1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include "qapi/qapi-builtin-types.h" 18 #include "qemu/queue.h" 19 20 struct TypeImpl; 21 typedef struct TypeImpl *Type; 22 23 typedef struct ObjectClass ObjectClass; 24 typedef struct Object Object; 25 26 typedef struct TypeInfo TypeInfo; 27 28 typedef struct InterfaceClass InterfaceClass; 29 typedef struct InterfaceInfo InterfaceInfo; 30 31 #define TYPE_OBJECT "object" 32 33 /** 34 * SECTION:object.h 35 * @title:Base Object Type System 36 * @short_description: interfaces for creating new types and objects 37 * 38 * The QEMU Object Model provides a framework for registering user creatable 39 * types and instantiating objects from those types. QOM provides the following 40 * features: 41 * 42 * - System for dynamically registering types 43 * - Support for single-inheritance of types 44 * - Multiple inheritance of stateless interfaces 45 * 46 * <example> 47 * <title>Creating a minimal type</title> 48 * <programlisting> 49 * #include "qdev.h" 50 * 51 * #define TYPE_MY_DEVICE "my-device" 52 * 53 * // No new virtual functions: we can reuse the typedef for the 54 * // superclass. 55 * typedef DeviceClass MyDeviceClass; 56 * typedef struct MyDevice 57 * { 58 * DeviceState parent; 59 * 60 * int reg0, reg1, reg2; 61 * } MyDevice; 62 * 63 * static const TypeInfo my_device_info = { 64 * .name = TYPE_MY_DEVICE, 65 * .parent = TYPE_DEVICE, 66 * .instance_size = sizeof(MyDevice), 67 * }; 68 * 69 * static void my_device_register_types(void) 70 * { 71 * type_register_static(&my_device_info); 72 * } 73 * 74 * type_init(my_device_register_types) 75 * </programlisting> 76 * </example> 77 * 78 * In the above example, we create a simple type that is described by #TypeInfo. 79 * #TypeInfo describes information about the type including what it inherits 80 * from, the instance and class size, and constructor/destructor hooks. 81 * 82 * Alternatively several static types could be registered using helper macro 83 * DEFINE_TYPES() 84 * 85 * <example> 86 * <programlisting> 87 * static const TypeInfo device_types_info[] = { 88 * { 89 * .name = TYPE_MY_DEVICE_A, 90 * .parent = TYPE_DEVICE, 91 * .instance_size = sizeof(MyDeviceA), 92 * }, 93 * { 94 * .name = TYPE_MY_DEVICE_B, 95 * .parent = TYPE_DEVICE, 96 * .instance_size = sizeof(MyDeviceB), 97 * }, 98 * }; 99 * 100 * DEFINE_TYPES(device_types_info) 101 * </programlisting> 102 * </example> 103 * 104 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 105 * are instantiated dynamically but there is only ever one instance for any 106 * given type. The #ObjectClass typically holds a table of function pointers 107 * for the virtual methods implemented by this type. 108 * 109 * Using object_new(), a new #Object derivative will be instantiated. You can 110 * cast an #Object to a subclass (or base-class) type using 111 * object_dynamic_cast(). You typically want to define macro wrappers around 112 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 113 * specific type: 114 * 115 * <example> 116 * <title>Typecasting macros</title> 117 * <programlisting> 118 * #define MY_DEVICE_GET_CLASS(obj) \ 119 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 120 * #define MY_DEVICE_CLASS(klass) \ 121 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 122 * #define MY_DEVICE(obj) \ 123 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 124 * </programlisting> 125 * </example> 126 * 127 * # Class Initialization # 128 * 129 * Before an object is initialized, the class for the object must be 130 * initialized. There is only one class object for all instance objects 131 * that is created lazily. 132 * 133 * Classes are initialized by first initializing any parent classes (if 134 * necessary). After the parent class object has initialized, it will be 135 * copied into the current class object and any additional storage in the 136 * class object is zero filled. 137 * 138 * The effect of this is that classes automatically inherit any virtual 139 * function pointers that the parent class has already initialized. All 140 * other fields will be zero filled. 141 * 142 * Once all of the parent classes have been initialized, #TypeInfo::class_init 143 * is called to let the class being instantiated provide default initialize for 144 * its virtual functions. Here is how the above example might be modified 145 * to introduce an overridden virtual function: 146 * 147 * <example> 148 * <title>Overriding a virtual function</title> 149 * <programlisting> 150 * #include "qdev.h" 151 * 152 * void my_device_class_init(ObjectClass *klass, void *class_data) 153 * { 154 * DeviceClass *dc = DEVICE_CLASS(klass); 155 * dc->reset = my_device_reset; 156 * } 157 * 158 * static const TypeInfo my_device_info = { 159 * .name = TYPE_MY_DEVICE, 160 * .parent = TYPE_DEVICE, 161 * .instance_size = sizeof(MyDevice), 162 * .class_init = my_device_class_init, 163 * }; 164 * </programlisting> 165 * </example> 166 * 167 * Introducing new virtual methods requires a class to define its own 168 * struct and to add a .class_size member to the #TypeInfo. Each method 169 * will also have a wrapper function to call it easily: 170 * 171 * <example> 172 * <title>Defining an abstract class</title> 173 * <programlisting> 174 * #include "qdev.h" 175 * 176 * typedef struct MyDeviceClass 177 * { 178 * DeviceClass parent; 179 * 180 * void (*frobnicate) (MyDevice *obj); 181 * } MyDeviceClass; 182 * 183 * static const TypeInfo my_device_info = { 184 * .name = TYPE_MY_DEVICE, 185 * .parent = TYPE_DEVICE, 186 * .instance_size = sizeof(MyDevice), 187 * .abstract = true, // or set a default in my_device_class_init 188 * .class_size = sizeof(MyDeviceClass), 189 * }; 190 * 191 * void my_device_frobnicate(MyDevice *obj) 192 * { 193 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 194 * 195 * klass->frobnicate(obj); 196 * } 197 * </programlisting> 198 * </example> 199 * 200 * # Interfaces # 201 * 202 * Interfaces allow a limited form of multiple inheritance. Instances are 203 * similar to normal types except for the fact that are only defined by 204 * their classes and never carry any state. You can dynamically cast an object 205 * to one of its #Interface types and vice versa. 206 * 207 * # Methods # 208 * 209 * A <emphasis>method</emphasis> is a function within the namespace scope of 210 * a class. It usually operates on the object instance by passing it as a 211 * strongly-typed first argument. 212 * If it does not operate on an object instance, it is dubbed 213 * <emphasis>class method</emphasis>. 214 * 215 * Methods cannot be overloaded. That is, the #ObjectClass and method name 216 * uniquely identity the function to be called; the signature does not vary 217 * except for trailing varargs. 218 * 219 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 220 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 221 * via OBJECT_GET_CLASS() accessing the overridden function. 222 * The original function is not automatically invoked. It is the responsibility 223 * of the overriding class to determine whether and when to invoke the method 224 * being overridden. 225 * 226 * To invoke the method being overridden, the preferred solution is to store 227 * the original value in the overriding class before overriding the method. 228 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 229 * respectively; this frees the overriding class from hardcoding its parent 230 * class, which someone might choose to change at some point. 