xref: /openbmc/qemu/include/qom/object.h (revision 5de5b99b)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/module.h"
19 #include "qom/object.h"
20 
21 struct TypeImpl;
22 typedef struct TypeImpl *Type;
23 
24 typedef struct TypeInfo TypeInfo;
25 
26 typedef struct InterfaceClass InterfaceClass;
27 typedef struct InterfaceInfo InterfaceInfo;
28 
29 #define TYPE_OBJECT "object"
30 
31 /**
32  * SECTION:object.h
33  * @title:Base Object Type System
34  * @short_description: interfaces for creating new types and objects
35  *
36  * The QEMU Object Model provides a framework for registering user creatable
37  * types and instantiating objects from those types.  QOM provides the following
38  * features:
39  *
40  *  - System for dynamically registering types
41  *  - Support for single-inheritance of types
42  *  - Multiple inheritance of stateless interfaces
43  *
44  * <example>
45  *   <title>Creating a minimal type</title>
46  *   <programlisting>
47  * #include "qdev.h"
48  *
49  * #define TYPE_MY_DEVICE "my-device"
50  *
51  * // No new virtual functions: we can reuse the typedef for the
52  * // superclass.
53  * typedef DeviceClass MyDeviceClass;
54  * typedef struct MyDevice
55  * {
56  *     DeviceState parent;
57  *
58  *     int reg0, reg1, reg2;
59  * } MyDevice;
60  *
61  * static const TypeInfo my_device_info = {
62  *     .name = TYPE_MY_DEVICE,
63  *     .parent = TYPE_DEVICE,
64  *     .instance_size = sizeof(MyDevice),
65  * };
66  *
67  * static void my_device_register_types(void)
68  * {
69  *     type_register_static(&my_device_info);
70  * }
71  *
72  * type_init(my_device_register_types)
73  *   </programlisting>
74  * </example>
75  *
76  * In the above example, we create a simple type that is described by #TypeInfo.
77  * #TypeInfo describes information about the type including what it inherits
78  * from, the instance and class size, and constructor/destructor hooks.
79  *
80  * Alternatively several static types could be registered using helper macro
81  * DEFINE_TYPES()
82  *
83  * <example>
84  *   <programlisting>
85  * static const TypeInfo device_types_info[] = {
86  *     {
87  *         .name = TYPE_MY_DEVICE_A,
88  *         .parent = TYPE_DEVICE,
89  *         .instance_size = sizeof(MyDeviceA),
90  *     },
91  *     {
92  *         .name = TYPE_MY_DEVICE_B,
93  *         .parent = TYPE_DEVICE,
94  *         .instance_size = sizeof(MyDeviceB),
95  *     },
96  * };
97  *
98  * DEFINE_TYPES(device_types_info)
99  *   </programlisting>
100  * </example>
101  *
102  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
103  * are instantiated dynamically but there is only ever one instance for any
104  * given type.  The #ObjectClass typically holds a table of function pointers
105  * for the virtual methods implemented by this type.
106  *
107  * Using object_new(), a new #Object derivative will be instantiated.  You can
108  * cast an #Object to a subclass (or base-class) type using
109  * object_dynamic_cast().  You typically want to define macro wrappers around
110  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
111  * specific type:
112  *
113  * <example>
114  *   <title>Typecasting macros</title>
115  *   <programlisting>
116  *    #define MY_DEVICE_GET_CLASS(obj) \
117  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
118  *    #define MY_DEVICE_CLASS(klass) \
119  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
120  *    #define MY_DEVICE(obj) \
121  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
122  *   </programlisting>
123  * </example>
124  *
125  * # Class Initialization #
126  *
127  * Before an object is initialized, the class for the object must be
128  * initialized.  There is only one class object for all instance objects
129  * that is created lazily.
130  *
131  * Classes are initialized by first initializing any parent classes (if
132  * necessary).  After the parent class object has initialized, it will be
133  * copied into the current class object and any additional storage in the
134  * class object is zero filled.
135  *
136  * The effect of this is that classes automatically inherit any virtual
137  * function pointers that the parent class has already initialized.  All
138  * other fields will be zero filled.
