 */ 553 struct InterfaceClass 554 { 555 ObjectClass parent_class; 556 /*< private >*/ 557 ObjectClass *concrete_class; 558 Type interface_type; 559 }; 560 561 #define TYPE_INTERFACE "interface" 562 563 /** 564 * INTERFACE_CLASS: 565 * @klass: class to cast from 566 * Returns: An #InterfaceClass or raise an error if cast is invalid 567 */ 568 #define INTERFACE_CLASS(klass) \ 569 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 570 571 /** 572 * INTERFACE_CHECK: 573 * @interface: the type to return 574 * @obj: the object to convert to an interface 575 * @name: the interface type name 576 * 577 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 578 */ 579 #define INTERFACE_CHECK(interface, obj, name) \ 580 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 581 __FILE__, __LINE__, __func__)) 582 583 /** 584 * object_new: 585 * @typename: The name of the type of the object to instantiate. 586 * 587 * This function will initialize a new object using heap allocated memory. 588 * The returned object has a reference count of 1, and will be freed when 589 * the last reference is dropped. 590 * 591 * Returns: The newly allocated and instantiated object. 592 */ 593 Object *object_new(const char *typename); 594 595 /** 596 * object_new_with_type: 597 * @type: The type of the object to instantiate. 598 * 599 * This function will initialize a new object using heap allocated memory. 600 * The returned object has a reference count of 1, and will be freed when 601 * the last reference is dropped. 602 * 603 * Returns: The newly allocated and instantiated object. 604 */ 605 Object *object_new_with_type(Type type); 606 607 /** 608 * object_new_with_props: 609 * @typename: The name of the type of the object to instantiate. 610 * @parent: the parent object 611 * @id: The unique ID of the object 612 * @errp: pointer to error object 613 * @...: list of property names and values 614 * 615 * This function will initialize a new object using heap allocated memory. 616 * The returned object has a reference count of 1, and will be freed when 617 * the last reference is dropped. 618 * 619 * The @id parameter will be used when registering the object as a 620 * child of @parent in the composition tree. 621 * 622 * The variadic parameters are a list of pairs of (propname, propvalue) 623 * strings. The propname of %NULL indicates the end of the property 624 * list. If the object implements the user creatable interface, the 625 * object will be marked complete once all the properties have been 626 * processed. 627 * 628 * <example> 629 * <title>Creating an object with properties</title> 630 * <programlisting> 631 * Error *err = NULL; 632 * Object *obj; 633 * 634 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE, 635 * object_get_objects_root(), 636 * "hostmem0", 637 * &err, 638 * "share", "yes", 639 * "mem-path", "/dev/shm/somefile", 640 * "prealloc", "yes", 641 * "size", "1048576", 642 * NULL); 643 * 644 * if (!obj) { 645 * g_printerr("Cannot create memory backend: %s\n", 646 * error_get_pretty(err)); 647 * } 648 * </programlisting> 649 * </example> 650 * 651 * The returned object will have one stable reference maintained 652 * for as long as it is present in the object hierarchy. 653 * 654 * Returns: The newly allocated, instantiated & initialized object. 655 */ 656 Object *object_new_with_props(const char *typename, 657 Object *parent, 658 const char *id, 659 Error **errp, 660 ...) QEMU_SENTINEL; 661 662 /** 663 * object_new_with_propv: 664 * @typename: The name of the type of the object to instantiate. 665 * @parent: the parent object 666 * @id: The unique ID of the object 667 * @errp: pointer to error object 668 * @vargs: list of property names and values 669 * 670 * See object_new_with_props() for documentation. 671 */ 672 Object *object_new_with_propv(const char *typename, 673 Object *parent, 674 const char *id, 675 Error **errp, 676 va_list vargs); 677 678 /** 679 * object_set_props: 680 * @obj: the object instance to set properties on 681 * @errp: pointer to error object 682 * @...: list of property names and values 683 * 684 * This function will set a list of properties on an existing object 685 * instance. 