1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include "qapi-types.h" 18 #include "qemu/queue.h" 19 20 struct TypeImpl; 21 typedef struct TypeImpl *Type; 22 23 typedef struct ObjectClass ObjectClass; 24 typedef struct Object Object; 25 26 typedef struct TypeInfo TypeInfo; 27 28 typedef struct InterfaceClass InterfaceClass; 29 typedef struct InterfaceInfo InterfaceInfo; 30 31 #define TYPE_OBJECT "object" 32 33 /** 34 * SECTION:object.h 35 * @title:Base Object Type System 36 * @short_description: interfaces for creating new types and objects 37 * 38 * The QEMU Object Model provides a framework for registering user creatable 39 * types and instantiating objects from those types. QOM provides the following 40 * features: 41 * 42 * - System for dynamically registering types 43 * - Support for single-inheritance of types 44 * - Multiple inheritance of stateless interfaces 45 * 46 * <example> 47 * <title>Creating a minimal type</title> 48 * <programlisting> 49 * #include "qdev.h" 50 * 51 * #define TYPE_MY_DEVICE "my-device" 52 * 53 * // No new virtual functions: we can reuse the typedef for the 54 * // superclass. 55 * typedef DeviceClass MyDeviceClass; 56 * typedef struct MyDevice 57 * { 58 * DeviceState parent; 59 * 60 * int reg0, reg1, reg2; 61 * } MyDevice; 62 * 63 * static const TypeInfo my_device_info = { 64 * .name = TYPE_MY_DEVICE, 65 * .parent = TYPE_DEVICE, 66 * .instance_size = sizeof(MyDevice), 67 * }; 68 * 69 * static void my_device_register_types(void) 70 * { 71 * type_register_static(&my_device_info); 72 * } 73 * 74 * type_init(my_device_register_types) 75 * </programlisting> 76 * </example> 77 * 78 * In the above example, we create a simple type that is described by #TypeInfo. 79 * #TypeInfo describes information about the type including what it inherits 80 * from, the instance and class size, and constructor/destructor hooks. 81 * 82 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 83 * are instantiated dynamically but there is only ever one instance for any 84 * given type. The #ObjectClass typically holds a table of function pointers 85 * for the virtual methods implemented by this type. 86 * 87 * Using object_new(), a new #Object derivative will be instantiated. You can 88 * cast an #Object to a subclass (or base-class) type using 89 * object_dynamic_cast(). You typically want to define macro wrappers around 90 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 91 * specific type: 92 * 93 * <example> 94 * <title>Typecasting macros</title> 95 * <programlisting> 96 * #define MY_DEVICE_GET_CLASS(obj) \ 97 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 98 * #define MY_DEVICE_CLASS(klass) \ 99 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 100 * #define MY_DEVICE(obj) \ 101 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 102 * </programlisting> 103 * </example> 104 * 105 * # Class Initialization # 106 * 107 * Before an object is initialized, the class for the object must be 108 * initialized. There is only one class object for all instance objects 109 * that is created lazily. 110 * 111 * Classes are initialized by first initializing any parent classes (if 112 * necessary). After the parent class object has initialized, it will be 113 * copied into the current class object and any additional storage in the 114 * class object is zero filled. 115 * 116 * The effect of this is that classes automatically inherit any virtual 117 * function pointers that the parent class has already initialized. All 118 * other fields will be zero filled. 119 * 120 * Once all of the parent classes have been initialized, #TypeInfo::class_init 121 * is called to let the class being instantiated provide default initialize for 122 * its virtual functions. Here is how the above example might be modified 123 * to introduce an overridden virtual function: 124 * 125 * <example> 126 * <title>Overriding a virtual function</title> 127 * <programlisting> 128 * #include "qdev.h" 129 * 130 * void my_device_class_init(ObjectClass *klass, void *class_data) 131 * { 132 * DeviceClass *dc = DEVICE_CLASS(klass); 133 * dc->reset = my_device_reset; 134 * } 135 * 136 * static const TypeInfo my_device_info = { 137 * .name = TYPE_MY_DEVICE, 138 * .parent = TYPE_DEVICE, 139 * .instance_size = sizeof(MyDevice), 140 * .class_init = my_device_class_init, 141 * }; 142 * </programlisting> 143 * </example> 144 * 145 * Introducing new virtual methods requires a class to define its own 146 * struct and to add a .class_size member to the #TypeInfo. Each method 147 * will also have a wrapper function to call it easily: 148 * 149 * <example> 150 * <title>Defining an abstract class</title> 151 * <programlisting> 152 * #include "qdev.h" 153 * 154 * typedef struct MyDeviceClass 155 * { 156 * DeviceClass parent; 157 * 158 * void (*frobnicate) (MyDevice *obj); 159 * } MyDeviceClass; 160 * 161 * static const TypeInfo my_device_info = { 162 * .name = TYPE_MY_DEVICE, 163 * .parent = TYPE_DEVICE, 164 * .instance_size = sizeof(MyDevice), 165 * .abstract = true, // or set a default in my_device_class_init 166 * .class_size = sizeof(MyDeviceClass), 167 * }; 168 * 169 * void my_device_frobnicate(MyDevice *obj) 170 * { 171 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 172 * 173 * klass->frobnicate(obj); 174 * } 175 * </programlisting> 176 * </example> 177 * 178 * # Interfaces # 179 * 180 * Interfaces allow a limited form of multiple inheritance. Instances are 181 * similar to normal types except for the fact that are only defined by 182 * their classes and never carry any state. You can dynamically cast an object 183 * to one of its #Interface types and vice versa. 184 * 185 * # Methods # 186 * 187 * A <emphasis>method</emphasis> is a function within the namespace scope of 188 * a class. It usually operates on the object instance by passing it as a 189 * strongly-typed first argument. 190 * If it does not operate on an object instance, it is dubbed 191 * <emphasis>class method</emphasis>. 192 * 193 * Methods cannot be overloaded. That is, the #ObjectClass and method name 194 * uniquely identity the function to be called; the signature does not vary 195 * except for trailing varargs. 196 * 197 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 198 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 199 * via OBJECT_GET_CLASS() accessing the overridden function. 200 * The original function is not automatically invoked. It is the responsibility 201 * of the overriding class to determine whether and when to invoke the method 202 * being overridden. 203 * 204 * To invoke the method being overridden, the preferred solution is to store 205 * the original value in the overriding class before overriding the method. 206 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 207 * respectively; this frees the overriding class from hardcoding its parent 208 * class, which someone might choose to change at some point. 