231 * 232 * <example> 233 * <title>Overriding a virtual method</title> 234 * <programlisting> 235 * typedef struct MyState MyState; 236 * 237 * typedef void (*MyDoSomething)(MyState *obj); 238 * 239 * typedef struct MyClass { 240 * ObjectClass parent_class; 241 * 242 * MyDoSomething do_something; 243 * } MyClass; 244 * 245 * static void my_do_something(MyState *obj) 246 * { 247 * // do something 248 * } 249 * 250 * static void my_class_init(ObjectClass *oc, void *data) 251 * { 252 * MyClass *mc = MY_CLASS(oc); 253 * 254 * mc->do_something = my_do_something; 255 * } 256 * 257 * static const TypeInfo my_type_info = { 258 * .name = TYPE_MY, 259 * .parent = TYPE_OBJECT, 260 * .instance_size = sizeof(MyState), 261 * .class_size = sizeof(MyClass), 262 * .class_init = my_class_init, 263 * }; 264 * 265 * typedef struct DerivedClass { 266 * MyClass parent_class; 267 * 268 * MyDoSomething parent_do_something; 269 * } DerivedClass; 270 * 271 * static void derived_do_something(MyState *obj) 272 * { 273 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 274 * 275 * // do something here 276 * dc->parent_do_something(obj); 277 * // do something else here 278 * } 279 * 280 * static void derived_class_init(ObjectClass *oc, void *data) 281 * { 282 * MyClass *mc = MY_CLASS(oc); 283 * DerivedClass *dc = DERIVED_CLASS(oc); 284 * 285 * dc->parent_do_something = mc->do_something; 286 * mc->do_something = derived_do_something; 287 * } 288 * 289 * static const TypeInfo derived_type_info = { 290 * .name = TYPE_DERIVED, 291 * .parent = TYPE_MY, 292 * .class_size = sizeof(DerivedClass), 293 * .class_init = derived_class_init, 294 * }; 295 * </programlisting> 296 * </example> 297 * 298 * Alternatively, object_class_by_name() can be used to obtain the class and 299 * its non-overridden methods for a specific type. This would correspond to 300 * |[ MyClass::method(...) ]| in C++. 301 * 302 * The first example of such a QOM method was #CPUClass.reset, 303 * another example is #DeviceClass.realize. 304 */ 305 306 307 /** 308 * ObjectPropertyAccessor: 309 * @obj: the object that owns the property 310 * @v: the visitor that contains the property data 311 * @name: the name of the property 312 * @opaque: the object property opaque 313 * @errp: a pointer to an Error that is filled if getting/setting fails. 314 * 315 * Called when trying to get/set a property. 316 */ 317 typedef void (ObjectPropertyAccessor)(Object *obj, 318 Visitor *v, 319 const char *name, 320 void *opaque, 321 Error **errp); 322 323 /** 324 * ObjectPropertyResolve: 325 * @obj: the object that owns the property 326 * @opaque: the opaque registered with the property 327 * @part: the name of the property 328 * 329 * Resolves the #Object corresponding to property @part. 330 * 331 * The returned object can also be used as a starting point 332 * to resolve a relative path starting with "@part". 333 * 334 * Returns: If @path is the path that led to @obj, the function 335 * returns the #Object corresponding to "@path/@part". 336 * If "@path/@part" is not a valid object path, it returns #NULL. 337 */ 338 typedef Object *(ObjectPropertyResolve)(Object *obj, 339 void *opaque, 340 const char *part); 341 342 /** 343 * ObjectPropertyRelease: 344 * @obj: the object that owns the property 345 * @name: the name of the property 346 * @opaque: the opaque registered with the property 347 * 348 * Called when a property is removed from a object. 349 */ 350 typedef void (ObjectPropertyRelease)(Object *obj, 351 const char *name, 352 void *opaque); 353 354 typedef struct ObjectProperty 355 { 356 gchar *name; 357 gchar *type; 358 gchar *description; 359 ObjectPropertyAccessor *get; 360 ObjectPropertyAccessor *set; 361 ObjectPropertyResolve *resolve; 362 ObjectPropertyRelease *release; 363 void *opaque; 364 } ObjectProperty; 365 366 /** 367 * ObjectUnparent: 368 * @obj: the object that is being removed from the composition tree 369 * 370 * Called when an object is being removed from the QOM composition tree. 371 * The function should remove any backlinks from children objects to @obj. 372 */ 373 typedef void (ObjectUnparent)(Object *obj); 374 375 /** 376 * ObjectFree: 377 * @obj: the object being freed 378 * 379 * Called when an object's last reference is removed. 380 */ 381 typedef void (ObjectFree)(void *obj); 382 383 #define OBJECT_CLASS_CAST_CACHE 4 384 385 /** 386 * ObjectClass: 387 * 388 * The base for all classes. The only thing that #ObjectClass contains is an 389 * integer type handle. 390 */ 391 struct ObjectClass 392 { 393 /*< private >*/ 394 Type type; 395 GSList *interfaces; 396 397 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE]; 398 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE]; 399 400 ObjectUnparent *unparent; 401 402 GHashTable *properties; 403 }; 404 405 /** 406 * Object: 407 * 408 * The base for all objects. The first member of this object is a pointer to 409 * a #ObjectClass. Since C guarantees that the first member of a structure 410 * always begins at byte 0 of that structure, as long as any sub-object places 411 * its parent as the first member, we can cast directly to a #Object. 412 * 413 * As a result, #Object contains a reference to the objects type as its 414 * first member. This allows identification of the real type of the object at 415 * run time. 416 */ 417 struct Object 418 { 419 /*< private >*/ 420 ObjectClass *class; 421 ObjectFree *free; 422 GHashTable *properties; 423 uint32_t ref; 424 Object *parent; 425 }; 426 427 /** 428 * TypeInfo: 429 * @name: The name of the type. 430 * @parent: The name of the parent type. 431 * @instance_size: The size of the object (derivative of #Object). If 432 * @instance_size is 0, then the size of the object will be the size of the 433 * parent object. 434 * @instance_init: This function is called to initialize an object. The parent 435 * class will have already been initialized so the type is only responsible 436 * for initializing its own members. 437 * @instance_post_init: This function is called to finish initialization of 438 * an object, after all @instance_init functions were called. 439 * @instance_finalize: This function is called during object destruction. This 440 * is called before the parent @instance_finalize function has been called. 441 * An object should only free the members that are unique to its type in this 442 * function. 443 * @abstract: If this field is true, then the class is considered abstract and 444 * cannot be directly instantiated. 445 * @class_size: The size of the class object (derivative of #ObjectClass) 446 * for this object. If @class_size is 0, then the size of the class will be 447 * assumed to be the size of the parent class. This allows a type to avoid 448 * implementing an explicit class type if they are not adding additional 449 * virtual functions. 450 * @class_init: This function is called after all parent class initialization 451 * has occurred to allow a class to set its default virtual method pointers. 452 * This is also the function to use to override virtual methods from a parent 453 * class. 454 * @class_base_init: This function is called for all base classes after all 455 * parent class initialization has occurred, but before the class itself 456 * is initialized. This is the function to use to undo the effects of 457 * memcpy from the parent class to the descendants. 458 * @class_finalize: This function is called during class destruction and is 459 * meant to release and dynamic parameters allocated by @class_init. 460 * @class_data: Data to pass to the @class_init, @class_base_init and 461 * @class_finalize functions. This can be useful when building dynamic 462 * classes. 463 * @interfaces: The list of interfaces associated with this type. This 464 * should point to a static array that's terminated with a zero filled 465 * element. 