686 * 687 * The variadic parameters are a list of pairs of (propname, propvalue) 688 * strings. The propname of %NULL indicates the end of the property 689 * list. 690 * 691 * <example> 692 * <title>Update an object's properties</title> 693 * <programlisting> 694 * Error *err = NULL; 695 * Object *obj = ...get / create object...; 696 * 697 * obj = object_set_props(obj, 698 * &err, 699 * "share", "yes", 700 * "mem-path", "/dev/shm/somefile", 701 * "prealloc", "yes", 702 * "size", "1048576", 703 * NULL); 704 * 705 * if (!obj) { 706 * g_printerr("Cannot set properties: %s\n", 707 * error_get_pretty(err)); 708 * } 709 * </programlisting> 710 * </example> 711 * 712 * The returned object will have one stable reference maintained 713 * for as long as it is present in the object hierarchy. 714 * 715 * Returns: -1 on error, 0 on success 716 */ 717 int object_set_props(Object *obj, 718 Error **errp, 719 ...) QEMU_SENTINEL; 720 721 /** 722 * object_set_propv: 723 * @obj: the object instance to set properties on 724 * @errp: pointer to error object 725 * @vargs: list of property names and values 726 * 727 * See object_set_props() for documentation. 728 * 729 * Returns: -1 on error, 0 on success 730 */ 731 int object_set_propv(Object *obj, 732 Error **errp, 733 va_list vargs); 734 735 /** 736 * object_initialize_with_type: 737 * @data: A pointer to the memory to be used for the object. 738 * @size: The maximum size available at @data for the object. 739 * @type: The type of the object to instantiate. 740 * 741 * This function will initialize an object. The memory for the object should 742 * have already been allocated. The returned object has a reference count of 1, 743 * and will be finalized when the last reference is dropped. 744 */ 745 void object_initialize_with_type(void *data, size_t size, Type type); 746 747 /** 748 * object_initialize: 749 * @obj: A pointer to the memory to be used for the object. 750 * @size: The maximum size available at @obj for the object. 751 * @typename: The name of the type of the object to instantiate. 752 * 753 * This function will initialize an object. The memory for the object should 754 * have already been allocated. The returned object has a reference count of 1, 755 * and will be finalized when the last reference is dropped. 756 */ 757 void object_initialize(void *obj, size_t size, const char *typename); 758 759 /** 760 * object_dynamic_cast: 761 * @obj: The object to cast. 762 * @typename: The @typename to cast to. 763 * 764 * This function will determine if @obj is-a @typename. @obj can refer to an 765 * object or an interface associated with an object. 766 * 767 * Returns: This function returns @obj on success or #NULL on failure. 768 */ 769 Object *object_dynamic_cast(Object *obj, const char *typename); 770 771 /** 772 * object_dynamic_cast_assert: 773 * 774 * See object_dynamic_cast() for a description of the parameters of this 775 * function. The only difference in behavior is that this function asserts 776 * instead of returning #NULL on failure if QOM cast debugging is enabled. 777 * This function is not meant to be called directly, but only through 778 * the wrapper macro OBJECT_CHECK. 779 */ 780 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 781 const char *file, int line, const char *func); 782 783 /** 784 * object_get_class: 785 * @obj: A derivative of #Object 786 * 787 * Returns: The #ObjectClass of the type associated with @obj. 788 */ 789 ObjectClass *object_get_class(Object *obj); 790 791 /** 792 * object_get_typename: 793 * @obj: A derivative of #Object. 794 * 795 * Returns: The QOM typename of @obj. 796 */ 797 const char *object_get_typename(Object *obj); 798 799 /** 800 * type_register_static: 801 * @info: The #TypeInfo of the new type. 802 * 803 * @info and all of the strings it points to should exist for the life time 804 * that the type is registered. 805 * 806 * Returns: 0 on failure, the new #Type on success. 807 */ 808 Type type_register_static(const TypeInfo *info); 809 810 /** 811 * type_register: 812 * @info: The #TypeInfo of the new type 813 * 814 * Unlike type_register_static(), this call does not require @info or its 815 * string members to continue to exist after the call returns. 816 * 817 * Returns: 0 on failure, the new #Type on success. 