209 * 210 * <example> 211 * <title>Overriding a virtual method</title> 212 * <programlisting> 213 * typedef struct MyState MyState; 214 * 215 * typedef void (*MyDoSomething)(MyState *obj); 216 * 217 * typedef struct MyClass { 218 * ObjectClass parent_class; 219 * 220 * MyDoSomething do_something; 221 * } MyClass; 222 * 223 * static void my_do_something(MyState *obj) 224 * { 225 * // do something 226 * } 227 * 228 * static void my_class_init(ObjectClass *oc, void *data) 229 * { 230 * MyClass *mc = MY_CLASS(oc); 231 * 232 * mc->do_something = my_do_something; 233 * } 234 * 235 * static const TypeInfo my_type_info = { 236 * .name = TYPE_MY, 237 * .parent = TYPE_OBJECT, 238 * .instance_size = sizeof(MyState), 239 * .class_size = sizeof(MyClass), 240 * .class_init = my_class_init, 241 * }; 242 * 243 * typedef struct DerivedClass { 244 * MyClass parent_class; 245 * 246 * MyDoSomething parent_do_something; 247 * } DerivedClass; 248 * 249 * static void derived_do_something(MyState *obj) 250 * { 251 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 252 * 253 * // do something here 254 * dc->parent_do_something(obj); 255 * // do something else here 256 * } 257 * 258 * static void derived_class_init(ObjectClass *oc, void *data) 259 * { 260 * MyClass *mc = MY_CLASS(oc); 261 * DerivedClass *dc = DERIVED_CLASS(oc); 262 * 263 * dc->parent_do_something = mc->do_something; 264 * mc->do_something = derived_do_something; 265 * } 266 * 267 * static const TypeInfo derived_type_info = { 268 * .name = TYPE_DERIVED, 269 * .parent = TYPE_MY, 270 * .class_size = sizeof(DerivedClass), 271 * .class_init = derived_class_init, 272 * }; 273 * </programlisting> 274 * </example> 275 * 276 * Alternatively, object_class_by_name() can be used to obtain the class and 277 * its non-overridden methods for a specific type. This would correspond to 278 * |[ MyClass::method(...) ]| in C++. 279 * 280 * The first example of such a QOM method was #CPUClass.reset, 281 * another example is #DeviceClass.realize. 282 */ 283 284 285 /** 286 * ObjectPropertyAccessor: 287 * @obj: the object that owns the property 288 * @v: the visitor that contains the property data 289 * @name: the name of the property 290 * @opaque: the object property opaque 291 * @errp: a pointer to an Error that is filled if getting/setting fails. 292 * 293 * Called when trying to get/set a property. 294 */ 295 typedef void (ObjectPropertyAccessor)(Object *obj, 296 Visitor *v, 297 const char *name, 298 void *opaque, 299 Error **errp); 300 301 /** 302 * ObjectPropertyResolve: 303 * @obj: the object that owns the property 304 * @opaque: the opaque registered with the property 305 * @part: the name of the property 306 * 307 * Resolves the #Object corresponding to property @part. 308 * 309 * The returned object can also be used as a starting point 310 * to resolve a relative path starting with "@part". 311 * 312 * Returns: If @path is the path that led to @obj, the function 313 * returns the #Object corresponding to "@path/@part". 314 * If "@path/@part" is not a valid object path, it returns #NULL. 315 */ 316 typedef Object *(ObjectPropertyResolve)(Object *obj, 317 void *opaque, 318 const char *part); 319 320 /** 321 * ObjectPropertyRelease: 322 * @obj: the object that owns the property 323 * @name: the name of the property 324 * @opaque: the opaque registered with the property 325 * 326 * Called when a property is removed from a object. 327 */ 328 typedef void (ObjectPropertyRelease)(Object *obj, 329 const char *name, 330 void *opaque); 331 332 typedef struct ObjectProperty 333 { 334 gchar *name; 335 gchar *type; 336 gchar *description; 337 ObjectPropertyAccessor *get; 338 ObjectPropertyAccessor *set; 339 ObjectPropertyResolve *resolve; 340 ObjectPropertyRelease *release; 341 void *opaque; 342 } ObjectProperty; 343 344 /** 345 * ObjectUnparent: 346 * @obj: the object that is being removed from the composition tree 347 * 348 * Called when an object is being removed from the QOM composition tree. 349 * The function should remove any backlinks from children objects to @obj. 350 */ 351 typedef void (ObjectUnparent)(Object *obj); 352 353 /** 354 * ObjectFree: 355 * @obj: the object being freed 356 * 357 * Called when an object's last reference is removed. 358 */ 359 typedef void (ObjectFree)(void *obj); 360 361 #define OBJECT_CLASS_CAST_CACHE 4 362 363 /** 364 * ObjectClass: 365 * 366 * The base for all classes. The only thing that #ObjectClass contains is an 367 * integer type handle. 368 */ 369 struct ObjectClass 370 { 371 /*< private >*/ 372 Type type; 373 GSList *interfaces; 374 375 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE]; 376 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE]; 377 378 ObjectUnparent *unparent; 379 380 GHashTable *properties; 381 }; 382 383 /** 384 * Object: 385 * 386 * The base for all objects. The first member of this object is a pointer to 387 * a #ObjectClass. Since C guarantees that the first member of a structure 388 * always begins at byte 0 of that structure, as long as any sub-object places 389 * its parent as the first member, we can cast directly to a #Object. 390 * 391 * As a result, #Object contains a reference to the objects type as its 392 * first member. This allows identification of the real type of the object at 393 * run time. 394 */ 395 struct Object 396 { 397 /*< private >*/ 398 ObjectClass *class; 399 ObjectFree *free; 400 GHashTable *properties; 401 uint32_t ref; 402 Object *parent; 403 }; 404 405 /** 406 * TypeInfo: 407 * @name: The name of the type. 408 * @parent: The name of the parent type. 409 * @instance_size: The size of the object (derivative of #Object). If 410 * @instance_size is 0, then the size of the object will be the size of the 411 * parent object. 412 * @instance_init: This function is called to initialize an object. The parent 413 * class will have already been initialized so the type is only responsible 414 * for initializing its own members. 415 * @instance_post_init: This function is called to finish initialization of 416 * an object, after all @instance_init functions were called. 417 * @instance_finalize: This function is called during object destruction. This 418 * is called before the parent @instance_finalize function has been called. 419 * An object should only free the members that are unique to its type in this 420 * function. 421 * @abstract: If this field is true, then the class is considered abstract and 422 * cannot be directly instantiated. 423 * @class_size: The size of the class object (derivative of #ObjectClass) 424 * for this object. If @class_size is 0, then the size of the class will be 425 * assumed to be the size of the parent class. This allows a type to avoid 426 * implementing an explicit class type if they are not adding additional 427 * virtual functions. 428 * @class_init: This function is called after all parent class initialization 429 * has occurred to allow a class to set its default virtual method pointers. 430 * This is also the function to use to override virtual methods from a parent 431 * class. 