466 */ 467 struct TypeInfo 468 { 469 const char *name; 470 const char *parent; 471 472 size_t instance_size; 473 void (*instance_init)(Object *obj); 474 void (*instance_post_init)(Object *obj); 475 void (*instance_finalize)(Object *obj); 476 477 bool abstract; 478 size_t class_size; 479 480 void (*class_init)(ObjectClass *klass, void *data); 481 void (*class_base_init)(ObjectClass *klass, void *data); 482 void (*class_finalize)(ObjectClass *klass, void *data); 483 void *class_data; 484 485 InterfaceInfo *interfaces; 486 }; 487 488 /** 489 * OBJECT: 490 * @obj: A derivative of #Object 491 * 492 * Converts an object to a #Object. Since all objects are #Objects, 493 * this function will always succeed. 494 */ 495 #define OBJECT(obj) \ 496 ((Object *)(obj)) 497 498 /** 499 * OBJECT_CLASS: 500 * @class: A derivative of #ObjectClass. 501 * 502 * Converts a class to an #ObjectClass. Since all objects are #Objects, 503 * this function will always succeed. 504 */ 505 #define OBJECT_CLASS(class) \ 506 ((ObjectClass *)(class)) 507 508 /** 509 * OBJECT_CHECK: 510 * @type: The C type to use for the return value. 511 * @obj: A derivative of @type to cast. 512 * @name: The QOM typename of @type 513 * 514 * A type safe version of @object_dynamic_cast_assert. Typically each class 515 * will define a macro based on this type to perform type safe dynamic_casts to 516 * this object type. 517 * 518 * If an invalid object is passed to this function, a run time assert will be 519 * generated. 520 */ 521 #define OBJECT_CHECK(type, obj, name) \ 522 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 523 __FILE__, __LINE__, __func__)) 524 525 /** 526 * OBJECT_CLASS_CHECK: 527 * @class_type: The C type to use for the return value. 528 * @class: A derivative class of @class_type to cast. 529 * @name: the QOM typename of @class_type. 530 * 531 * A type safe version of @object_class_dynamic_cast_assert. This macro is 532 * typically wrapped by each type to perform type safe casts of a class to a 533 * specific class type. 534 */ 535 #define OBJECT_CLASS_CHECK(class_type, class, name) \ 536 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \ 537 __FILE__, __LINE__, __func__)) 538 539 /** 540 * OBJECT_GET_CLASS: 541 * @class: The C type to use for the return value. 542 * @obj: The object to obtain the class for. 543 * @name: The QOM typename of @obj. 544 * 545 * This function will return a specific class for a given object. Its generally 546 * used by each type to provide a type safe macro to get a specific class type 547 * from an object. 548 */ 549 #define OBJECT_GET_CLASS(class, obj, name) \ 550 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 551 552 /** 553 * InterfaceInfo: 554 * @type: The name of the interface. 555 * 556 * The information associated with an interface. 557 */ 558 struct InterfaceInfo { 559 const char *type; 560 }; 561 562 /** 563 * InterfaceClass: 564 * @parent_class: the base class 565 * 566 * The class for all interfaces. Subclasses of this class should only add 567 * virtual methods. 568 */ 569 struct InterfaceClass 570 { 571 ObjectClass parent_class; 572 /*< private >*/ 573 ObjectClass *concrete_class; 574 Type interface_type; 575 }; 576 577 #define TYPE_INTERFACE "interface" 578 579 /** 580 * INTERFACE_CLASS: 581 * @klass: class to cast from 582 * Returns: An #InterfaceClass or raise an error if cast is invalid 583 */ 584 #define INTERFACE_CLASS(klass) \ 585 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 586 587 /** 588 * INTERFACE_CHECK: 589 * @interface: the type to return 590 * @obj: the object to convert to an interface 591 * @name: the interface type name 592 * 593 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 594 */ 595 #define INTERFACE_CHECK(interface, obj, name) \ 596 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 597 __FILE__, __LINE__, __func__)) 598 599 /** 600 * object_new: 601 * @typename: The name of the type of the object to instantiate. 602 * 603 * This function will initialize a new object using heap allocated memory. 604 * The returned object has a reference count of 1, and will be freed when 605 * the last reference is dropped. 606 * 607 * Returns: The newly allocated and instantiated object. 608 */ 609 Object *object_new(const char *typename); 610 611 /** 612 * object_new_with_props: 613 * @typename: The name of the type of the object to instantiate. 614 * @parent: the parent object 615 * @id: The unique ID of the object 616 * @errp: pointer to error object 617 * @...: list of property names and values 618 * 619 * This function will initialize a new object using heap allocated memory. 620 * The returned object has a reference count of 1, and will be freed when 621 * the last reference is dropped. 622 * 623 * The @id parameter will be used when registering the object as a 624 * child of @parent in the composition tree. 625 * 626 * The variadic parameters are a list of pairs of (propname, propvalue) 627 * strings. The propname of %NULL indicates the end of the property 628 * list. If the object implements the user creatable interface, the 629 * object will be marked complete once all the properties have been 630 * processed. 631 * 632 * <example> 633 * <title>Creating an object with properties</title> 634 * <programlisting> 635 * Error *err = NULL; 636 * Object *obj; 637 * 638 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE, 639 * object_get_objects_root(), 640 * "hostmem0", 641 * &err, 642 * "share", "yes", 643 * "mem-path", "/dev/shm/somefile", 644 * "prealloc", "yes", 645 * "size", "1048576", 646 * NULL); 647 * 648 * if (!obj) { 649 * g_printerr("Cannot create memory backend: %s\n", 650 * error_get_pretty(err)); 651 * } 652 * </programlisting> 653 * </example> 654 * 655 * The returned object will have one stable reference maintained 656 * for as long as it is present in the object hierarchy. 657 * 658 * Returns: The newly allocated, instantiated & initialized object. 659 */ 660 Object *object_new_with_props(const char *typename, 661 Object *parent, 662 const char *id, 663 Error **errp, 664 ...) QEMU_SENTINEL; 665 666 /** 667 * object_new_with_propv: 668 * @typename: The name of the type of the object to instantiate. 669 * @parent: the parent object 670 * @id: The unique ID of the object 671 * @errp: pointer to error object 672 * @vargs: list of property names and values 673 * 674 * See object_new_with_props() for documentation. 675 */ 676 Object *object_new_with_propv(const char *typename, 677 Object *parent, 678 const char *id, 679 Error **errp, 680 va_list vargs); 681 682 /** 683 * object_set_props: 684 * @obj: the object instance to set properties on 685 * @errp: pointer to error object 686 * @...: list of property names and values 687 * 688 * This function will set a list of properties on an existing object 689 * instance. 690 * 691 * The variadic parameters are a list of pairs of (propname, propvalue) 692 * strings. The propname of %NULL indicates the end of the property 693 * list. 694 * 695 * <example> 696 * <title>Update an object's properties</title> 697 * <programlisting> 698 * Error *err = NULL; 699 * Object *obj = ...get / create object...; 700 * 701 * obj = object_set_props(obj, 702 * &err, 703 * "share", "yes", 704 * "mem-path", "/dev/shm/somefile", 705 * "prealloc", "yes", 706 * "size", "1048576", 707 * NULL); 708 * 709 * if (!obj) { 710 * g_printerr("Cannot set properties: %s\n", 711 * error_get_pretty(err)); 712 * } 713 * </programlisting> 714 * </example> 715 * 716 * The returned object will have one stable reference maintained 717 * for as long as it is present in the object hierarchy. 