818 */ 819 Type type_register(const TypeInfo *info); 820 821 /** 822 * object_class_dynamic_cast_assert: 823 * @klass: The #ObjectClass to attempt to cast. 824 * @typename: The QOM typename of the class to cast to. 825 * 826 * See object_class_dynamic_cast() for a description of the parameters 827 * of this function. The only difference in behavior is that this function 828 * asserts instead of returning #NULL on failure if QOM cast debugging is 829 * enabled. This function is not meant to be called directly, but only through 830 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK. 831 */ 832 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 833 const char *typename, 834 const char *file, int line, 835 const char *func); 836 837 /** 838 * object_class_dynamic_cast: 839 * @klass: The #ObjectClass to attempt to cast. 840 * @typename: The QOM typename of the class to cast to. 841 * 842 * Returns: If @typename is a class, this function returns @klass if 843 * @typename is a subtype of @klass, else returns #NULL. 844 * 845 * If @typename is an interface, this function returns the interface 846 * definition for @klass if @klass implements it unambiguously; #NULL 847 * is returned if @klass does not implement the interface or if multiple 848 * classes or interfaces on the hierarchy leading to @klass implement 849 * it. (FIXME: perhaps this can be detected at type definition time?) 850 */ 851 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 852 const char *typename); 853 854 /** 855 * object_class_get_parent: 856 * @klass: The class to obtain the parent for. 857 * 858 * Returns: The parent for @klass or %NULL if none. 859 */ 860 ObjectClass *object_class_get_parent(ObjectClass *klass); 861 862 /** 863 * object_class_get_name: 864 * @klass: The class to obtain the QOM typename for. 865 * 866 * Returns: The QOM typename for @klass. 867 */ 868 const char *object_class_get_name(ObjectClass *klass); 869 870 /** 871 * object_class_is_abstract: 872 * @klass: The class to obtain the abstractness for. 873 * 874 * Returns: %true if @klass is abstract, %false otherwise. 875 */ 876 bool object_class_is_abstract(ObjectClass *klass); 877 878 /** 879 * object_class_by_name: 880 * @typename: The QOM typename to obtain the class for. 881 * 882 * Returns: The class for @typename or %NULL if not found. 883 */ 884 ObjectClass *object_class_by_name(const char *typename); 885 886 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 887 const char *implements_type, bool include_abstract, 888 void *opaque); 889 890 /** 891 * object_class_get_list: 892 * @implements_type: The type to filter for, including its derivatives. 893 * @include_abstract: Whether to include abstract classes. 894 * 895 * Returns: A singly-linked list of the classes in reverse hashtable order. 896 */ 897 GSList *object_class_get_list(const char *implements_type, 898 bool include_abstract); 899 900 /** 901 * object_ref: 902 * @obj: the object 903 * 904 * Increase the reference count of a object. A object cannot be freed as long 905 * as its reference count is greater than zero. 906 */ 907 void object_ref(Object *obj); 908 909 /** 910 * qdef_unref: 911 * @obj: the object 912 * 913 * Decrease the reference count of a object. A object cannot be freed as long 914 * as its reference count is greater than zero. 915 */ 916 void object_unref(Object *obj); 917 918 /** 919 * object_property_add: 920 * @obj: the object to add a property to 921 * @name: the name of the property. This can contain any character except for 922 * a forward slash. In general, you should use hyphens '-' instead of 923 * underscores '_' when naming properties. 924 * @type: the type name of the property. This namespace is pretty loosely 925 * defined. Sub namespaces are constructed by using a prefix and then 926 * to angle brackets. For instance, the type 'virtio-net-pci' in the 927 * 'link' namespace would be 'link<virtio-net-pci>'. 928 * @get: The getter to be called to read a property. If this is NULL, then 929 * the property cannot be read. 930 * @set: the setter to be called to write a property. If this is NULL, 931 * then the property cannot be written. 932 * @release: called when the property is removed from the object. This is 933 * meant to allow a property to free its opaque upon object 934 * destruction. This may be NULL. 935 * @opaque: an opaque pointer to pass to the callbacks for the property 936 * @errp: returns an error if this function fails 937 * 938 * Returns: The #ObjectProperty; this can be used to set the @resolve 939 * callback for child and link properties. 940 */ 941 ObjectProperty *object_property_add(Object *obj, const char *name, 942 const char *type, 943 ObjectPropertyAccessor *get, 944 ObjectPropertyAccessor *set, 945 ObjectPropertyRelease *release, 946 void *opaque, Error **errp); 947 948 void object_property_del(Object *obj, const char *name, Error **errp); 949 950 /** 951 * object_property_find: 952 * @obj: the object 953 * @name: the name of the property 954 * @errp: returns an error if this function fails 955 * 956 * Look up a property for an object and return its #ObjectProperty if found. 