432 * @class_base_init: This function is called for all base classes after all 433 * parent class initialization has occurred, but before the class itself 434 * is initialized. This is the function to use to undo the effects of 435 * memcpy from the parent class to the descendants. 436 * @class_finalize: This function is called during class destruction and is 437 * meant to release and dynamic parameters allocated by @class_init. 438 * @class_data: Data to pass to the @class_init, @class_base_init and 439 * @class_finalize functions. This can be useful when building dynamic 440 * classes. 441 * @interfaces: The list of interfaces associated with this type. This 442 * should point to a static array that's terminated with a zero filled 443 * element. 444 */ 445 struct TypeInfo 446 { 447 const char *name; 448 const char *parent; 449 450 size_t instance_size; 451 void (*instance_init)(Object *obj); 452 void (*instance_post_init)(Object *obj); 453 void (*instance_finalize)(Object *obj); 454 455 bool abstract; 456 size_t class_size; 457 458 void (*class_init)(ObjectClass *klass, void *data); 459 void (*class_base_init)(ObjectClass *klass, void *data); 460 void (*class_finalize)(ObjectClass *klass, void *data); 461 void *class_data; 462 463 InterfaceInfo *interfaces; 464 }; 465 466 /** 467 * OBJECT: 468 * @obj: A derivative of #Object 469 * 470 * Converts an object to a #Object. Since all objects are #Objects, 471 * this function will always succeed. 472 */ 473 #define OBJECT(obj) \ 474 ((Object *)(obj)) 475 476 /** 477 * OBJECT_CLASS: 478 * @class: A derivative of #ObjectClass. 479 * 480 * Converts a class to an #ObjectClass. Since all objects are #Objects, 481 * this function will always succeed. 482 */ 483 #define OBJECT_CLASS(class) \ 484 ((ObjectClass *)(class)) 485 486 /** 487 * OBJECT_CHECK: 488 * @type: The C type to use for the return value. 489 * @obj: A derivative of @type to cast. 490 * @name: The QOM typename of @type 491 * 492 * A type safe version of @object_dynamic_cast_assert. Typically each class 493 * will define a macro based on this type to perform type safe dynamic_casts to 494 * this object type. 495 * 496 * If an invalid object is passed to this function, a run time assert will be 497 * generated. 498 */ 499 #define OBJECT_CHECK(type, obj, name) \ 500 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 501 __FILE__, __LINE__, __func__)) 502 503 /** 504 * OBJECT_CLASS_CHECK: 505 * @class_type: The C type to use for the return value. 506 * @class: A derivative class of @class_type to cast. 507 * @name: the QOM typename of @class_type. 508 * 509 * A type safe version of @object_class_dynamic_cast_assert. This macro is 510 * typically wrapped by each type to perform type safe casts of a class to a 511 * specific class type. 512 */ 513 #define OBJECT_CLASS_CHECK(class_type, class, name) \ 514 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \ 515 __FILE__, __LINE__, __func__)) 516 517 /** 518 * OBJECT_GET_CLASS: 519 * @class: The C type to use for the return value. 520 * @obj: The object to obtain the class for. 521 * @name: The QOM typename of @obj. 522 * 523 * This function will return a specific class for a given object. Its generally 524 * used by each type to provide a type safe macro to get a specific class type 525 * from an object. 526 */ 527 #define OBJECT_GET_CLASS(class, obj, name) \ 528 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 529 530 /** 531 * InterfaceInfo: 532 * @type: The name of the interface. 533 * 534 * The information associated with an interface. 535 */ 536 struct InterfaceInfo { 537 const char *type; 538 }; 539 540 /** 541 * InterfaceClass: 542 * @parent_class: the base class 543 * 544 * The class for all interfaces. Subclasses of this class should only add 545 * virtual methods. 546 */ 547 struct InterfaceClass 548 { 549 ObjectClass parent_class; 550 /*< private >*/ 551 ObjectClass *concrete_class; 552 Type interface_type; 553 }; 554 555 #define TYPE_INTERFACE "interface" 556 557 /** 558 * INTERFACE_CLASS: 559 * @klass: class to cast from 560 * Returns: An #InterfaceClass or raise an error if cast is invalid 561 */ 562 #define INTERFACE_CLASS(klass) \ 563 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 564 565 /** 566 * INTERFACE_CHECK: 567 * @interface: the type to return 568 * @obj: the object to convert to an interface 569 * @name: the interface type name 570 * 571 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 572 */ 573 #define INTERFACE_CHECK(interface, obj, name) \ 574 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 575 __FILE__, __LINE__, __func__)) 576 577 /** 578 * object_new: 579 * @typename: The name of the type of the object to instantiate. 580 * 581 * This function will initialize a new object using heap allocated memory. 582 * The returned object has a reference count of 1, and will be freed when 583 * the last reference is dropped. 584 * 585 * Returns: The newly allocated and instantiated object. 586 */ 587 Object *object_new(const char *typename); 588 589 /** 590 * object_new_with_props: 591 * @typename: The name of the type of the object to instantiate. 592 * @parent: the parent object 593 * @id: The unique ID of the object 594 * @errp: pointer to error object 595 * @...: list of property names and values 596 * 597 * This function will initialize a new object using heap allocated memory. 598 * The returned object has a reference count of 1, and will be freed when 599 * the last reference is dropped. 600 * 601 * The @id parameter will be used when registering the object as a 602 * child of @parent in the composition tree. 603 * 604 * The variadic parameters are a list of pairs of (propname, propvalue) 605 * strings. The propname of %NULL indicates the end of the property 606 * list. If the object implements the user creatable interface, the 607 * object will be marked complete once all the properties have been 608 * processed. 609 * 610 * <example> 611 * <title>Creating an object with properties</title> 612 * <programlisting> 613 * Error *err = NULL; 614 * Object *obj; 615 * 616 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE, 617 * object_get_objects_root(), 618 * "hostmem0", 619 * &err, 620 * "share", "yes", 621 * "mem-path", "/dev/shm/somefile", 622 * "prealloc", "yes", 623 * "size", "1048576", 624 * NULL); 625 * 626 * if (!obj) { 627 * g_printerr("Cannot create memory backend: %s\n", 628 * error_get_pretty(err)); 629 * } 630 * </programlisting> 631 * </example> 632 * 633 * The returned object will have one stable reference maintained 634 * for as long as it is present in the object hierarchy. 635 * 636 * Returns: The newly allocated, instantiated & initialized object. 637 */ 638 Object *object_new_with_props(const char *typename, 639 Object *parent, 640 const char *id, 641 Error **errp, 642 ...) QEMU_SENTINEL; 643 644 /** 645 * object_new_with_propv: 646 * @typename: The name of the type of the object to instantiate. 647 * @parent: the parent object 648 * @id: The unique ID of the object 649 * @errp: pointer to error object 650 * @vargs: list of property names and values 651 * 652 * See object_new_with_props() for documentation. 