718 * 719 * Returns: -1 on error, 0 on success 720 */ 721 int object_set_props(Object *obj, 722 Error **errp, 723 ...) QEMU_SENTINEL; 724 725 /** 726 * object_set_propv: 727 * @obj: the object instance to set properties on 728 * @errp: pointer to error object 729 * @vargs: list of property names and values 730 * 731 * See object_set_props() for documentation. 732 * 733 * Returns: -1 on error, 0 on success 734 */ 735 int object_set_propv(Object *obj, 736 Error **errp, 737 va_list vargs); 738 739 /** 740 * object_initialize: 741 * @obj: A pointer to the memory to be used for the object. 742 * @size: The maximum size available at @obj for the object. 743 * @typename: The name of the type of the object to instantiate. 744 * 745 * This function will initialize an object. The memory for the object should 746 * have already been allocated. The returned object has a reference count of 1, 747 * and will be finalized when the last reference is dropped. 748 */ 749 void object_initialize(void *obj, size_t size, const char *typename); 750 751 /** 752 * object_initialize_child: 753 * @parentobj: The parent object to add a property to 754 * @propname: The name of the property 755 * @childobj: A pointer to the memory to be used for the object. 756 * @size: The maximum size available at @childobj for the object. 757 * @type: The name of the type of the object to instantiate. 758 * @errp: If an error occurs, a pointer to an area to store the error 759 * @...: list of property names and values 760 * 761 * This function will initialize an object. The memory for the object should 762 * have already been allocated. The object will then be added as child property 763 * to a parent with object_property_add_child() function. The returned object 764 * has a reference count of 1 (for the "child<...>" property from the parent), 765 * so the object will be finalized automatically when the parent gets removed. 766 * 767 * The variadic parameters are a list of pairs of (propname, propvalue) 768 * strings. The propname of %NULL indicates the end of the property list. 769 * If the object implements the user creatable interface, the object will 770 * be marked complete once all the properties have been processed. 771 */ 772 void object_initialize_child(Object *parentobj, const char *propname, 773 void *childobj, size_t size, const char *type, 774 Error **errp, ...) QEMU_SENTINEL; 775 776 /** 777 * object_initialize_childv: 778 * @parentobj: The parent object to add a property to 779 * @propname: The name of the property 780 * @childobj: A pointer to the memory to be used for the object. 781 * @size: The maximum size available at @childobj for the object. 782 * @type: The name of the type of the object to instantiate. 783 * @errp: If an error occurs, a pointer to an area to store the error 784 * @vargs: list of property names and values 785 * 786 * See object_initialize_child() for documentation. 787 */ 788 void object_initialize_childv(Object *parentobj, const char *propname, 789 void *childobj, size_t size, const char *type, 790 Error **errp, va_list vargs); 791 792 /** 793 * object_dynamic_cast: 794 * @obj: The object to cast. 795 * @typename: The @typename to cast to. 796 * 797 * This function will determine if @obj is-a @typename. @obj can refer to an 798 * object or an interface associated with an object. 799 * 800 * Returns: This function returns @obj on success or #NULL on failure. 801 */ 802 Object *object_dynamic_cast(Object *obj, const char *typename); 803 804 /** 805 * object_dynamic_cast_assert: 806 * 807 * See object_dynamic_cast() for a description of the parameters of this 808 * function. The only difference in behavior is that this function asserts 809 * instead of returning #NULL on failure if QOM cast debugging is enabled. 810 * This function is not meant to be called directly, but only through 811 * the wrapper macro OBJECT_CHECK. 812 */ 813 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 814 const char *file, int line, const char *func); 815 816 /** 817 * object_get_class: 818 * @obj: A derivative of #Object 819 * 820 * Returns: The #ObjectClass of the type associated with @obj. 821 */ 822 ObjectClass *object_get_class(Object *obj); 823 824 /** 825 * object_get_typename: 826 * @obj: A derivative of #Object. 827 * 828 * Returns: The QOM typename of @obj. 829 */ 830 const char *object_get_typename(const Object *obj); 831 832 /** 833 * type_register_static: 834 * @info: The #TypeInfo of the new type. 835 * 836 * @info and all of the strings it points to should exist for the life time 837 * that the type is registered. 838 * 839 * Returns: the new #Type. 840 */ 841 Type type_register_static(const TypeInfo *info); 842 843 /** 844 * type_register: 845 * @info: The #TypeInfo of the new type 846 * 847 * Unlike type_register_static(), this call does not require @info or its 848 * string members to continue to exist after the call returns. 849 * 850 * Returns: the new #Type. 851 */ 852 Type type_register(const TypeInfo *info); 853 854 /** 855 * type_register_static_array: 856 * @infos: The array of the new type #TypeInfo structures. 857 * @nr_infos: number of entries in @infos 858 * 859 * @infos and all of the strings it points to should exist for the life time 860 * that the type is registered. 861 */ 862 void type_register_static_array(const TypeInfo *infos, int nr_infos); 863 864 /** 865 * DEFINE_TYPES: 866 * @type_array: The array containing #TypeInfo structures to register 867 * 868 * @type_array should be static constant that exists for the life time 869 * that the type is registered. 870 */ 871 #define DEFINE_TYPES(type_array) \ 872 static void do_qemu_init_ ## type_array(void) \ 873 { \ 874 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \ 875 } \ 876 type_init(do_qemu_init_ ## type_array) 877 878 /** 879 * object_class_dynamic_cast_assert: 880 * @klass: The #ObjectClass to attempt to cast. 881 * @typename: The QOM typename of the class to cast to. 882 * 883 * See object_class_dynamic_cast() for a description of the parameters 884 * of this function. The only difference in behavior is that this function 885 * asserts instead of returning #NULL on failure if QOM cast debugging is 886 * enabled. This function is not meant to be called directly, but only through 887 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK. 888 */ 889 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 890 const char *typename, 891 const char *file, int line, 892 const char *func); 893 894 /** 895 * object_class_dynamic_cast: 896 * @klass: The #ObjectClass to attempt to cast. 897 * @typename: The QOM typename of the class to cast to. 898 * 899 * Returns: If @typename is a class, this function returns @klass if 900 * @typename is a subtype of @klass, else returns #NULL. 901 * 902 * If @typename is an interface, this function returns the interface 903 * definition for @klass if @klass implements it unambiguously; #NULL 904 * is returned if @klass does not implement the interface or if multiple 905 * classes or interfaces on the hierarchy leading to @klass implement 906 * it. (FIXME: perhaps this can be detected at type definition time?) 907 */ 908 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 909 const char *typename); 910 911 /** 912 * object_class_get_parent: 913 * @klass: The class to obtain the parent for. 914 * 915 * Returns: The parent for @klass or %NULL if none. 916 */ 917 ObjectClass *object_class_get_parent(ObjectClass *klass); 918 919 /** 920 * object_class_get_name: 921 * @klass: The class to obtain the QOM typename for. 922 * 923 * Returns: The QOM typename for @klass. 