957 */ 958 ObjectProperty *object_property_find(Object *obj, const char *name, 959 Error **errp); 960 961 typedef struct ObjectPropertyIterator ObjectPropertyIterator; 962 963 /** 964 * object_property_iter_init: 965 * @obj: the object 966 * 967 * Initializes an iterator for traversing all properties 968 * registered against an object instance. 969 * 970 * It is forbidden to modify the property list while iterating, 971 * whether removing or adding properties. 972 * 973 * Typical usage pattern would be 974 * 975 * <example> 976 * <title>Using object property iterators</title> 977 * <programlisting> 978 * ObjectProperty *prop; 979 * ObjectPropertyIterator *iter; 980 * 981 * iter = object_property_iter_init(obj); 982 * while ((prop = object_property_iter_next(iter))) { 983 * ... do something with prop ... 984 * } 985 * object_property_iter_free(iter); 986 * </programlisting> 987 * </example> 988 * 989 * Returns: the new iterator 990 */ 991 ObjectPropertyIterator *object_property_iter_init(Object *obj); 992 993 /** 994 * object_property_iter_free: 995 * @iter: the iterator instance 996 * 997 * Releases any resources associated with the iterator. 998 */ 999 void object_property_iter_free(ObjectPropertyIterator *iter); 1000 1001 /** 1002 * object_property_iter_next: 1003 * @iter: the iterator instance 1004 * 1005 * Returns: the next property, or %NULL when all properties 1006 * have been traversed. 1007 */ 1008 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter); 1009 1010 void object_unparent(Object *obj); 1011 1012 /** 1013 * object_property_get: 1014 * @obj: the object 1015 * @v: the visitor that will receive the property value. This should be an 1016 * Output visitor and the data will be written with @name as the name. 1017 * @name: the name of the property 1018 * @errp: returns an error if this function fails 1019 * 1020 * Reads a property from a object. 1021 */ 1022 void object_property_get(Object *obj, struct Visitor *v, const char *name, 1023 Error **errp); 1024 1025 /** 1026 * object_property_set_str: 1027 * @value: the value to be written to the property 1028 * @name: the name of the property 1029 * @errp: returns an error if this function fails 1030 * 1031 * Writes a string value to a property. 1032 */ 1033 void object_property_set_str(Object *obj, const char *value, 1034 const char *name, Error **errp); 1035 1036 /** 1037 * object_property_get_str: 1038 * @obj: the object 1039 * @name: the name of the property 1040 * @errp: returns an error if this function fails 1041 * 1042 * Returns: the value of the property, converted to a C string, or NULL if 1043 * an error occurs (including when the property value is not a string). 1044 * The caller should free the string. 1045 */ 1046 char *object_property_get_str(Object *obj, const char *name, 1047 Error **errp); 1048 1049 /** 1050 * object_property_set_link: 1051 * @value: the value to be written to the property 1052 * @name: the name of the property 1053 * @errp: returns an error if this function fails 1054 * 1055 * Writes an object's canonical path to a property. 1056 */ 1057 void object_property_set_link(Object *obj, Object *value, 1058 const char *name, Error **errp); 1059 1060 /** 1061 * object_property_get_link: 1062 * @obj: the object 1063 * @name: the name of the property 1064 * @errp: returns an error if this function fails 1065 * 1066 * Returns: the value of the property, resolved from a path to an Object, 1067 * or NULL if an error occurs (including when the property value is not a 1068 * string or not a valid object path). 1069 */ 1070 Object *object_property_get_link(Object *obj, const char *name, 1071 Error **errp); 1072 1073 /** 1074 * object_property_set_bool: 1075 * @value: the value to be written to the property 1076 * @name: the name of the property 1077 * @errp: returns an error if this function fails 1078 * 1079 * Writes a bool value to a property. 1080 */ 1081 void object_property_set_bool(Object *obj, bool value, 1082 const char *name, Error **errp); 1083 1084 /** 1085 * object_property_get_bool: 1086 * @obj: the object 1087 * @name: the name of the property 1088 * @errp: returns an error if this function fails 1089 * 1090 * Returns: the value of the property, converted to a boolean, or NULL if 1091 * an error occurs (including when the property value is not a bool). 1092 */ 1093 bool object_property_get_bool(Object *obj, const char *name, 1094 Error **errp); 1095 1096 /** 1097 * object_property_set_int: 1098 * @value: the value to be written to the property 1099 * @name: the name of the property 1100 * @errp: returns an error if this function fails 1101 * 1102 * Writes an integer value to a property. 