139  *
140  * Once all of the parent classes have been initialized, #TypeInfo::class_init
141  * is called to let the class being instantiated provide default initialize for
142  * its virtual functions.  Here is how the above example might be modified
143  * to introduce an overridden virtual function:
144  *
145  * <example>
146  *   <title>Overriding a virtual function</title>
147  *   <programlisting>
148  * #include "qdev.h"
149  *
150  * void my_device_class_init(ObjectClass *klass, void *class_data)
151  * {
152  *     DeviceClass *dc = DEVICE_CLASS(klass);
153  *     dc->reset = my_device_reset;
154  * }
155  *
156  * static const TypeInfo my_device_info = {
157  *     .name = TYPE_MY_DEVICE,
158  *     .parent = TYPE_DEVICE,
159  *     .instance_size = sizeof(MyDevice),
160  *     .class_init = my_device_class_init,
161  * };
162  *   </programlisting>
163  * </example>
164  *
165  * Introducing new virtual methods requires a class to define its own
166  * struct and to add a .class_size member to the #TypeInfo.  Each method
167  * will also have a wrapper function to call it easily:
168  *
169  * <example>
170  *   <title>Defining an abstract class</title>
171  *   <programlisting>
172  * #include "qdev.h"
173  *
174  * typedef struct MyDeviceClass
175  * {
176  *     DeviceClass parent;
177  *
178  *     void (*frobnicate) (MyDevice *obj);
179  * } MyDeviceClass;
180  *
181  * static const TypeInfo my_device_info = {
182  *     .name = TYPE_MY_DEVICE,
183  *     .parent = TYPE_DEVICE,
184  *     .instance_size = sizeof(MyDevice),
185  *     .abstract = true, // or set a default in my_device_class_init
186  *     .class_size = sizeof(MyDeviceClass),
187  * };
188  *
189  * void my_device_frobnicate(MyDevice *obj)
190  * {
191  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
192  *
193  *     klass->frobnicate(obj);
194  * }
195  *   </programlisting>
196  * </example>
197  *
198  * # Interfaces #
199  *
200  * Interfaces allow a limited form of multiple inheritance.  Instances are
201  * similar to normal types except for the fact that are only defined by
202  * their classes and never carry any state.  As a consequence, a pointer to
203  * an interface instance should always be of incomplete type in order to be
204  * sure it cannot be dereferenced.  That is, you should define the
205  * 'typedef struct SomethingIf SomethingIf' so that you can pass around
206  * 'SomethingIf *si' arguments, but not define a 'struct SomethingIf { ... }'.
207  * The only things you can validly do with a 'SomethingIf *' are to pass it as
208  * an argument to a method on its corresponding SomethingIfClass, or to
209  * dynamically cast it to an object that implements the interface.
210  *
211  * # Methods #
212  *
213  * A <emphasis>method</emphasis> is a function within the namespace scope of
214  * a class. It usually operates on the object instance by passing it as a
215  * strongly-typed first argument.
216  * If it does not operate on an object instance, it is dubbed
217  * <emphasis>class method</emphasis>.
218  *
219  * Methods cannot be overloaded. That is, the #ObjectClass and method name
220  * uniquely identity the function to be called; the signature does not vary
221  * except for trailing varargs.
222  *
223  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
224  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
225  * via OBJECT_GET_CLASS() accessing the overridden function.
226  * The original function is not automatically invoked. It is the responsibility
227  * of the overriding class to determine whether and when to invoke the method
228  * being overridden.
229  *
230  * To invoke the method being overridden, the preferred solution is to store
231  * the original value in the overriding class before overriding the method.
232  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
233  * respectively; this frees the overriding class from hardcoding its parent
234  * class, which someone might choose to change at some point.
235  *
236  * <example>
237  *   <title>Overriding a virtual method</title>
238  *   <programlisting>
239  * typedef struct MyState MyState;
240  *
241  * typedef void (*MyDoSomething)(MyState *obj);
242  *
243  * typedef struct MyClass {
244  *     ObjectClass parent_class;
245  *
246  *     MyDoSomething do_something;
247  * } MyClass;
248  *
249  * static void my_do_something(MyState *obj)
250  * {
251  *     // do something
252  * }
253  *
254  * static void my_class_init(ObjectClass *oc, void *data)
255  * {
256  *     MyClass *mc = MY_CLASS(oc);
257  *
258  *     mc->do_something = my_do_something;
259  * }
260  *
261  * static const TypeInfo my_type_info = {
262  *     .name = TYPE_MY,
263  *     .parent = TYPE_OBJECT,
264  *     .instance_size = sizeof(MyState),
265  *     .class_size = sizeof(MyClass),
266  *     .class_init = my_class_init,
267  * };
268  *
269  * typedef struct DerivedClass {
270  *     MyClass parent_class;
271  *
272  *     MyDoSomething parent_do_something;
273  * } DerivedClass;
274  *
275  * static void derived_do_something(MyState *obj)
276  * {
277  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
278  *
279  *     // do something here
280  *     dc->parent_do_something(obj);
281  *     // do something else here
282  * }
283  *
284  * static void derived_class_init(ObjectClass *oc, void *data)
285  * {
286  *     MyClass *mc = MY_CLASS(oc);
287  *     DerivedClass *dc = DERIVED_CLASS(oc);
288  *
289  *     dc->parent_do_something = mc->do_something;
290  *     mc->do_something = derived_do_something;
291  * }
292  *
293  * static const TypeInfo derived_type_info = {
294  *     .name = TYPE_DERIVED,
295  *     .parent = TYPE_MY,
296  *     .class_size = sizeof(DerivedClass),
297  *     .class_init = derived_class_init,
298  * };
299  *   </programlisting>
300  * </example>
301  *
302  * Alternatively, object_class_by_name() can be used to obtain the class and
303  * its non-overridden methods for a specific type. This would correspond to
304  * |[ MyClass::method(...) ]| in C++.