924 */ 925 const char *object_class_get_name(ObjectClass *klass); 926 927 /** 928 * object_class_is_abstract: 929 * @klass: The class to obtain the abstractness for. 930 * 931 * Returns: %true if @klass is abstract, %false otherwise. 932 */ 933 bool object_class_is_abstract(ObjectClass *klass); 934 935 /** 936 * object_class_by_name: 937 * @typename: The QOM typename to obtain the class for. 938 * 939 * Returns: The class for @typename or %NULL if not found. 940 */ 941 ObjectClass *object_class_by_name(const char *typename); 942 943 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 944 const char *implements_type, bool include_abstract, 945 void *opaque); 946 947 /** 948 * object_class_get_list: 949 * @implements_type: The type to filter for, including its derivatives. 950 * @include_abstract: Whether to include abstract classes. 951 * 952 * Returns: A singly-linked list of the classes in reverse hashtable order. 953 */ 954 GSList *object_class_get_list(const char *implements_type, 955 bool include_abstract); 956 957 /** 958 * object_class_get_list_sorted: 959 * @implements_type: The type to filter for, including its derivatives. 960 * @include_abstract: Whether to include abstract classes. 961 * 962 * Returns: A singly-linked list of the classes in alphabetical 963 * case-insensitive order. 964 */ 965 GSList *object_class_get_list_sorted(const char *implements_type, 966 bool include_abstract); 967 968 /** 969 * object_ref: 970 * @obj: the object 971 * 972 * Increase the reference count of a object. A object cannot be freed as long 973 * as its reference count is greater than zero. 974 */ 975 void object_ref(Object *obj); 976 977 /** 978 * object_unref: 979 * @obj: the object 980 * 981 * Decrease the reference count of a object. A object cannot be freed as long 982 * as its reference count is greater than zero. 983 */ 984 void object_unref(Object *obj); 985 986 /** 987 * object_property_add: 988 * @obj: the object to add a property to 989 * @name: the name of the property. This can contain any character except for 990 * a forward slash. In general, you should use hyphens '-' instead of 991 * underscores '_' when naming properties. 992 * @type: the type name of the property. This namespace is pretty loosely 993 * defined. Sub namespaces are constructed by using a prefix and then 994 * to angle brackets. For instance, the type 'virtio-net-pci' in the 995 * 'link' namespace would be 'link<virtio-net-pci>'. 996 * @get: The getter to be called to read a property. If this is NULL, then 997 * the property cannot be read. 998 * @set: the setter to be called to write a property. If this is NULL, 999 * then the property cannot be written. 1000 * @release: called when the property is removed from the object. This is 1001 * meant to allow a property to free its opaque upon object 1002 * destruction. This may be NULL. 1003 * @opaque: an opaque pointer to pass to the callbacks for the property 1004 * @errp: returns an error if this function fails 1005 * 1006 * Returns: The #ObjectProperty; this can be used to set the @resolve 1007 * callback for child and link properties. 1008 */ 1009 ObjectProperty *object_property_add(Object *obj, const char *name, 1010 const char *type, 1011 ObjectPropertyAccessor *get, 1012 ObjectPropertyAccessor *set, 1013 ObjectPropertyRelease *release, 1014 void *opaque, Error **errp); 1015 1016 void object_property_del(Object *obj, const char *name, Error **errp); 1017 1018 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name, 1019 const char *type, 1020 ObjectPropertyAccessor *get, 1021 ObjectPropertyAccessor *set, 1022 ObjectPropertyRelease *release, 1023 void *opaque, Error **errp); 1024 1025 /** 1026 * object_property_find: 1027 * @obj: the object 1028 * @name: the name of the property 1029 * @errp: returns an error if this function fails 1030 * 1031 * Look up a property for an object and return its #ObjectProperty if found. 1032 */ 1033 ObjectProperty *object_property_find(Object *obj, const char *name, 1034 Error **errp); 1035 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name, 1036 Error **errp); 1037 1038 typedef struct ObjectPropertyIterator { 1039 ObjectClass *nextclass; 1040 GHashTableIter iter; 1041 } ObjectPropertyIterator; 1042 1043 /** 1044 * object_property_iter_init: 1045 * @obj: the object 1046 * 1047 * Initializes an iterator for traversing all properties 1048 * registered against an object instance, its class and all parent classes. 1049 * 1050 * It is forbidden to modify the property list while iterating, 1051 * whether removing or adding properties. 1052 * 1053 * Typical usage pattern would be 1054 * 1055 * <example> 1056 * <title>Using object property iterators</title> 1057 * <programlisting> 1058 * ObjectProperty *prop; 1059 * ObjectPropertyIterator iter; 1060 * 1061 * object_property_iter_init(&iter, obj); 1062 * while ((prop = object_property_iter_next(&iter))) { 1063 * ... do something with prop ... 1064 * } 1065 * </programlisting> 1066 * </example> 1067 */ 1068 void object_property_iter_init(ObjectPropertyIterator *iter, 1069 Object *obj); 1070 1071 /** 1072 * object_class_property_iter_init: 1073 * @klass: the class 1074 * 1075 * Initializes an iterator for traversing all properties 1076 * registered against an object class and all parent classes. 1077 * 1078 * It is forbidden to modify the property list while iterating, 1079 * whether removing or adding properties. 1080 * 1081 * This can be used on abstract classes as it does not create a temporary 1082 * instance. 1083 */ 1084 void object_class_property_iter_init(ObjectPropertyIterator *iter, 1085 ObjectClass *klass); 1086 1087 /** 1088 * object_property_iter_next: 1089 * @iter: the iterator instance 1090 * 1091 * Return the next available property. If no further properties 1092 * are available, a %NULL value will be returned and the @iter 1093 * pointer should not be used again after this point without 1094 * re-initializing it. 1095 * 1096 * Returns: the next property, or %NULL when all properties 1097 * have been traversed. 1098 */ 1099 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter); 1100 1101 void object_unparent(Object *obj); 1102 1103 /** 1104 * object_property_get: 1105 * @obj: the object 1106 * @v: the visitor that will receive the property value. This should be an 1107 * Output visitor and the data will be written with @name as the name. 1108 * @name: the name of the property 1109 * @errp: returns an error if this function fails 1110 * 1111 * Reads a property from a object. 1112 */ 1113 void object_property_get(Object *obj, Visitor *v, const char *name, 1114 Error **errp); 1115 1116 /** 1117 * object_property_set_str: 1118 * @value: the value to be written to the property 1119 * @name: the name of the property 1120 * @errp: returns an error if this function fails 1121 * 1122 * Writes a string value to a property. 1123 */ 1124 void object_property_set_str(Object *obj, const char *value, 1125 const char *name, Error **errp); 1126 1127 /** 1128 * object_property_get_str: 1129 * @obj: the object 1130 * @name: the name of the property 1131 * @errp: returns an error if this function fails 1132 * 1133 * Returns: the value of the property, converted to a C string, or NULL if 1134 * an error occurs (including when the property value is not a string). 1135 * The caller should free the string. 1136 */ 1137 char *object_property_get_str(Object *obj, const char *name, 1138 Error **errp); 1139 1140 /** 1141 * object_property_set_link: 1142 * @value: the value to be written to the property 1143 * @name: the name of the property 1144 * @errp: returns an error if this function fails 1145 * 1146 * Writes an object's canonical path to a property. 