1103 */ 1104 void object_property_set_int(Object *obj, int64_t value, 1105 const char *name, Error **errp); 1106 1107 /** 1108 * object_property_get_int: 1109 * @obj: the object 1110 * @name: the name of the property 1111 * @errp: returns an error if this function fails 1112 * 1113 * Returns: the value of the property, converted to an integer, or NULL if 1114 * an error occurs (including when the property value is not an integer). 1115 */ 1116 int64_t object_property_get_int(Object *obj, const char *name, 1117 Error **errp); 1118 1119 /** 1120 * object_property_get_enum: 1121 * @obj: the object 1122 * @name: the name of the property 1123 * @typename: the name of the enum data type 1124 * @errp: returns an error if this function fails 1125 * 1126 * Returns: the value of the property, converted to an integer, or 1127 * undefined if an error occurs (including when the property value is not 1128 * an enum). 1129 */ 1130 int object_property_get_enum(Object *obj, const char *name, 1131 const char *typename, Error **errp); 1132 1133 /** 1134 * object_property_get_uint16List: 1135 * @obj: the object 1136 * @name: the name of the property 1137 * @list: the returned int list 1138 * @errp: returns an error if this function fails 1139 * 1140 * Returns: the value of the property, converted to integers, or 1141 * undefined if an error occurs (including when the property value is not 1142 * an list of integers). 1143 */ 1144 void object_property_get_uint16List(Object *obj, const char *name, 1145 uint16List **list, Error **errp); 1146 1147 /** 1148 * object_property_set: 1149 * @obj: the object 1150 * @v: the visitor that will be used to write the property value. This should 1151 * be an Input visitor and the data will be first read with @name as the 1152 * name and then written as the property value. 1153 * @name: the name of the property 1154 * @errp: returns an error if this function fails 1155 * 1156 * Writes a property to a object. 1157 */ 1158 void object_property_set(Object *obj, struct Visitor *v, const char *name, 1159 Error **errp); 1160 1161 /** 1162 * object_property_parse: 1163 * @obj: the object 1164 * @string: the string that will be used to parse the property value. 1165 * @name: the name of the property 1166 * @errp: returns an error if this function fails 1167 * 1168 * Parses a string and writes the result into a property of an object. 1169 */ 1170 void object_property_parse(Object *obj, const char *string, 1171 const char *name, Error **errp); 1172 1173 /** 1174 * object_property_print: 1175 * @obj: the object 1176 * @name: the name of the property 1177 * @human: if true, print for human consumption 1178 * @errp: returns an error if this function fails 1179 * 1180 * Returns a string representation of the value of the property. The 1181 * caller shall free the string. 1182 */ 1183 char *object_property_print(Object *obj, const char *name, bool human, 1184 Error **errp); 1185 1186 /** 1187 * object_property_get_type: 1188 * @obj: the object 1189 * @name: the name of the property 1190 * @errp: returns an error if this function fails 1191 * 1192 * Returns: The type name of the property. 1193 */ 1194 const char *object_property_get_type(Object *obj, const char *name, 1195 Error **errp); 1196 1197 /** 1198 * object_get_root: 1199 * 1200 * Returns: the root object of the composition tree 1201 */ 1202 Object *object_get_root(void); 1203 1204 1205 /** 1206 * object_get_objects_root: 1207 * 1208 * Get the container object that holds user created 1209 * object instances. This is the object at path 1210 * "/objects" 1211 * 1212 * Returns: the user object container 1213 */ 1214 Object *object_get_objects_root(void); 1215 1216 /** 1217 * object_get_canonical_path_component: 1218 * 1219 * Returns: The final component in the object's canonical path. The canonical 1220 * path is the path within the composition tree starting from the root. 1221 */ 1222 gchar *object_get_canonical_path_component(Object *obj); 1223 1224 /** 1225 * object_get_canonical_path: 1226 * 1227 * Returns: The canonical path for a object. This is the path within the 1228 * composition tree starting from the root. 1229 */ 1230 gchar *object_get_canonical_path(Object *obj); 1231 1232 /** 1233 * object_resolve_path: 1234 * @path: the path to resolve 1235 * @ambiguous: returns true if the path resolution failed because of an 1236 * ambiguous match 1237 * 1238 * There are two types of supported paths--absolute paths and partial paths. 