653 */ 654 Object *object_new_with_propv(const char *typename, 655 Object *parent, 656 const char *id, 657 Error **errp, 658 va_list vargs); 659 660 /** 661 * object_set_props: 662 * @obj: the object instance to set properties on 663 * @errp: pointer to error object 664 * @...: list of property names and values 665 * 666 * This function will set a list of properties on an existing object 667 * instance. 668 * 669 * The variadic parameters are a list of pairs of (propname, propvalue) 670 * strings. The propname of %NULL indicates the end of the property 671 * list. 672 * 673 * <example> 674 * <title>Update an object's properties</title> 675 * <programlisting> 676 * Error *err = NULL; 677 * Object *obj = ...get / create object...; 678 * 679 * obj = object_set_props(obj, 680 * &err, 681 * "share", "yes", 682 * "mem-path", "/dev/shm/somefile", 683 * "prealloc", "yes", 684 * "size", "1048576", 685 * NULL); 686 * 687 * if (!obj) { 688 * g_printerr("Cannot set properties: %s\n", 689 * error_get_pretty(err)); 690 * } 691 * </programlisting> 692 * </example> 693 * 694 * The returned object will have one stable reference maintained 695 * for as long as it is present in the object hierarchy. 696 * 697 * Returns: -1 on error, 0 on success 698 */ 699 int object_set_props(Object *obj, 700 Error **errp, 701 ...) QEMU_SENTINEL; 702 703 /** 704 * object_set_propv: 705 * @obj: the object instance to set properties on 706 * @errp: pointer to error object 707 * @vargs: list of property names and values 708 * 709 * See object_set_props() for documentation. 710 * 711 * Returns: -1 on error, 0 on success 712 */ 713 int object_set_propv(Object *obj, 714 Error **errp, 715 va_list vargs); 716 717 /** 718 * object_initialize: 719 * @obj: A pointer to the memory to be used for the object. 720 * @size: The maximum size available at @obj for the object. 721 * @typename: The name of the type of the object to instantiate. 722 * 723 * This function will initialize an object. The memory for the object should 724 * have already been allocated. The returned object has a reference count of 1, 725 * and will be finalized when the last reference is dropped. 726 */ 727 void object_initialize(void *obj, size_t size, const char *typename); 728 729 /** 730 * object_dynamic_cast: 731 * @obj: The object to cast. 732 * @typename: The @typename to cast to. 733 * 734 * This function will determine if @obj is-a @typename. @obj can refer to an 735 * object or an interface associated with an object. 736 * 737 * Returns: This function returns @obj on success or #NULL on failure. 738 */ 739 Object *object_dynamic_cast(Object *obj, const char *typename); 740 741 /** 742 * object_dynamic_cast_assert: 743 * 744 * See object_dynamic_cast() for a description of the parameters of this 745 * function. The only difference in behavior is that this function asserts 746 * instead of returning #NULL on failure if QOM cast debugging is enabled. 747 * This function is not meant to be called directly, but only through 748 * the wrapper macro OBJECT_CHECK. 749 */ 750 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 751 const char *file, int line, const char *func); 752 753 /** 754 * object_get_class: 755 * @obj: A derivative of #Object 756 * 757 * Returns: The #ObjectClass of the type associated with @obj. 758 */ 759 ObjectClass *object_get_class(Object *obj); 760 761 /** 762 * object_get_typename: 763 * @obj: A derivative of #Object. 764 * 765 * Returns: The QOM typename of @obj. 766 */ 767 const char *object_get_typename(const Object *obj); 768 769 /** 770 * type_register_static: 771 * @info: The #TypeInfo of the new type. 772 * 773 * @info and all of the strings it points to should exist for the life time 774 * that the type is registered. 775 * 776 * Returns: the new #Type. 777 */ 778 Type type_register_static(const TypeInfo *info); 779 780 /** 781 * type_register: 782 * @info: The #TypeInfo of the new type 783 * 784 * Unlike type_register_static(), this call does not require @info or its 785 * string members to continue to exist after the call returns. 786 * 787 * Returns: the new #Type. 788 */ 789 Type type_register(const TypeInfo *info); 790 791 /** 792 * object_class_dynamic_cast_assert: 793 * @klass: The #ObjectClass to attempt to cast. 794 * @typename: The QOM typename of the class to cast to. 795 * 796 * See object_class_dynamic_cast() for a description of the parameters 797 * of this function. The only difference in behavior is that this function 798 * asserts instead of returning #NULL on failure if QOM cast debugging is 799 * enabled. This function is not meant to be called directly, but only through 800 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK. 801 */ 802 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 803 const char *typename, 804 const char *file, int line, 805 const char *func); 806 807 /** 808 * object_class_dynamic_cast: 809 * @klass: The #ObjectClass to attempt to cast. 810 * @typename: The QOM typename of the class to cast to. 811 * 812 * Returns: If @typename is a class, this function returns @klass if 813 * @typename is a subtype of @klass, else returns #NULL. 814 * 815 * If @typename is an interface, this function returns the interface 816 * definition for @klass if @klass implements it unambiguously; #NULL 817 * is returned if @klass does not implement the interface or if multiple 818 * classes or interfaces on the hierarchy leading to @klass implement 819 * it. (FIXME: perhaps this can be detected at type definition time?) 820 */ 821 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 822 const char *typename); 823 824 /** 825 * object_class_get_parent: 826 * @klass: The class to obtain the parent for. 827 * 828 * Returns: The parent for @klass or %NULL if none. 829 */ 830 ObjectClass *object_class_get_parent(ObjectClass *klass); 831 832 /** 833 * object_class_get_name: 834 * @klass: The class to obtain the QOM typename for. 835 * 836 * Returns: The QOM typename for @klass. 837 */ 838 const char *object_class_get_name(ObjectClass *klass); 839 840 /** 841 * object_class_is_abstract: 842 * @klass: The class to obtain the abstractness for. 843 * 844 * Returns: %true if @klass is abstract, %false otherwise. 845 */ 846 bool object_class_is_abstract(ObjectClass *klass); 847 848 /** 849 * object_class_by_name: 850 * @typename: The QOM typename to obtain the class for. 851 * 852 * Returns: The class for @typename or %NULL if not found. 853 */ 854 ObjectClass *object_class_by_name(const char *typename); 855 856 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 857 const char *implements_type, bool include_abstract, 858 void *opaque); 859 860 /** 861 * object_class_get_list: 862 * @implements_type: The type to filter for, including its derivatives. 863 * @include_abstract: Whether to include abstract classes. 864 * 865 * Returns: A singly-linked list of the classes in reverse hashtable order. 