1147 * 1148 * If the link property was created with 1149 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is 1150 * unreferenced, and a reference is added to the new target object. 1151 * 1152 */ 1153 void object_property_set_link(Object *obj, Object *value, 1154 const char *name, Error **errp); 1155 1156 /** 1157 * object_property_get_link: 1158 * @obj: the object 1159 * @name: the name of the property 1160 * @errp: returns an error if this function fails 1161 * 1162 * Returns: the value of the property, resolved from a path to an Object, 1163 * or NULL if an error occurs (including when the property value is not a 1164 * string or not a valid object path). 1165 */ 1166 Object *object_property_get_link(Object *obj, const char *name, 1167 Error **errp); 1168 1169 /** 1170 * object_property_set_bool: 1171 * @value: the value to be written to the property 1172 * @name: the name of the property 1173 * @errp: returns an error if this function fails 1174 * 1175 * Writes a bool value to a property. 1176 */ 1177 void object_property_set_bool(Object *obj, bool value, 1178 const char *name, Error **errp); 1179 1180 /** 1181 * object_property_get_bool: 1182 * @obj: the object 1183 * @name: the name of the property 1184 * @errp: returns an error if this function fails 1185 * 1186 * Returns: the value of the property, converted to a boolean, or NULL if 1187 * an error occurs (including when the property value is not a bool). 1188 */ 1189 bool object_property_get_bool(Object *obj, const char *name, 1190 Error **errp); 1191 1192 /** 1193 * object_property_set_int: 1194 * @value: the value to be written to the property 1195 * @name: the name of the property 1196 * @errp: returns an error if this function fails 1197 * 1198 * Writes an integer value to a property. 1199 */ 1200 void object_property_set_int(Object *obj, int64_t value, 1201 const char *name, Error **errp); 1202 1203 /** 1204 * object_property_get_int: 1205 * @obj: the object 1206 * @name: the name of the property 1207 * @errp: returns an error if this function fails 1208 * 1209 * Returns: the value of the property, converted to an integer, or negative if 1210 * an error occurs (including when the property value is not an integer). 1211 */ 1212 int64_t object_property_get_int(Object *obj, const char *name, 1213 Error **errp); 1214 1215 /** 1216 * object_property_set_uint: 1217 * @value: the value to be written to the property 1218 * @name: the name of the property 1219 * @errp: returns an error if this function fails 1220 * 1221 * Writes an unsigned integer value to a property. 1222 */ 1223 void object_property_set_uint(Object *obj, uint64_t value, 1224 const char *name, Error **errp); 1225 1226 /** 1227 * object_property_get_uint: 1228 * @obj: the object 1229 * @name: the name of the property 1230 * @errp: returns an error if this function fails 1231 * 1232 * Returns: the value of the property, converted to an unsigned integer, or 0 1233 * an error occurs (including when the property value is not an integer). 1234 */ 1235 uint64_t object_property_get_uint(Object *obj, const char *name, 1236 Error **errp); 1237 1238 /** 1239 * object_property_get_enum: 1240 * @obj: the object 1241 * @name: the name of the property 1242 * @typename: the name of the enum data type 1243 * @errp: returns an error if this function fails 1244 * 1245 * Returns: the value of the property, converted to an integer, or 1246 * undefined if an error occurs (including when the property value is not 1247 * an enum). 1248 */ 1249 int object_property_get_enum(Object *obj, const char *name, 1250 const char *typename, Error **errp); 1251 1252 /** 1253 * object_property_get_uint16List: 1254 * @obj: the object 1255 * @name: the name of the property 1256 * @list: the returned int list 1257 * @errp: returns an error if this function fails 1258 * 1259 * Returns: the value of the property, converted to integers, or 1260 * undefined if an error occurs (including when the property value is not 1261 * an list of integers). 1262 */ 1263 void object_property_get_uint16List(Object *obj, const char *name, 1264 uint16List **list, Error **errp); 1265 1266 /** 1267 * object_property_set: 1268 * @obj: the object 1269 * @v: the visitor that will be used to write the property value. This should 1270 * be an Input visitor and the data will be first read with @name as the 1271 * name and then written as the property value. 1272 * @name: the name of the property 1273 * @errp: returns an error if this function fails 1274 * 1275 * Writes a property to a object. 1276 */ 1277 void object_property_set(Object *obj, Visitor *v, const char *name, 1278 Error **errp); 1279 1280 /** 1281 * object_property_parse: 1282 * @obj: the object 1283 * @string: the string that will be used to parse the property value. 1284 * @name: the name of the property 1285 * @errp: returns an error if this function fails 1286 * 1287 * Parses a string and writes the result into a property of an object. 1288 */ 1289 void object_property_parse(Object *obj, const char *string, 1290 const char *name, Error **errp); 1291 1292 /** 1293 * object_property_print: 1294 * @obj: the object 1295 * @name: the name of the property 1296 * @human: if true, print for human consumption 1297 * @errp: returns an error if this function fails 1298 * 1299 * Returns a string representation of the value of the property. The 1300 * caller shall free the string. 1301 */ 1302 char *object_property_print(Object *obj, const char *name, bool human, 1303 Error **errp); 1304 1305 /** 1306 * object_property_get_type: 1307 * @obj: the object 1308 * @name: the name of the property 1309 * @errp: returns an error if this function fails 1310 * 1311 * Returns: The type name of the property. 1312 */ 1313 const char *object_property_get_type(Object *obj, const char *name, 1314 Error **errp); 1315 1316 /** 1317 * object_get_root: 1318 * 1319 * Returns: the root object of the composition tree 1320 */ 1321 Object *object_get_root(void); 1322 1323 1324 /** 1325 * object_get_objects_root: 1326 * 1327 * Get the container object that holds user created 1328 * object instances. This is the object at path 1329 * "/objects" 1330 * 1331 * Returns: the user object container 1332 */ 1333 Object *object_get_objects_root(void); 1334 1335 /** 1336 * object_get_internal_root: 1337 * 1338 * Get the container object that holds internally used object 1339 * instances. Any object which is put into this container must not be 1340 * user visible, and it will not be exposed in the QOM tree. 1341 * 1342 * Returns: the internal object container 1343 */ 1344 Object *object_get_internal_root(void); 1345 1346 /** 1347 * object_get_canonical_path_component: 1348 * 1349 * Returns: The final component in the object's canonical path. The canonical 1350 * path is the path within the composition tree starting from the root. 1351 * %NULL if the object doesn't have a parent (and thus a canonical path). 1352 */ 1353 gchar *object_get_canonical_path_component(Object *obj); 1354 1355 /** 1356 * object_get_canonical_path: 1357 * 1358 * Returns: The canonical path for a object. This is the path within the 1359 * composition tree starting from the root. 1360 */ 1361 gchar *object_get_canonical_path(Object *obj); 1362 1363 /** 1364 * object_resolve_path: 1365 * @path: the path to resolve 1366 * @ambiguous: returns true if the path resolution failed because of an 1367 * ambiguous match 1368 * 1369 * There are two types of supported paths--absolute paths and partial paths. 