1239 * 1240 * Absolute paths are derived from the root object and can follow child<> or 1241 * link<> properties. Since they can follow link<> properties, they can be 1242 * arbitrarily long. Absolute paths look like absolute filenames and are 1243 * prefixed with a leading slash. 1244 * 1245 * Partial paths look like relative filenames. They do not begin with a 1246 * prefix. The matching rules for partial paths are subtle but designed to make 1247 * specifying objects easy. At each level of the composition tree, the partial 1248 * path is matched as an absolute path. The first match is not returned. At 1249 * least two matches are searched for. A successful result is only returned if 1250 * only one match is found. If more than one match is found, a flag is 1251 * returned to indicate that the match was ambiguous. 1252 * 1253 * Returns: The matched object or NULL on path lookup failure. 1254 */ 1255 Object *object_resolve_path(const char *path, bool *ambiguous); 1256 1257 /** 1258 * object_resolve_path_type: 1259 * @path: the path to resolve 1260 * @typename: the type to look for. 1261 * @ambiguous: returns true if the path resolution failed because of an 1262 * ambiguous match 1263 * 1264 * This is similar to object_resolve_path. However, when looking for a 1265 * partial path only matches that implement the given type are considered. 1266 * This restricts the search and avoids spuriously flagging matches as 1267 * ambiguous. 1268 * 1269 * For both partial and absolute paths, the return value goes through 1270 * a dynamic cast to @typename. This is important if either the link, 1271 * or the typename itself are of interface types. 1272 * 1273 * Returns: The matched object or NULL on path lookup failure. 1274 */ 1275 Object *object_resolve_path_type(const char *path, const char *typename, 1276 bool *ambiguous); 1277 1278 /** 1279 * object_resolve_path_component: 1280 * @parent: the object in which to resolve the path 1281 * @part: the component to resolve. 1282 * 1283 * This is similar to object_resolve_path with an absolute path, but it 1284 * only resolves one element (@part) and takes the others from @parent. 1285 * 1286 * Returns: The resolved object or NULL on path lookup failure. 1287 */ 1288 Object *object_resolve_path_component(Object *parent, const gchar *part); 1289 1290 /** 1291 * object_property_add_child: 1292 * @obj: the object to add a property to 1293 * @name: the name of the property 1294 * @child: the child object 1295 * @errp: if an error occurs, a pointer to an area to store the area 1296 * 1297 * Child properties form the composition tree. All objects need to be a child 1298 * of another object. Objects can only be a child of one object. 1299 * 1300 * There is no way for a child to determine what its parent is. It is not 1301 * a bidirectional relationship. This is by design. 1302 * 1303 * The value of a child property as a C string will be the child object's 1304 * canonical path. It can be retrieved using object_property_get_str(). 1305 * The child object itself can be retrieved using object_property_get_link(). 1306 */ 1307 void object_property_add_child(Object *obj, const char *name, 1308 Object *child, Error **errp); 1309 1310 typedef enum { 1311 /* Unref the link pointer when the property is deleted */ 1312 OBJ_PROP_LINK_UNREF_ON_RELEASE = 0x1, 1313 } ObjectPropertyLinkFlags; 1314 1315 /** 1316 * object_property_allow_set_link: 1317 * 1318 * The default implementation of the object_property_add_link() check() 1319 * callback function. It allows the link property to be set and never returns 1320 * an error. 1321 */ 1322 void object_property_allow_set_link(Object *, const char *, 1323 Object *, Error **); 1324 1325 /** 1326 * object_property_add_link: 1327 * @obj: the object to add a property to 1328 * @name: the name of the property 1329 * @type: the qobj type of the link 1330 * @child: a pointer to where the link object reference is stored 1331 * @check: callback to veto setting or NULL if the property is read-only 1332 * @flags: additional options for the link 1333 * @errp: if an error occurs, a pointer to an area to store the area 1334 * 1335 * Links establish relationships between objects. Links are unidirectional 1336 * although two links can be combined to form a bidirectional relationship 1337 * between objects. 1338 * 1339 * Links form the graph in the object model. 