866 */ 867 GSList *object_class_get_list(const char *implements_type, 868 bool include_abstract); 869 870 /** 871 * object_ref: 872 * @obj: the object 873 * 874 * Increase the reference count of a object. A object cannot be freed as long 875 * as its reference count is greater than zero. 876 */ 877 void object_ref(Object *obj); 878 879 /** 880 * object_unref: 881 * @obj: the object 882 * 883 * Decrease the reference count of a object. A object cannot be freed as long 884 * as its reference count is greater than zero. 885 */ 886 void object_unref(Object *obj); 887 888 /** 889 * object_property_add: 890 * @obj: the object to add a property to 891 * @name: the name of the property. This can contain any character except for 892 * a forward slash. In general, you should use hyphens '-' instead of 893 * underscores '_' when naming properties. 894 * @type: the type name of the property. This namespace is pretty loosely 895 * defined. Sub namespaces are constructed by using a prefix and then 896 * to angle brackets. For instance, the type 'virtio-net-pci' in the 897 * 'link' namespace would be 'link<virtio-net-pci>'. 898 * @get: The getter to be called to read a property. If this is NULL, then 899 * the property cannot be read. 900 * @set: the setter to be called to write a property. If this is NULL, 901 * then the property cannot be written. 902 * @release: called when the property is removed from the object. This is 903 * meant to allow a property to free its opaque upon object 904 * destruction. This may be NULL. 905 * @opaque: an opaque pointer to pass to the callbacks for the property 906 * @errp: returns an error if this function fails 907 * 908 * Returns: The #ObjectProperty; this can be used to set the @resolve 909 * callback for child and link properties. 910 */ 911 ObjectProperty *object_property_add(Object *obj, const char *name, 912 const char *type, 913 ObjectPropertyAccessor *get, 914 ObjectPropertyAccessor *set, 915 ObjectPropertyRelease *release, 916 void *opaque, Error **errp); 917 918 void object_property_del(Object *obj, const char *name, Error **errp); 919 920 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name, 921 const char *type, 922 ObjectPropertyAccessor *get, 923 ObjectPropertyAccessor *set, 924 ObjectPropertyRelease *release, 925 void *opaque, Error **errp); 926 927 /** 928 * object_property_find: 929 * @obj: the object 930 * @name: the name of the property 931 * @errp: returns an error if this function fails 932 * 933 * Look up a property for an object and return its #ObjectProperty if found. 934 */ 935 ObjectProperty *object_property_find(Object *obj, const char *name, 936 Error **errp); 937 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name, 938 Error **errp); 939 940 typedef struct ObjectPropertyIterator { 941 ObjectClass *nextclass; 942 GHashTableIter iter; 943 } ObjectPropertyIterator; 944 945 /** 946 * object_property_iter_init: 947 * @obj: the object 948 * 949 * Initializes an iterator for traversing all properties 950 * registered against an object instance, its class and all parent classes. 951 * 952 * It is forbidden to modify the property list while iterating, 953 * whether removing or adding properties. 954 * 955 * Typical usage pattern would be 956 * 957 * <example> 958 * <title>Using object property iterators</title> 959 * <programlisting> 960 * ObjectProperty *prop; 961 * ObjectPropertyIterator iter; 962 * 963 * object_property_iter_init(&iter, obj); 964 * while ((prop = object_property_iter_next(&iter))) { 965 * ... do something with prop ... 966 * } 967 * </programlisting> 968 * </example> 969 */ 970 void object_property_iter_init(ObjectPropertyIterator *iter, 971 Object *obj); 972 973 /** 974 * object_property_iter_next: 975 * @iter: the iterator instance 976 * 977 * Return the next available property. If no further properties 978 * are available, a %NULL value will be returned and the @iter 979 * pointer should not be used again after this point without 980 * re-initializing it. 981 * 982 * Returns: the next property, or %NULL when all properties 983 * have been traversed. 984 */ 985 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter); 986 987 void object_unparent(Object *obj); 988 989 /** 990 * object_property_get: 991 * @obj: the object 992 * @v: the visitor that will receive the property value. This should be an 993 * Output visitor and the data will be written with @name as the name. 994 * @name: the name of the property 995 * @errp: returns an error if this function fails 996 * 997 * Reads a property from a object. 998 */ 999 void object_property_get(Object *obj, Visitor *v, const char *name, 1000 Error **errp); 1001 1002 /** 1003 * object_property_set_str: 1004 * @value: the value to be written to the property 1005 * @name: the name of the property 1006 * @errp: returns an error if this function fails 1007 * 1008 * Writes a string value to a property. 1009 */ 1010 void object_property_set_str(Object *obj, const char *value, 1011 const char *name, Error **errp); 1012 1013 /** 1014 * object_property_get_str: 1015 * @obj: the object 1016 * @name: the name of the property 1017 * @errp: returns an error if this function fails 1018 * 1019 * Returns: the value of the property, converted to a C string, or NULL if 1020 * an error occurs (including when the property value is not a string). 1021 * The caller should free the string. 1022 */ 1023 char *object_property_get_str(Object *obj, const char *name, 1024 Error **errp); 1025 1026 /** 1027 * object_property_set_link: 1028 * @value: the value to be written to the property 1029 * @name: the name of the property 1030 * @errp: returns an error if this function fails 1031 * 1032 * Writes an object's canonical path to a property. 1033 */ 1034 void object_property_set_link(Object *obj, Object *value, 1035 const char *name, Error **errp); 1036 1037 /** 1038 * object_property_get_link: 1039 * @obj: the object 1040 * @name: the name of the property 1041 * @errp: returns an error if this function fails 1042 * 1043 * Returns: the value of the property, resolved from a path to an Object, 1044 * or NULL if an error occurs (including when the property value is not a 1045 * string or not a valid object path). 1046 */ 1047 Object *object_property_get_link(Object *obj, const char *name, 1048 Error **errp); 1049 1050 /** 1051 * object_property_set_bool: 1052 * @value: the value to be written to the property 1053 * @name: the name of the property 1054 * @errp: returns an error if this function fails 1055 * 1056 * Writes a bool value to a property. 1057 */ 1058 void object_property_set_bool(Object *obj, bool value, 1059 const char *name, Error **errp); 1060 1061 /** 1062 * object_property_get_bool: 1063 * @obj: the object 1064 * @name: the name of the property 1065 * @errp: returns an error if this function fails 1066 * 1067 * Returns: the value of the property, converted to a boolean, or NULL if 1068 * an error occurs (including when the property value is not a bool). 1069 */ 1070 bool object_property_get_bool(Object *obj, const char *name, 1071 Error **errp); 1072 1073 /** 1074 * object_property_set_int: 1075 * @value: the value to be written to the property 1076 * @name: the name of the property 1077 * @errp: returns an error if this function fails 1078 * 1079 * Writes an integer value to a property. 