1370 * 1371 * Absolute paths are derived from the root object and can follow child<> or 1372 * link<> properties. Since they can follow link<> properties, they can be 1373 * arbitrarily long. Absolute paths look like absolute filenames and are 1374 * prefixed with a leading slash. 1375 * 1376 * Partial paths look like relative filenames. They do not begin with a 1377 * prefix. The matching rules for partial paths are subtle but designed to make 1378 * specifying objects easy. At each level of the composition tree, the partial 1379 * path is matched as an absolute path. The first match is not returned. At 1380 * least two matches are searched for. A successful result is only returned if 1381 * only one match is found. If more than one match is found, a flag is 1382 * returned to indicate that the match was ambiguous. 1383 * 1384 * Returns: The matched object or NULL on path lookup failure. 1385 */ 1386 Object *object_resolve_path(const char *path, bool *ambiguous); 1387 1388 /** 1389 * object_resolve_path_type: 1390 * @path: the path to resolve 1391 * @typename: the type to look for. 1392 * @ambiguous: returns true if the path resolution failed because of an 1393 * ambiguous match 1394 * 1395 * This is similar to object_resolve_path. However, when looking for a 1396 * partial path only matches that implement the given type are considered. 1397 * This restricts the search and avoids spuriously flagging matches as 1398 * ambiguous. 1399 * 1400 * For both partial and absolute paths, the return value goes through 1401 * a dynamic cast to @typename. This is important if either the link, 1402 * or the typename itself are of interface types. 1403 * 1404 * Returns: The matched object or NULL on path lookup failure. 1405 */ 1406 Object *object_resolve_path_type(const char *path, const char *typename, 1407 bool *ambiguous); 1408 1409 /** 1410 * object_resolve_path_component: 1411 * @parent: the object in which to resolve the path 1412 * @part: the component to resolve. 1413 * 1414 * This is similar to object_resolve_path with an absolute path, but it 1415 * only resolves one element (@part) and takes the others from @parent. 1416 * 1417 * Returns: The resolved object or NULL on path lookup failure. 1418 */ 1419 Object *object_resolve_path_component(Object *parent, const gchar *part); 1420 1421 /** 1422 * object_property_add_child: 1423 * @obj: the object to add a property to 1424 * @name: the name of the property 1425 * @child: the child object 1426 * @errp: if an error occurs, a pointer to an area to store the error 1427 * 1428 * Child properties form the composition tree. All objects need to be a child 1429 * of another object. Objects can only be a child of one object. 1430 * 1431 * There is no way for a child to determine what its parent is. It is not 1432 * a bidirectional relationship. This is by design. 1433 * 1434 * The value of a child property as a C string will be the child object's 1435 * canonical path. It can be retrieved using object_property_get_str(). 1436 * The child object itself can be retrieved using object_property_get_link(). 1437 */ 1438 void object_property_add_child(Object *obj, const char *name, 1439 Object *child, Error **errp); 1440 1441 typedef enum { 1442 /* Unref the link pointer when the property is deleted */ 1443 OBJ_PROP_LINK_STRONG = 0x1, 1444 } ObjectPropertyLinkFlags; 1445 1446 /** 1447 * object_property_allow_set_link: 1448 * 1449 * The default implementation of the object_property_add_link() check() 1450 * callback function. It allows the link property to be set and never returns 1451 * an error. 1452 */ 1453 void object_property_allow_set_link(const Object *, const char *, 1454 Object *, Error **); 1455 1456 /** 1457 * object_property_add_link: 1458 * @obj: the object to add a property to 1459 * @name: the name of the property 1460 * @type: the qobj type of the link 1461 * @child: a pointer to where the link object reference is stored 1462 * @check: callback to veto setting or NULL if the property is read-only 1463 * @flags: additional options for the link 1464 * @errp: if an error occurs, a pointer to an area to store the error 1465 * 1466 * Links establish relationships between objects. Links are unidirectional 1467 * although two links can be combined to form a bidirectional relationship 1468 * between objects. 1469 * 1470 * Links form the graph in the object model. 1471 * 1472 * The <code>@check()</code> callback is invoked when 1473 * object_property_set_link() is called and can raise an error to prevent the 1474 * link being set. If <code>@check</code> is NULL, the property is read-only 1475 * and cannot be set. 1476 * 1477 * Ownership of the pointer that @child points to is transferred to the 1478 * link property. The reference count for <code>*@child</code> is 1479 * managed by the property from after the function returns till the 1480 * property is deleted with object_property_del(). If the 1481 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set, 1482 * the reference count is decremented when the property is deleted or 1483 * modified. 1484 */ 1485 void object_property_add_link(Object *obj, const char *name, 1486 const char *type, Object **child, 1487 void (*check)(const Object *obj, const char *name, 1488 Object *val, Error **errp), 1489 ObjectPropertyLinkFlags flags, 1490 Error **errp); 1491 1492 /** 1493 * object_property_add_str: 1494 * @obj: the object to add a property to 1495 * @name: the name of the property 1496 * @get: the getter or NULL if the property is write-only. This function must 1497 * return a string to be freed by g_free(). 1498 * @set: the setter or NULL if the property is read-only 1499 * @errp: if an error occurs, a pointer to an area to store the error 1500 * 1501 * Add a string property using getters/setters. This function will add a 1502 * property of type 'string'. 1503 */ 1504 void object_property_add_str(Object *obj, const char *name, 1505 char *(*get)(Object *, Error **), 1506 void (*set)(Object *, const char *, Error **), 1507 Error **errp); 1508 1509 void object_class_property_add_str(ObjectClass *klass, const char *name, 1510 char *(*get)(Object *, Error **), 1511 void (*set)(Object *, const char *, 1512 Error **), 1513 Error **errp); 1514 1515 /** 1516 * object_property_add_bool: 1517 * @obj: the object to add a property to 1518 * @name: the name of the property 1519 * @get: the getter or NULL if the property is write-only. 1520 * @set: the setter or NULL if the property is read-only 1521 * @errp: if an error occurs, a pointer to an area to store the error 1522 * 1523 * Add a bool property using getters/setters. This function will add a 1524 * property of type 'bool'. 1525 */ 1526 void object_property_add_bool(Object *obj, const char *name, 1527 bool (*get)(Object *, Error **), 1528 void (*set)(Object *, bool, Error **), 1529 Error **errp); 1530 1531 void object_class_property_add_bool(ObjectClass *klass, const char *name, 1532 bool (*get)(Object *, Error **), 1533 void (*set)(Object *, bool, Error **), 1534 Error **errp); 1535 1536 /** 1537 * object_property_add_enum: 1538 * @obj: the object to add a property to 1539 * @name: the name of the property 1540 * @typename: the name of the enum data type 1541 * @get: the getter or %NULL if the property is write-only. 1542 * @set: the setter or %NULL if the property is read-only 1543 * @errp: if an error occurs, a pointer to an area to store the error 1544 * 1545 * Add an enum property using getters/setters. This function will add a 1546 * property of type '@typename'. 