1340 * 1341 * The <code>@check()</code> callback is invoked when 1342 * object_property_set_link() is called and can raise an error to prevent the 1343 * link being set. If <code>@check</code> is NULL, the property is read-only 1344 * and cannot be set. 1345 * 1346 * Ownership of the pointer that @child points to is transferred to the 1347 * link property. The reference count for <code>*@child</code> is 1348 * managed by the property from after the function returns till the 1349 * property is deleted with object_property_del(). If the 1350 * <code>@flags</code> <code>OBJ_PROP_LINK_UNREF_ON_RELEASE</code> bit is set, 1351 * the reference count is decremented when the property is deleted. 1352 */ 1353 void object_property_add_link(Object *obj, const char *name, 1354 const char *type, Object **child, 1355 void (*check)(Object *obj, const char *name, 1356 Object *val, Error **errp), 1357 ObjectPropertyLinkFlags flags, 1358 Error **errp); 1359 1360 /** 1361 * object_property_add_str: 1362 * @obj: the object to add a property to 1363 * @name: the name of the property 1364 * @get: the getter or NULL if the property is write-only. This function must 1365 * return a string to be freed by g_free(). 1366 * @set: the setter or NULL if the property is read-only 1367 * @errp: if an error occurs, a pointer to an area to store the error 1368 * 1369 * Add a string property using getters/setters. This function will add a 1370 * property of type 'string'. 1371 */ 1372 void object_property_add_str(Object *obj, const char *name, 1373 char *(*get)(Object *, Error **), 1374 void (*set)(Object *, const char *, Error **), 1375 Error **errp); 1376 1377 /** 1378 * object_property_add_bool: 1379 * @obj: the object to add a property to 1380 * @name: the name of the property 1381 * @get: the getter or NULL if the property is write-only. 1382 * @set: the setter or NULL if the property is read-only 1383 * @errp: if an error occurs, a pointer to an area to store the error 1384 * 1385 * Add a bool property using getters/setters. This function will add a 1386 * property of type 'bool'. 1387 */ 1388 void object_property_add_bool(Object *obj, const char *name, 1389 bool (*get)(Object *, Error **), 1390 void (*set)(Object *, bool, Error **), 1391 Error **errp); 1392 1393 /** 1394 * object_property_add_enum: 1395 * @obj: the object to add a property to 1396 * @name: the name of the property 1397 * @typename: the name of the enum data type 1398 * @get: the getter or %NULL if the property is write-only. 1399 * @set: the setter or %NULL if the property is read-only 1400 * @errp: if an error occurs, a pointer to an area to store the error 1401 * 1402 * Add an enum property using getters/setters. This function will add a 1403 * property of type '@typename'. 1404 */ 1405 void object_property_add_enum(Object *obj, const char *name, 1406 const char *typename, 1407 const char * const *strings, 1408 int (*get)(Object *, Error **), 1409 void (*set)(Object *, int, Error **), 1410 Error **errp); 1411 1412 /** 1413 * object_property_add_tm: 1414 * @obj: the object to add a property to 1415 * @name: the name of the property 1416 * @get: the getter or NULL if the property is write-only. 1417 * @errp: if an error occurs, a pointer to an area to store the error 1418 * 1419 * Add a read-only struct tm valued property using a getter function. 1420 * This function will add a property of type 'struct tm'. 1421 */ 1422 void object_property_add_tm(Object *obj, const char *name, 1423 void (*get)(Object *, struct tm *, Error **), 1424 Error **errp); 1425 1426 /** 1427 * object_property_add_uint8_ptr: 1428 * @obj: the object to add a property to 1429 * @name: the name of the property 1430 * @v: pointer to value 1431 * @errp: if an error occurs, a pointer to an area to store the error 1432 * 1433 * Add an integer property in memory. This function will add a 1434 * property of type 'uint8'. 1435 */ 1436 void object_property_add_uint8_ptr(Object *obj, const char *name, 1437 const uint8_t *v, Error **errp); 1438 1439 /** 1440 * object_property_add_uint16_ptr: 1441 * @obj: the object to add a property to 1442 * @name: the name of the property 1443 * @v: pointer to value 1444 * @errp: if an error occurs, a pointer to an area to store the error 1445 * 1446 * Add an integer property in memory. This function will add a 1447 * property of type 'uint16'. 1448 */ 1449 void object_property_add_uint16_ptr(Object *obj, const char *name, 1450 const uint16_t *v, Error **errp); 1451 1452 /** 1453 * object_property_add_uint32_ptr: 1454 * @obj: the object to add a property to 1455 * @name: the name of the property 1456 * @v: pointer to value 1457 * @errp: if an error occurs, a pointer to an area to store the error 1458 * 1459 * Add an integer property in memory. This function will add a 1460 * property of type 'uint32'. 