305  *
306  * The first example of such a QOM method was #CPUClass.reset,
307  * another example is #DeviceClass.realize.
308  *
309  * # Standard type declaration and definition macros #
310  *
311  * A lot of the code outlined above follows a standard pattern and naming
312  * convention. To reduce the amount of boilerplate code that needs to be
313  * written for a new type there are two sets of macros to generate the
314  * common parts in a standard format.
315  *
316  * A type is declared using the OBJECT_DECLARE macro family. In types
317  * which do not require any virtual functions in the class, the
318  * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
319  * in the header file:
320  *
321  * <example>
322  *   <title>Declaring a simple type</title>
323  *   <programlisting>
324  *     OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
325  *   </programlisting>
326  * </example>
327  *
328  * This is equivalent to the following:
329  *
330  * <example>
331  *   <title>Expansion from declaring a simple type</title>
332  *   <programlisting>
333  *     typedef struct MyDevice MyDevice;
334  *     typedef struct MyDeviceClass MyDeviceClass;
335  *
336  *     G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
337  *
338  *     #define MY_DEVICE_GET_CLASS(void *obj) \
339  *             OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
340  *     #define MY_DEVICE_CLASS(void *klass) \
341  *             OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
342  *     #define MY_DEVICE(void *obj)
343  *             OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
344  *
345  *     struct MyDeviceClass {
346  *         DeviceClass parent_class;
347  *     };
348  *   </programlisting>
349  * </example>
350  *
351  * The 'struct MyDevice' needs to be declared separately.
352  * If the type requires virtual functions to be declared in the class
353  * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
354  * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
355  * the 'struct MyDeviceClass' definition.
356  *
357  * To implement the type, the OBJECT_DEFINE macro family is available.
358  * In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
359  *
360  * <example>
361  *   <title>Defining a simple type</title>
362  *   <programlisting>
363  *     OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
364  *   </programlisting>
365  * </example>
366  *
367  * This is equivalent to the following:
368  *
369  * <example>
370  *   <title>Expansion from defining a simple type</title>
371  *   <programlisting>
372  *     static void my_device_finalize(Object *obj);
373  *     static void my_device_class_init(ObjectClass *oc, void *data);
374  *     static void my_device_init(Object *obj);
375  *
376  *     static const TypeInfo my_device_info = {
377  *         .parent = TYPE_DEVICE,
378  *         .name = TYPE_MY_DEVICE,
379  *         .instance_size = sizeof(MyDevice),
380  *         .instance_init = my_device_init,
381  *         .instance_finalize = my_device_finalize,
382  *         .class_size = sizeof(MyDeviceClass),
383  *         .class_init = my_device_class_init,
384  *     };
385  *
386  *     static void
387  *     my_device_register_types(void)
388  *     {
389  *         type_register_static(&my_device_info);
390  *     }
391  *     type_init(my_device_register_types);
392  *   </programlisting>
393  * </example>
394  *
395  * This is sufficient to get the type registered with the type
396  * system, and the three standard methods now need to be implemented
397  * along with any other logic required for the type.
398  *
399  * If the type needs to implement one or more interfaces, then the
400  * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
401  * This accepts an array of interface type names.
402  *
403  * <example>
404  *   <title>Defining a simple type implementing interfaces</title>
405  *   <programlisting>
406  *     OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
407  *                                        MY_DEVICE, DEVICE,
408  *                                        { TYPE_USER_CREATABLE }, { NULL })
409  *   </programlisting>
410  * </example>
411  *
412  * If the type is not intended to be instantiated, then then
413  * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
414  *
415  * <example>
416  *   <title>Defining a simple type</title>
417  *   <programlisting>
418  *     OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
419  *   </programlisting>
420  * </example>
421  */
422 
423 
424 typedef struct ObjectProperty ObjectProperty;
425 
426 /**
427  * ObjectPropertyAccessor:
428  * @obj: the object that owns the property
429  * @v: the visitor that contains the property data
430  * @name: the name of the property
431  * @opaque: the object property opaque
432  * @errp: a pointer to an Error that is filled if getting/setting fails.
433  *
434  * Called when trying to get/set a property.