1547 */ 1548 void object_property_add_enum(Object *obj, const char *name, 1549 const char *typename, 1550 const QEnumLookup *lookup, 1551 int (*get)(Object *, Error **), 1552 void (*set)(Object *, int, Error **), 1553 Error **errp); 1554 1555 void object_class_property_add_enum(ObjectClass *klass, const char *name, 1556 const char *typename, 1557 const QEnumLookup *lookup, 1558 int (*get)(Object *, Error **), 1559 void (*set)(Object *, int, Error **), 1560 Error **errp); 1561 1562 /** 1563 * object_property_add_tm: 1564 * @obj: the object to add a property to 1565 * @name: the name of the property 1566 * @get: the getter or NULL if the property is write-only. 1567 * @errp: if an error occurs, a pointer to an area to store the error 1568 * 1569 * Add a read-only struct tm valued property using a getter function. 1570 * This function will add a property of type 'struct tm'. 1571 */ 1572 void object_property_add_tm(Object *obj, const char *name, 1573 void (*get)(Object *, struct tm *, Error **), 1574 Error **errp); 1575 1576 void object_class_property_add_tm(ObjectClass *klass, const char *name, 1577 void (*get)(Object *, struct tm *, Error **), 1578 Error **errp); 1579 1580 /** 1581 * object_property_add_uint8_ptr: 1582 * @obj: the object to add a property to 1583 * @name: the name of the property 1584 * @v: pointer to value 1585 * @errp: if an error occurs, a pointer to an area to store the error 1586 * 1587 * Add an integer property in memory. This function will add a 1588 * property of type 'uint8'. 1589 */ 1590 void object_property_add_uint8_ptr(Object *obj, const char *name, 1591 const uint8_t *v, Error **errp); 1592 void object_class_property_add_uint8_ptr(ObjectClass *klass, const char *name, 1593 const uint8_t *v, Error **errp); 1594 1595 /** 1596 * object_property_add_uint16_ptr: 1597 * @obj: the object to add a property to 1598 * @name: the name of the property 1599 * @v: pointer to value 1600 * @errp: if an error occurs, a pointer to an area to store the error 1601 * 1602 * Add an integer property in memory. This function will add a 1603 * property of type 'uint16'. 1604 */ 1605 void object_property_add_uint16_ptr(Object *obj, const char *name, 1606 const uint16_t *v, Error **errp); 1607 void object_class_property_add_uint16_ptr(ObjectClass *klass, const char *name, 1608 const uint16_t *v, Error **errp); 1609 1610 /** 1611 * object_property_add_uint32_ptr: 1612 * @obj: the object to add a property to 1613 * @name: the name of the property 1614 * @v: pointer to value 1615 * @errp: if an error occurs, a pointer to an area to store the error 1616 * 1617 * Add an integer property in memory. This function will add a 1618 * property of type 'uint32'. 1619 */ 1620 void object_property_add_uint32_ptr(Object *obj, const char *name, 1621 const uint32_t *v, Error **errp); 1622 void object_class_property_add_uint32_ptr(ObjectClass *klass, const char *name, 1623 const uint32_t *v, Error **errp); 1624 1625 /** 1626 * object_property_add_uint64_ptr: 1627 * @obj: the object to add a property to 1628 * @name: the name of the property 1629 * @v: pointer to value 1630 * @errp: if an error occurs, a pointer to an area to store the error 1631 * 1632 * Add an integer property in memory. This function will add a 1633 * property of type 'uint64'. 1634 */ 1635 void object_property_add_uint64_ptr(Object *obj, const char *name, 1636 const uint64_t *v, Error **Errp); 1637 void object_class_property_add_uint64_ptr(ObjectClass *klass, const char *name, 1638 const uint64_t *v, Error **Errp); 1639 1640 /** 1641 * object_property_add_alias: 1642 * @obj: the object to add a property to 1643 * @name: the name of the property 1644 * @target_obj: the object to forward property access to 1645 * @target_name: the name of the property on the forwarded object 1646 * @errp: if an error occurs, a pointer to an area to store the error 1647 * 1648 * Add an alias for a property on an object. This function will add a property 1649 * of the same type as the forwarded property. 1650 * 1651 * The caller must ensure that <code>@target_obj</code> stays alive as long as 1652 * this property exists. In the case of a child object or an alias on the same 1653 * object this will be the case. For aliases to other objects the caller is 1654 * responsible for taking a reference. 1655 */ 1656 void object_property_add_alias(Object *obj, const char *name, 1657 Object *target_obj, const char *target_name, 1658 Error **errp); 1659 1660 /** 1661 * object_property_add_const_link: 1662 * @obj: the object to add a property to 1663 * @name: the name of the property 1664 * @target: the object to be referred by the link 1665 * @errp: if an error occurs, a pointer to an area to store the error 1666 * 1667 * Add an unmodifiable link for a property on an object. This function will 1668 * add a property of type link<TYPE> where TYPE is the type of @target. 1669 * 1670 * The caller must ensure that @target stays alive as long as 1671 * this property exists. In the case @target is a child of @obj, 1672 * this will be the case. Otherwise, the caller is responsible for 1673 * taking a reference. 1674 */ 1675 void object_property_add_const_link(Object *obj, const char *name, 1676 Object *target, Error **errp); 1677 1678 /** 1679 * object_property_set_description: 1680 * @obj: the object owning the property 1681 * @name: the name of the property 1682 * @description: the description of the property on the object 1683 * @errp: if an error occurs, a pointer to an area to store the error 1684 * 1685 * Set an object property's description. 1686 * 1687 */ 1688 void object_property_set_description(Object *obj, const char *name, 1689 const char *description, Error **errp); 1690 void object_class_property_set_description(ObjectClass *klass, const char *name, 1691 const char *description, 1692 Error **errp); 1693 1694 /** 1695 * object_child_foreach: 1696 * @obj: the object whose children will be navigated 1697 * @fn: the iterator function to be called 1698 * @opaque: an opaque value that will be passed to the iterator 1699 * 1700 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1701 * non-zero. 1702 * 1703 * It is forbidden to add or remove children from @obj from the @fn 1704 * callback. 1705 * 1706 * Returns: The last value returned by @fn, or 0 if there is no child. 1707 */ 1708 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 1709 void *opaque); 1710 1711 /** 1712 * object_child_foreach_recursive: 1713 * @obj: the object whose children will be navigated 1714 * @fn: the iterator function to be called 1715 * @opaque: an opaque value that will be passed to the iterator 1716 * 1717 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1718 * non-zero. Calls recursively, all child nodes of @obj will also be passed 1719 * all the way down to the leaf nodes of the tree. Depth first ordering. 1720 * 1721 * It is forbidden to add or remove children from @obj (or its 1722 * child nodes) from the @fn callback. 1723 * 1724 * Returns: The last value returned by @fn, or 0 if there is no child. 1725 */ 1726 int object_child_foreach_recursive(Object *obj, 1727 int (*fn)(Object *child, void *opaque), 1728 void *opaque); 1729 /** 1730 * container_get: 1731 * @root: root of the #path, e.g., object_get_root() 1732 * @path: path to the container 1733 * 1734 * Return a container object whose path is @path. Create more containers 1735 * along the path if necessary. 1736 * 1737 * Returns: the container object. 1738 */ 1739 Object *container_get(Object *root, const char *path); 1740 1741 /** 1742 * object_type_get_instance_size: 1743 * @typename: Name of the Type whose instance_size is required 1744 * 1745 * Returns the instance_size of the given @typename. 1746 */ 1747 size_t object_type_get_instance_size(const char *typename); 1748 #endif 1749