1461 */ 1462 void object_property_add_uint32_ptr(Object *obj, const char *name, 1463 const uint32_t *v, Error **errp); 1464 1465 /** 1466 * object_property_add_uint64_ptr: 1467 * @obj: the object to add a property to 1468 * @name: the name of the property 1469 * @v: pointer to value 1470 * @errp: if an error occurs, a pointer to an area to store the error 1471 * 1472 * Add an integer property in memory. This function will add a 1473 * property of type 'uint64'. 1474 */ 1475 void object_property_add_uint64_ptr(Object *obj, const char *name, 1476 const uint64_t *v, Error **Errp); 1477 1478 /** 1479 * object_property_add_alias: 1480 * @obj: the object to add a property to 1481 * @name: the name of the property 1482 * @target_obj: the object to forward property access to 1483 * @target_name: the name of the property on the forwarded object 1484 * @errp: if an error occurs, a pointer to an area to store the error 1485 * 1486 * Add an alias for a property on an object. This function will add a property 1487 * of the same type as the forwarded property. 1488 * 1489 * The caller must ensure that <code>@target_obj</code> stays alive as long as 1490 * this property exists. In the case of a child object or an alias on the same 1491 * object this will be the case. For aliases to other objects the caller is 1492 * responsible for taking a reference. 1493 */ 1494 void object_property_add_alias(Object *obj, const char *name, 1495 Object *target_obj, const char *target_name, 1496 Error **errp); 1497 1498 /** 1499 * object_property_add_const_link: 1500 * @obj: the object to add a property to 1501 * @name: the name of the property 1502 * @target: the object to be referred by the link 1503 * @errp: if an error occurs, a pointer to an area to store the error 1504 * 1505 * Add an unmodifiable link for a property on an object. This function will 1506 * add a property of type link<TYPE> where TYPE is the type of @target. 1507 * 1508 * The caller must ensure that @target stays alive as long as 1509 * this property exists. In the case @target is a child of @obj, 1510 * this will be the case. Otherwise, the caller is responsible for 1511 * taking a reference. 1512 */ 1513 void object_property_add_const_link(Object *obj, const char *name, 1514 Object *target, Error **errp); 1515 1516 /** 1517 * object_property_set_description: 1518 * @obj: the object owning the property 1519 * @name: the name of the property 1520 * @description: the description of the property on the object 1521 * @errp: if an error occurs, a pointer to an area to store the error 1522 * 1523 * Set an object property's description. 1524 * 1525 */ 1526 void object_property_set_description(Object *obj, const char *name, 1527 const char *description, Error **errp); 1528 1529 /** 1530 * object_child_foreach: 1531 * @obj: the object whose children will be navigated 1532 * @fn: the iterator function to be called 1533 * @opaque: an opaque value that will be passed to the iterator 1534 * 1535 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1536 * non-zero. 1537 * 1538 * It is forbidden to add or remove children from @obj from the @fn 1539 * callback. 1540 * 1541 * Returns: The last value returned by @fn, or 0 if there is no child. 1542 */ 1543 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 1544 void *opaque); 1545 1546 /** 1547 * object_child_foreach_recursive: 1548 * @obj: the object whose children will be navigated 1549 * @fn: the iterator function to be called 1550 * @opaque: an opaque value that will be passed to the iterator 1551 * 1552 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1553 * non-zero. Calls recursively, all child nodes of @obj will also be passed 1554 * all the way down to the leaf nodes of the tree. Depth first ordering. 1555 * 1556 * It is forbidden to add or remove children from @obj (or its 1557 * child nodes) from the @fn callback. 1558 * 1559 * Returns: The last value returned by @fn, or 0 if there is no child. 1560 */ 1561 int object_child_foreach_recursive(Object *obj, 1562 int (*fn)(Object *child, void *opaque), 1563 void *opaque); 1564 /** 1565 * container_get: 1566 * @root: root of the #path, e.g., object_get_root() 1567 * @path: path to the container 1568 * 1569 * Return a container object whose path is @path. Create more containers 1570 * along the path if necessary. 1571 * 1572 * Returns: the container object. 1573 */ 1574 Object *container_get(Object *root, const char *path); 1575 1576 1577 #endif 1578