435  */
436 typedef void (ObjectPropertyAccessor)(Object *obj,
437                                       Visitor *v,
438                                       const char *name,
439                                       void *opaque,
440                                       Error **errp);
441 
442 /**
443  * ObjectPropertyResolve:
444  * @obj: the object that owns the property
445  * @opaque: the opaque registered with the property
446  * @part: the name of the property
447  *
448  * Resolves the #Object corresponding to property @part.
449  *
450  * The returned object can also be used as a starting point
451  * to resolve a relative path starting with "@part".
452  *
453  * Returns: If @path is the path that led to @obj, the function
454  * returns the #Object corresponding to "@path/@part".
455  * If "@path/@part" is not a valid object path, it returns #NULL.
456  */
457 typedef Object *(ObjectPropertyResolve)(Object *obj,
458                                         void *opaque,
459                                         const char *part);
460 
461 /**
462  * ObjectPropertyRelease:
463  * @obj: the object that owns the property
464  * @name: the name of the property
465  * @opaque: the opaque registered with the property
466  *
467  * Called when a property is removed from a object.
468  */
469 typedef void (ObjectPropertyRelease)(Object *obj,
470                                      const char *name,
471                                      void *opaque);
472 
473 /**
474  * ObjectPropertyInit:
475  * @obj: the object that owns the property
476  * @prop: the property to set
477  *
478  * Called when a property is initialized.
479  */
480 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop);
481 
482 struct ObjectProperty
483 {
484     char *name;
485     char *type;
486     char *description;
487     ObjectPropertyAccessor *get;
488     ObjectPropertyAccessor *set;
489     ObjectPropertyResolve *resolve;
490     ObjectPropertyRelease *release;
491     ObjectPropertyInit *init;
492     void *opaque;
493     QObject *defval;
494 };
495 
496 /**
497  * ObjectUnparent:
498  * @obj: the object that is being removed from the composition tree
499  *
500  * Called when an object is being removed from the QOM composition tree.
501  * The function should remove any backlinks from children objects to @obj.
502  */
503 typedef void (ObjectUnparent)(Object *obj);
504 
505 /**
506  * ObjectFree:
507  * @obj: the object being freed
508  *
509  * Called when an object's last reference is removed.
510  */
511 typedef void (ObjectFree)(void *obj);
512 
513 #define OBJECT_CLASS_CAST_CACHE 4
514 
515 /**
516  * ObjectClass:
517  *
518  * The base for all classes.  The only thing that #ObjectClass contains is an
519  * integer type handle.
520  */
521 struct ObjectClass
522 {
523     /*< private >*/
524     Type type;
525     GSList *interfaces;
526 
527     const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
528     const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
529 
530     ObjectUnparent *unparent;
531 
532     GHashTable *properties;
533 };
534 
535 /**
536  * Object:
537  *
538  * The base for all objects.  The first member of this object is a pointer to
539  * a #ObjectClass.  Since C guarantees that the first member of a structure
540  * always begins at byte 0 of that structure, as long as any sub-object places
541  * its parent as the first member, we can cast directly to a #Object.
542  *
543  * As a result, #Object contains a reference to the objects type as its
544  * first member.  This allows identification of the real type of the object at
545  * run time.
546  */
547 struct Object
548 {
549     /*< private >*/
550     ObjectClass *class;
551     ObjectFree *free;
552     GHashTable *properties;
553     uint32_t ref;
554     Object *parent;
555 };
556 
557 /**
558  * DECLARE_INSTANCE_CHECKER:
559  * @InstanceType: instance struct name
560  * @OBJ_NAME: the object name in uppercase with underscore separators
561  * @TYPENAME: type name
562  *
563  * Direct usage of this macro should be avoided, and the complete
564  * OBJECT_DECLARE_TYPE macro is recommended instead.
565  *
566  * This macro will provide the three standard type cast functions for a
567  * QOM type.
568  */
569 #define DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
570     static inline G_GNUC_UNUSED InstanceType * \
571     OBJ_NAME(const void *obj) \
572     { return OBJECT_CHECK(InstanceType, obj, TYPENAME); }
573 
574 /**
575  * DECLARE_CLASS_CHECKERS:
576  * @ClassType: class struct name
577  * @OBJ_NAME: the object name in uppercase with underscore separators
578  * @TYPENAME: type name
579  *
580  * Direct usage of this macro should be avoided, and the complete
581  * OBJECT_DECLARE_TYPE macro is recommended instead.
582  *
583  * This macro will provide the three standard type cast functions for a
584  * QOM type.