1080 */ 1081 void object_property_set_int(Object *obj, int64_t value, 1082 const char *name, Error **errp); 1083 1084 /** 1085 * object_property_get_int: 1086 * @obj: the object 1087 * @name: the name of the property 1088 * @errp: returns an error if this function fails 1089 * 1090 * Returns: the value of the property, converted to an integer, or negative if 1091 * an error occurs (including when the property value is not an integer). 1092 */ 1093 int64_t object_property_get_int(Object *obj, const char *name, 1094 Error **errp); 1095 1096 /** 1097 * object_property_set_uint: 1098 * @value: the value to be written to the property 1099 * @name: the name of the property 1100 * @errp: returns an error if this function fails 1101 * 1102 * Writes an unsigned integer value to a property. 1103 */ 1104 void object_property_set_uint(Object *obj, uint64_t value, 1105 const char *name, Error **errp); 1106 1107 /** 1108 * object_property_get_uint: 1109 * @obj: the object 1110 * @name: the name of the property 1111 * @errp: returns an error if this function fails 1112 * 1113 * Returns: the value of the property, converted to an unsigned integer, or 0 1114 * an error occurs (including when the property value is not an integer). 1115 */ 1116 uint64_t object_property_get_uint(Object *obj, const char *name, 1117 Error **errp); 1118 1119 /** 1120 * object_property_get_enum: 1121 * @obj: the object 1122 * @name: the name of the property 1123 * @typename: the name of the enum data type 1124 * @errp: returns an error if this function fails 1125 * 1126 * Returns: the value of the property, converted to an integer, or 1127 * undefined if an error occurs (including when the property value is not 1128 * an enum). 1129 */ 1130 int object_property_get_enum(Object *obj, const char *name, 1131 const char *typename, Error **errp); 1132 1133 /** 1134 * object_property_get_uint16List: 1135 * @obj: the object 1136 * @name: the name of the property 1137 * @list: the returned int list 1138 * @errp: returns an error if this function fails 1139 * 1140 * Returns: the value of the property, converted to integers, or 1141 * undefined if an error occurs (including when the property value is not 1142 * an list of integers). 1143 */ 1144 void object_property_get_uint16List(Object *obj, const char *name, 1145 uint16List **list, Error **errp); 1146 1147 /** 1148 * object_property_set: 1149 * @obj: the object 1150 * @v: the visitor that will be used to write the property value. This should 1151 * be an Input visitor and the data will be first read with @name as the 1152 * name and then written as the property value. 1153 * @name: the name of the property 1154 * @errp: returns an error if this function fails 1155 * 1156 * Writes a property to a object. 1157 */ 1158 void object_property_set(Object *obj, Visitor *v, const char *name, 1159 Error **errp); 1160 1161 /** 1162 * object_property_parse: 1163 * @obj: the object 1164 * @string: the string that will be used to parse the property value. 1165 * @name: the name of the property 1166 * @errp: returns an error if this function fails 1167 * 1168 * Parses a string and writes the result into a property of an object. 1169 */ 1170 void object_property_parse(Object *obj, const char *string, 1171 const char *name, Error **errp); 1172 1173 /** 1174 * object_property_print: 1175 * @obj: the object 1176 * @name: the name of the property 1177 * @human: if true, print for human consumption 1178 * @errp: returns an error if this function fails 1179 * 1180 * Returns a string representation of the value of the property. The 1181 * caller shall free the string. 1182 */ 1183 char *object_property_print(Object *obj, const char *name, bool human, 1184 Error **errp); 1185 1186 /** 1187 * object_property_get_type: 1188 * @obj: the object 1189 * @name: the name of the property 1190 * @errp: returns an error if this function fails 1191 * 1192 * Returns: The type name of the property. 1193 */ 1194 const char *object_property_get_type(Object *obj, const char *name, 1195 Error **errp); 1196 1197 /** 1198 * object_get_root: 1199 * 1200 * Returns: the root object of the composition tree 1201 */ 1202 Object *object_get_root(void); 1203 1204 1205 /** 1206 * object_get_objects_root: 1207 * 1208 * Get the container object that holds user created 1209 * object instances. This is the object at path 1210 * "/objects" 1211 * 1212 * Returns: the user object container 1213 */ 1214 Object *object_get_objects_root(void); 1215 1216 /** 1217 * object_get_internal_root: 1218 * 1219 * Get the container object that holds internally used object 1220 * instances. Any object which is put into this container must not be 1221 * user visible, and it will not be exposed in the QOM tree. 1222 * 1223 * Returns: the internal object container 1224 */ 1225 Object *object_get_internal_root(void); 1226 1227 /** 1228 * object_get_canonical_path_component: 1229 * 1230 * Returns: The final component in the object's canonical path. The canonical 1231 * path is the path within the composition tree starting from the root. 1232 */ 1233 gchar *object_get_canonical_path_component(Object *obj); 1234 1235 /** 1236 * object_get_canonical_path: 1237 * 1238 * Returns: The canonical path for a object. This is the path within the 1239 * composition tree starting from the root. 1240 */ 1241 gchar *object_get_canonical_path(Object *obj); 1242 1243 /** 1244 * object_resolve_path: 1245 * @path: the path to resolve 1246 * @ambiguous: returns true if the path resolution failed because of an 1247 * ambiguous match 1248 * 1249 * There are two types of supported paths--absolute paths and partial paths. 1250 * 1251 * Absolute paths are derived from the root object and can follow child<> or 1252 * link<> properties. Since they can follow link<> properties, they can be 1253 * arbitrarily long. Absolute paths look like absolute filenames and are 1254 * prefixed with a leading slash. 1255 * 1256 * Partial paths look like relative filenames. They do not begin with a 1257 * prefix. The matching rules for partial paths are subtle but designed to make 1258 * specifying objects easy. At each level of the composition tree, the partial 1259 * path is matched as an absolute path. The first match is not returned. At 1260 * least two matches are searched for. A successful result is only returned if 1261 * only one match is found. If more than one match is found, a flag is 1262 * returned to indicate that the match was ambiguous. 1263 * 1264 * Returns: The matched object or NULL on path lookup failure. 1265 */ 1266 Object *object_resolve_path(const char *path, bool *ambiguous); 1267 1268 /** 1269 * object_resolve_path_type: 1270 * @path: the path to resolve 1271 * @typename: the type to look for. 1272 * @ambiguous: returns true if the path resolution failed because of an 1273 * ambiguous match 1274 * 1275 * This is similar to object_resolve_path. However, when looking for a 1276 * partial path only matches that implement the given type are considered. 