585  */
586 #define DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) \
587     static inline G_GNUC_UNUSED ClassType * \
588     OBJ_NAME##_GET_CLASS(const void *obj) \
589     { return OBJECT_GET_CLASS(ClassType, obj, TYPENAME); } \
590     \
591     static inline G_GNUC_UNUSED ClassType * \
592     OBJ_NAME##_CLASS(const void *klass) \
593     { return OBJECT_CLASS_CHECK(ClassType, klass, TYPENAME); }
594 
595 /**
596  * DECLARE_OBJ_CHECKERS:
597  * @InstanceType: instance struct name
598  * @ClassType: class struct name
599  * @OBJ_NAME: the object name in uppercase with underscore separators
600  * @TYPENAME: type name
601  *
602  * Direct usage of this macro should be avoided, and the complete
603  * OBJECT_DECLARE_TYPE macro is recommended instead.
604  *
605  * This macro will provide the three standard type cast functions for a
606  * QOM type.
607  */
608 #define DECLARE_OBJ_CHECKERS(InstanceType, ClassType, OBJ_NAME, TYPENAME) \
609     DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \
610     \
611     DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME)
612 
613 /**
614  * OBJECT_DECLARE_TYPE:
615  * @InstanceType: instance struct name
616  * @ClassType: class struct name
617  * @module_obj_name: the object name in lowercase with underscore separators
618  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
619  *
620  * This macro is typically used in a header file, and will:
621  *
622  *   - create the typedefs for the object and class structs
623  *   - register the type for use with g_autoptr
624  *   - provide three standard type cast functions
625  *
626  * The object struct and class struct need to be declared manually.
627  */
628 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, module_obj_name, MODULE_OBJ_NAME) \
629     typedef struct InstanceType InstanceType; \
630     typedef struct ClassType ClassType; \
631     \
632     G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \
633     \
634     DECLARE_OBJ_CHECKERS(InstanceType, ClassType, \
635                          MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME)
636 
637 /**
638  * OBJECT_DECLARE_SIMPLE_TYPE:
639  * @InstanceType: instance struct name
640  * @module_obj_name: the object name in lowercase with underscore separators
641  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
642  * @ParentClassType: class struct name of parent type
643  *
644  * This does the same as OBJECT_DECLARE_TYPE(), but also declares
645  * the class struct, thus only the object struct needs to be declare
646  * manually.
647  *
648  * This macro should be used unless the class struct needs to have
649  * virtual methods declared.
650  */
651 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, module_obj_name, \
652                                    MODULE_OBJ_NAME, ParentClassType) \
653     OBJECT_DECLARE_TYPE(InstanceType, InstanceType##Class, module_obj_name, MODULE_OBJ_NAME) \
654     struct InstanceType##Class { ParentClassType parent_class; };
655 
656 
657 /**
658  * OBJECT_DEFINE_TYPE_EXTENDED:
659  * @ModuleObjName: the object name with initial caps
660  * @module_obj_name: the object name in lowercase with underscore separators
661  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
662  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
663  *                          separators
664  * @ABSTRACT: boolean flag to indicate whether the object can be instantiated
665  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
666  *
667  * This macro is typically used in a source file, and will:
668  *
669  *   - declare prototypes for _finalize, _class_init and _init methods
670  *   - declare the TypeInfo struct instance
671  *   - provide the constructor to register the type
672  *
673  * After using this macro, implementations of the _finalize, _class_init,
674  * and _init methods need to be written. Any of these can be zero-line
675  * no-op impls if no special logic is required for a given type.
676  *
677  * This macro should rarely be used, instead one of the more specialized
678  * macros is usually a better choice.
679  */
680 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
681                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
682                                     ABSTRACT, ...) \
683     static void \
684     module_obj_name##_finalize(Object *obj); \
685     static void \
686     module_obj_name##_class_init(ObjectClass *oc, void *data); \
687     static void \
688     module_obj_name##_init(Object *obj); \
689     \
690     static const TypeInfo module_obj_name##_info = { \
691         .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \
692         .name = TYPE_##MODULE_OBJ_NAME, \
693         .instance_size = sizeof(ModuleObjName), \
694         .instance_align = __alignof__(ModuleObjName), \
695         .instance_init = module_obj_name##_init, \
696         .instance_finalize = module_obj_name##_finalize, \
697         .class_size = sizeof(ModuleObjName##Class), \
698         .class_init = module_obj_name##_class_init, \
699         .abstract = ABSTRACT, \
700         .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \
701     }; \
702     \
703     static void \
704     module_obj_name##_register_types(void) \
705     { \
706         type_register_static(&module_obj_name##_info); \
707     } \
708     type_init(module_obj_name##_register_types);
709 
710 /**
711  * OBJECT_DEFINE_TYPE:
712  * @ModuleObjName: the object name with initial caps
713  * @module_obj_name: the object name in lowercase with underscore separators
714  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
715  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
716  *                          separators
717  *
718  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
719  * for the common case of a non-abstract type, without any interfaces.
720  */
721 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \
722                            PARENT_MODULE_OBJ_NAME) \
723     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
724                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
725                                 false, { NULL })
726 
727 /**
728  * OBJECT_DEFINE_TYPE_WITH_INTERFACES:
729  * @ModuleObjName: the object name with initial caps
730  * @module_obj_name: the object name in lowercase with underscore separators
731  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
732  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
733  *                          separators
734  * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces
735  *
736  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
737  * for the common case of a non-abstract type, with one or more implemented
738  * interfaces.
739  *
740  * Note when passing the list of interfaces, be sure to include the final
741  * NULL entry, e.g.  { TYPE_USER_CREATABLE }, { NULL }
742  */
743 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \
744                                            MODULE_OBJ_NAME, \
745                                            PARENT_MODULE_OBJ_NAME, ...) \
746     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
747                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
748                                 false, __VA_ARGS__)
749 
750 /**
751  * OBJECT_DEFINE_ABSTRACT_TYPE:
752  * @ModuleObjName: the object name with initial caps
753  * @module_obj_name: the object name in lowercase with underscore separators
754  * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators
755  * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore
756  *                          separators
757  *
758  * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable
759  * for defining an abstract type, without any interfaces.
760  */
761 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \
762                                     MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \
763     OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \
764                                 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \
765                                 true, { NULL })
766 
767 /**
768  * TypeInfo:
769  * @name: The name of the type.
770  * @parent: The name of the parent type.
771  * @instance_size: The size of the object (derivative of #Object).  If
772  *   @instance_size is 0, then the size of the object will be the size of the
773  *   parent object.
774  * @instance_align: The required alignment of the object.  If @instance_align
775  *   is 0, then normal malloc alignment is sufficient; if non-zero, then we
776  *   must use qemu_memalign for allocation.
777  * @instance_init: This function is called to initialize an object.  The parent
778  *   class will have already been initialized so the type is only responsible
779  *   for initializing its own members.
780  * @instance_post_init: This function is called to finish initialization of
781  *   an object, after all @instance_init functions were called.
782  * @instance_finalize: This function is called during object destruction.  This
783  *   is called before the parent @instance_finalize function has been called.
784  *   An object should only free the members that are unique to its type in this
785  *   function.
786  * @abstract: If this field is true, then the class is considered abstract and
787  *   cannot be directly instantiated.
788  * @class_size: The size of the class object (derivative of #ObjectClass)
789  *   for this object.  If @class_size is 0, then the size of the class will be
790  *   assumed to be the size of the parent class.  This allows a type to avoid
791  *   implementing an explicit class type if they are not adding additional
792  *   virtual functions.
793  * @class_init: This function is called after all parent class initialization
794  *   has occurred to allow a class to set its default virtual method pointers.
795  *   This is also the function to use to override virtual methods from a parent
796  *   class.
797  * @class_base_init: This function is called for all base classes after all
798  *   parent class initialization has occurred, but before the class itself
799  *   is initialized.  This is the function to use to undo the effects of
800  *   memcpy from the parent class to the descendants.
801  * @class_data: Data to pass to the @class_init,
802  *   @class_base_init. This can be useful when building dynamic
803  *   classes.
804  * @interfaces: The list of interfaces associated with this type.  This
805  *   should point to a static array that's terminated with a zero filled
806  *   element.
807  */
808 struct TypeInfo
809 {
810     const char *name;
811     const char *parent;
812 
813     size_t instance_size;
814     size_t instance_align;
815     void (*instance_init)(Object *obj);
816     void (*instance_post_init)(Object *obj);
817     void (*instance_finalize)(Object *obj);
818 
819     bool abstract;
820     size_t class_size;
821 
822     void (*class_init)(ObjectClass *klass, void *data);
823     void (*class_base_init)(ObjectClass *klass, void *data);
824     void *class_data;
825 
826     InterfaceInfo *interfaces;
827 };
828 
829 /**
830  * OBJECT:
831  * @obj: A derivative of #Object
832  *
833  * Converts an object to a #Object.  Since all objects are #Objects,
834  * this function will always succeed.
835  */
836 #define OBJECT(obj) \
837     ((Object *)(obj))
838 
839 /**
840  * OBJECT_CLASS:
841  * @class: A derivative of #ObjectClass.
842  *
843  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
844  * this function will always succeed.
845  */
846 #define OBJECT_CLASS(class) \
847     ((ObjectClass *)(class))
848 
849 /**
850  * OBJECT_CHECK:
851  * @type: The C type to use for the return value.
852  * @obj: A derivative of @type to cast.
853  * @name: The QOM typename of @type
854  *
855  * A type safe version of @object_dynamic_cast_assert.  Typically each class
856  * will define a macro based on this type to perform type safe dynamic_casts to
857  * this object type.
858  *
859  * If an invalid object is passed to this function, a run time assert will be
860  * generated.