1277 * This restricts the search and avoids spuriously flagging matches as 1278 * ambiguous. 1279 * 1280 * For both partial and absolute paths, the return value goes through 1281 * a dynamic cast to @typename. This is important if either the link, 1282 * or the typename itself are of interface types. 1283 * 1284 * Returns: The matched object or NULL on path lookup failure. 1285 */ 1286 Object *object_resolve_path_type(const char *path, const char *typename, 1287 bool *ambiguous); 1288 1289 /** 1290 * object_resolve_path_component: 1291 * @parent: the object in which to resolve the path 1292 * @part: the component to resolve. 1293 * 1294 * This is similar to object_resolve_path with an absolute path, but it 1295 * only resolves one element (@part) and takes the others from @parent. 1296 * 1297 * Returns: The resolved object or NULL on path lookup failure. 1298 */ 1299 Object *object_resolve_path_component(Object *parent, const gchar *part); 1300 1301 /** 1302 * object_property_add_child: 1303 * @obj: the object to add a property to 1304 * @name: the name of the property 1305 * @child: the child object 1306 * @errp: if an error occurs, a pointer to an area to store the area 1307 * 1308 * Child properties form the composition tree. All objects need to be a child 1309 * of another object. Objects can only be a child of one object. 1310 * 1311 * There is no way for a child to determine what its parent is. It is not 1312 * a bidirectional relationship. This is by design. 1313 * 1314 * The value of a child property as a C string will be the child object's 1315 * canonical path. It can be retrieved using object_property_get_str(). 1316 * The child object itself can be retrieved using object_property_get_link(). 1317 */ 1318 void object_property_add_child(Object *obj, const char *name, 1319 Object *child, Error **errp); 1320 1321 typedef enum { 1322 /* Unref the link pointer when the property is deleted */ 1323 OBJ_PROP_LINK_UNREF_ON_RELEASE = 0x1, 1324 } ObjectPropertyLinkFlags; 1325 1326 /** 1327 * object_property_allow_set_link: 1328 * 1329 * The default implementation of the object_property_add_link() check() 1330 * callback function. It allows the link property to be set and never returns 1331 * an error. 1332 */ 1333 void object_property_allow_set_link(const Object *, const char *, 1334 Object *, Error **); 1335 1336 /** 1337 * object_property_add_link: 1338 * @obj: the object to add a property to 1339 * @name: the name of the property 1340 * @type: the qobj type of the link 1341 * @child: a pointer to where the link object reference is stored 1342 * @check: callback to veto setting or NULL if the property is read-only 1343 * @flags: additional options for the link 1344 * @errp: if an error occurs, a pointer to an area to store the area 1345 * 1346 * Links establish relationships between objects. Links are unidirectional 1347 * although two links can be combined to form a bidirectional relationship 1348 * between objects. 1349 * 1350 * Links form the graph in the object model. 1351 * 1352 * The <code>@check()</code> callback is invoked when 1353 * object_property_set_link() is called and can raise an error to prevent the 1354 * link being set. If <code>@check</code> is NULL, the property is read-only 1355 * and cannot be set. 1356 * 1357 * Ownership of the pointer that @child points to is transferred to the 1358 * link property. The reference count for <code>*@child</code> is 1359 * managed by the property from after the function returns till the 1360 * property is deleted with object_property_del(). If the 1361 * <code>@flags</code> <code>OBJ_PROP_LINK_UNREF_ON_RELEASE</code> bit is set, 1362 * the reference count is decremented when the property is deleted. 1363 */ 1364 void object_property_add_link(Object *obj, const char *name, 1365 const char *type, Object **child, 1366 void (*check)(const Object *obj, const char *name, 1367 Object *val, Error **errp), 1368 ObjectPropertyLinkFlags flags, 1369 Error **errp); 1370 1371 /** 1372 * object_property_add_str: 1373 * @obj: the object to add a property to 1374 * @name: the name of the property 1375 * @get: the getter or NULL if the property is write-only. This function must 1376 * return a string to be freed by g_free(). 1377 * @set: the setter or NULL if the property is read-only 1378 * @errp: if an error occurs, a pointer to an area to store the error 1379 * 1380 * Add a string property using getters/setters. This function will add a 1381 * property of type 'string'. 1382 */ 1383 void object_property_add_str(Object *obj, const char *name, 1384 char *(*get)(Object *, Error **), 1385 void (*set)(Object *, const char *, Error **), 1386 Error **errp); 1387 1388 void object_class_property_add_str(ObjectClass *klass, const char *name, 1389 char *(*get)(Object *, Error **), 1390 void (*set)(Object *, const char *, 1391 Error **), 1392 Error **errp); 1393 1394 /** 1395 * object_property_add_bool: 1396 * @obj: the object to add a property to 1397 * @name: the name of the property 1398 * @get: the getter or NULL if the property is write-only. 1399 * @set: the setter or NULL if the property is read-only 1400 * @errp: if an error occurs, a pointer to an area to store the error 1401 * 1402 * Add a bool property using getters/setters. This function will add a 1403 * property of type 'bool'. 1404 */ 1405 void object_property_add_bool(Object *obj, const char *name, 1406 bool (*get)(Object *, Error **), 1407 void (*set)(Object *, bool, Error **), 1408 Error **errp); 1409 1410 void object_class_property_add_bool(ObjectClass *klass, const char *name, 1411 bool (*get)(Object *, Error **), 1412 void (*set)(Object *, bool, Error **), 1413 Error **errp); 1414 1415 /** 1416 * object_property_add_enum: 1417 * @obj: the object to add a property to 1418 * @name: the name of the property 1419 * @typename: the name of the enum data type 1420 * @get: the getter or %NULL if the property is write-only. 1421 * @set: the setter or %NULL if the property is read-only 1422 * @errp: if an error occurs, a pointer to an area to store the error 1423 * 1424 * Add an enum property using getters/setters. This function will add a 1425 * property of type '@typename'. 1426 */ 1427 void object_property_add_enum(Object *obj, const char *name, 1428 const char *typename, 1429 const QEnumLookup *lookup, 1430 int (*get)(Object *, Error **), 1431 void (*set)(Object *, int, Error **), 1432 Error **errp); 1433 1434 void object_class_property_add_enum(ObjectClass *klass, const char *name, 1435 const char *typename, 1436 const QEnumLookup *lookup, 1437 int (*get)(Object *, Error **), 1438 void (*set)(Object *, int, Error **), 1439 Error **errp); 1440 1441 /** 1442 * object_property_add_tm: 1443 * @obj: the object to add a property to 1444 * @name: the name of the property 1445 * @get: the getter or NULL if the property is write-only. 1446 * @errp: if an error occurs, a pointer to an area to store the error 1447 * 1448 * Add a read-only struct tm valued property using a getter function. 