861  */
862 #define OBJECT_CHECK(type, obj, name) \
863     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
864                                         __FILE__, __LINE__, __func__))
865 
866 /**
867  * OBJECT_CLASS_CHECK:
868  * @class_type: The C type to use for the return value.
869  * @class: A derivative class of @class_type to cast.
870  * @name: the QOM typename of @class_type.
871  *
872  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
873  * typically wrapped by each type to perform type safe casts of a class to a
874  * specific class type.
875  */
876 #define OBJECT_CLASS_CHECK(class_type, class, name) \
877     ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
878                                                __FILE__, __LINE__, __func__))
879 
880 /**
881  * OBJECT_GET_CLASS:
882  * @class: The C type to use for the return value.
883  * @obj: The object to obtain the class for.
884  * @name: The QOM typename of @obj.
885  *
886  * This function will return a specific class for a given object.  Its generally
887  * used by each type to provide a type safe macro to get a specific class type
888  * from an object.
889  */
890 #define OBJECT_GET_CLASS(class, obj, name) \
891     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
892 
893 /**
894  * InterfaceInfo:
895  * @type: The name of the interface.
896  *
897  * The information associated with an interface.
898  */
899 struct InterfaceInfo {
900     const char *type;
901 };
902 
903 /**
904  * InterfaceClass:
905  * @parent_class: the base class
906  *
907  * The class for all interfaces.  Subclasses of this class should only add
908  * virtual methods.
909  */
910 struct InterfaceClass
911 {
912     ObjectClass parent_class;
913     /*< private >*/
914     ObjectClass *concrete_class;
915     Type interface_type;
916 };
917 
918 #define TYPE_INTERFACE "interface"
919 
920 /**
921  * INTERFACE_CLASS:
922  * @klass: class to cast from
923  * Returns: An #InterfaceClass or raise an error if cast is invalid
924  */
925 #define INTERFACE_CLASS(klass) \
926     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
927 
928 /**
929  * INTERFACE_CHECK:
930  * @interface: the type to return
931  * @obj: the object to convert to an interface
932  * @name: the interface type name
933  *
934  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
935  */
936 #define INTERFACE_CHECK(interface, obj, name) \
937     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
938                                              __FILE__, __LINE__, __func__))
939 
940 /**
941  * object_new_with_class:
942  * @klass: The class to instantiate.
943  *
944  * This function will initialize a new object using heap allocated memory.
945  * The returned object has a reference count of 1, and will be freed when
946  * the last reference is dropped.
947  *
948  * Returns: The newly allocated and instantiated object.
949  */
950 Object *object_new_with_class(ObjectClass *klass);
951 
952 /**
953  * object_new:
954  * @typename: The name of the type of the object to instantiate.
955  *
956  * This function will initialize a new object using heap allocated memory.
957  * The returned object has a reference count of 1, and will be freed when
958  * the last reference is dropped.
959  *
960  * Returns: The newly allocated and instantiated object.
961  */
962 Object *object_new(const char *typename);
963 
964 /**
965  * object_new_with_props:
966  * @typename:  The name of the type of the object to instantiate.
967  * @parent: the parent object
968  * @id: The unique ID of the object
969  * @errp: pointer to error object
970  * @...: list of property names and values
971  *
972  * This function will initialize a new object using heap allocated memory.
973  * The returned object has a reference count of 1, and will be freed when
974  * the last reference is dropped.
975  *
976  * The @id parameter will be used when registering the object as a
977  * child of @parent in the composition tree.
978  *
979  * The variadic parameters are a list of pairs of (propname, propvalue)
980  * strings. The propname of %NULL indicates the end of the property
981  * list. If the object implements the user creatable interface, the
982  * object will be marked complete once all the properties have been
983  * processed.
984  *
985  * <example>
986  *   <title>Creating an object with properties</title>
987  *   <programlisting>
988  *   Error *err = NULL;
989  *   Object *obj;
990  *
991  *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
992  *                               object_get_objects_root(),
993  *                               "hostmem0",
994  *                               &err,
995  *                               "share", "yes",
996  *                               "mem-path", "/dev/shm/somefile",
997  *                               "prealloc", "yes",
998  *                               "size", "1048576",
999  *                               NULL);
1000  *
1001  *   if (!obj) {
1002  *     error_reportf_err(err, "Cannot create memory backend: ");
1003  *   }
1004  *   </programlisting>
1005  * </example>
1006  *
1007  * The returned object will have one stable reference maintained
1008  * for as long as it is present in the object hierarchy.
1009  *
1010  * Returns: The newly allocated, instantiated & initialized object.
1011  */
1012 Object *object_new_with_props(const char *typename,
1013                               Object *parent,
1014                               const char *id,
1015                               Error **errp,
1016                               ...) QEMU_SENTINEL;
1017 
1018 /**
1019  * object_new_with_propv:
1020  * @typename:  The name of the type of the object to instantiate.