1449 * This function will add a property of type 'struct tm'. 1450 */ 1451 void object_property_add_tm(Object *obj, const char *name, 1452 void (*get)(Object *, struct tm *, Error **), 1453 Error **errp); 1454 1455 void object_class_property_add_tm(ObjectClass *klass, const char *name, 1456 void (*get)(Object *, struct tm *, Error **), 1457 Error **errp); 1458 1459 /** 1460 * object_property_add_uint8_ptr: 1461 * @obj: the object to add a property to 1462 * @name: the name of the property 1463 * @v: pointer to value 1464 * @errp: if an error occurs, a pointer to an area to store the error 1465 * 1466 * Add an integer property in memory. This function will add a 1467 * property of type 'uint8'. 1468 */ 1469 void object_property_add_uint8_ptr(Object *obj, const char *name, 1470 const uint8_t *v, Error **errp); 1471 void object_class_property_add_uint8_ptr(ObjectClass *klass, const char *name, 1472 const uint8_t *v, Error **errp); 1473 1474 /** 1475 * object_property_add_uint16_ptr: 1476 * @obj: the object to add a property to 1477 * @name: the name of the property 1478 * @v: pointer to value 1479 * @errp: if an error occurs, a pointer to an area to store the error 1480 * 1481 * Add an integer property in memory. This function will add a 1482 * property of type 'uint16'. 1483 */ 1484 void object_property_add_uint16_ptr(Object *obj, const char *name, 1485 const uint16_t *v, Error **errp); 1486 void object_class_property_add_uint16_ptr(ObjectClass *klass, const char *name, 1487 const uint16_t *v, Error **errp); 1488 1489 /** 1490 * object_property_add_uint32_ptr: 1491 * @obj: the object to add a property to 1492 * @name: the name of the property 1493 * @v: pointer to value 1494 * @errp: if an error occurs, a pointer to an area to store the error 1495 * 1496 * Add an integer property in memory. This function will add a 1497 * property of type 'uint32'. 1498 */ 1499 void object_property_add_uint32_ptr(Object *obj, const char *name, 1500 const uint32_t *v, Error **errp); 1501 void object_class_property_add_uint32_ptr(ObjectClass *klass, const char *name, 1502 const uint32_t *v, Error **errp); 1503 1504 /** 1505 * object_property_add_uint64_ptr: 1506 * @obj: the object to add a property to 1507 * @name: the name of the property 1508 * @v: pointer to value 1509 * @errp: if an error occurs, a pointer to an area to store the error 1510 * 1511 * Add an integer property in memory. This function will add a 1512 * property of type 'uint64'. 1513 */ 1514 void object_property_add_uint64_ptr(Object *obj, const char *name, 1515 const uint64_t *v, Error **Errp); 1516 void object_class_property_add_uint64_ptr(ObjectClass *klass, const char *name, 1517 const uint64_t *v, Error **Errp); 1518 1519 /** 1520 * object_property_add_alias: 1521 * @obj: the object to add a property to 1522 * @name: the name of the property 1523 * @target_obj: the object to forward property access to 1524 * @target_name: the name of the property on the forwarded object 1525 * @errp: if an error occurs, a pointer to an area to store the error 1526 * 1527 * Add an alias for a property on an object. This function will add a property 1528 * of the same type as the forwarded property. 1529 * 1530 * The caller must ensure that <code>@target_obj</code> stays alive as long as 1531 * this property exists. In the case of a child object or an alias on the same 1532 * object this will be the case. For aliases to other objects the caller is 1533 * responsible for taking a reference. 1534 */ 1535 void object_property_add_alias(Object *obj, const char *name, 1536 Object *target_obj, const char *target_name, 1537 Error **errp); 1538 1539 /** 1540 * object_property_add_const_link: 1541 * @obj: the object to add a property to 1542 * @name: the name of the property 1543 * @target: the object to be referred by the link 1544 * @errp: if an error occurs, a pointer to an area to store the error 1545 * 1546 * Add an unmodifiable link for a property on an object. This function will 1547 * add a property of type link<TYPE> where TYPE is the type of @target. 1548 * 1549 * The caller must ensure that @target stays alive as long as 1550 * this property exists. In the case @target is a child of @obj, 1551 * this will be the case. Otherwise, the caller is responsible for 1552 * taking a reference. 1553 */ 1554 void object_property_add_const_link(Object *obj, const char *name, 1555 Object *target, Error **errp); 1556 1557 /** 1558 * object_property_set_description: 1559 * @obj: the object owning the property 1560 * @name: the name of the property 1561 * @description: the description of the property on the object 1562 * @errp: if an error occurs, a pointer to an area to store the error 1563 * 1564 * Set an object property's description. 1565 * 1566 */ 1567 void object_property_set_description(Object *obj, const char *name, 1568 const char *description, Error **errp); 1569 void object_class_property_set_description(ObjectClass *klass, const char *name, 1570 const char *description, 1571 Error **errp); 1572 1573 /** 1574 * object_child_foreach: 1575 * @obj: the object whose children will be navigated 1576 * @fn: the iterator function to be called 1577 * @opaque: an opaque value that will be passed to the iterator 1578 * 1579 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1580 * non-zero. 1581 * 1582 * It is forbidden to add or remove children from @obj from the @fn 1583 * callback. 1584 * 1585 * Returns: The last value returned by @fn, or 0 if there is no child. 1586 */ 1587 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 1588 void *opaque); 1589 1590 /** 1591 * object_child_foreach_recursive: 1592 * @obj: the object whose children will be navigated 1593 * @fn: the iterator function to be called 1594 * @opaque: an opaque value that will be passed to the iterator 1595 * 1596 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1597 * non-zero. Calls recursively, all child nodes of @obj will also be passed 1598 * all the way down to the leaf nodes of the tree. Depth first ordering. 1599 * 1600 * It is forbidden to add or remove children from @obj (or its 1601 * child nodes) from the @fn callback. 1602 * 1603 * Returns: The last value returned by @fn, or 0 if there is no child. 1604 */ 1605 int object_child_foreach_recursive(Object *obj, 1606 int (*fn)(Object *child, void *opaque), 1607 void *opaque); 1608 /** 1609 * container_get: 1610 * @root: root of the #path, e.g., object_get_root() 1611 * @path: path to the container 1612 * 1613 * Return a container object whose path is @path. Create more containers 1614 * along the path if necessary. 1615 * 1616 * Returns: the container object. 1617 */ 1618 Object *container_get(Object *root, const char *path); 1619 1620 /** 1621 * object_type_get_instance_size: 1622 * @typename: Name of the Type whose instance_size is required 1623 * 1624 * Returns the instance_size of the given @typename. 1625 */ 1626 size_t object_type_get_instance_size(const char *typename); 1627 #endif 1628