1021  * @parent: the parent object
1022  * @id: The unique ID of the object
1023  * @errp: pointer to error object
1024  * @vargs: list of property names and values
1025  *
1026  * See object_new_with_props() for documentation.
1027  */
1028 Object *object_new_with_propv(const char *typename,
1029                               Object *parent,
1030                               const char *id,
1031                               Error **errp,
1032                               va_list vargs);
1033 
1034 bool object_apply_global_props(Object *obj, const GPtrArray *props,
1035                                Error **errp);
1036 void object_set_machine_compat_props(GPtrArray *compat_props);
1037 void object_set_accelerator_compat_props(GPtrArray *compat_props);
1038 void object_register_sugar_prop(const char *driver, const char *prop, const char *value);
1039 void object_apply_compat_props(Object *obj);
1040 
1041 /**
1042  * object_set_props:
1043  * @obj: the object instance to set properties on
1044  * @errp: pointer to error object
1045  * @...: list of property names and values
1046  *
1047  * This function will set a list of properties on an existing object
1048  * instance.
1049  *
1050  * The variadic parameters are a list of pairs of (propname, propvalue)
1051  * strings. The propname of %NULL indicates the end of the property
1052  * list.
1053  *
1054  * <example>
1055  *   <title>Update an object's properties</title>
1056  *   <programlisting>
1057  *   Error *err = NULL;
1058  *   Object *obj = ...get / create object...;
1059  *
1060  *   if (!object_set_props(obj,
1061  *                         &err,
1062  *                         "share", "yes",
1063  *                         "mem-path", "/dev/shm/somefile",
1064  *                         "prealloc", "yes",
1065  *                         "size", "1048576",
1066  *                         NULL)) {
1067  *     error_reportf_err(err, "Cannot set properties: ");
1068  *   }
1069  *   </programlisting>
1070  * </example>
1071  *
1072  * The returned object will have one stable reference maintained
1073  * for as long as it is present in the object hierarchy.
1074  *
1075  * Returns: %true on success, %false on error.
1076  */
1077 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL;
1078 
1079 /**
1080  * object_set_propv:
1081  * @obj: the object instance to set properties on
1082  * @errp: pointer to error object
1083  * @vargs: list of property names and values
1084  *
1085  * See object_set_props() for documentation.
1086  *
1087  * Returns: %true on success, %false on error.
1088  */
1089 bool object_set_propv(Object *obj, Error **errp, va_list vargs);
1090 
1091 /**
1092  * object_initialize:
1093  * @obj: A pointer to the memory to be used for the object.
1094  * @size: The maximum size available at @obj for the object.
1095  * @typename: The name of the type of the object to instantiate.
1096  *
1097  * This function will initialize an object.  The memory for the object should
1098  * have already been allocated.  The returned object has a reference count of 1,
1099  * and will be finalized when the last reference is dropped.
1100  */
1101 void object_initialize(void *obj, size_t size, const char *typename);
1102 
1103 /**
1104  * object_initialize_child_with_props:
1105  * @parentobj: The parent object to add a property to
1106  * @propname: The name of the property
1107  * @childobj: A pointer to the memory to be used for the object.
1108  * @size: The maximum size available at @childobj for the object.
1109  * @type: The name of the type of the object to instantiate.
1110  * @errp: If an error occurs, a pointer to an area to store the error
1111  * @...: list of property names and values
1112  *
1113  * This function will initialize an object. The memory for the object should
1114  * have already been allocated. The object will then be added as child property
1115  * to a parent with object_property_add_child() function. The returned object
1116  * has a reference count of 1 (for the "child<...>" property from the parent),
1117  * so the object will be finalized automatically when the parent gets removed.
1118  *
1119  * The variadic parameters are a list of pairs of (propname, propvalue)
1120  * strings. The propname of %NULL indicates the end of the property list.
1121  * If the object implements the user creatable interface, the object will
1122  * be marked complete once all the properties have been processed.
1123  *
1124  * Returns: %true on success, %false on failure.
1125  */
1126 bool object_initialize_child_with_props(Object *parentobj,
1127                              const char *propname,
1128                              void *childobj, size_t size, const char *type,
1129                              Error **errp, ...) QEMU_SENTINEL;
1130 
1131 /**
1132  * object_initialize_child_with_propsv:
1133  * @parentobj: The parent object to add a property to
1134  * @propname: The name of the property
1135  * @childobj: A pointer to the memory to be used for the object.
1136  * @size: The maximum size available at @childobj for the object.
1137  * @type: The name of the type of the object to instantiate.
1138  * @errp: If an error occurs, a pointer to an area to store the error
1139  * @vargs: list of property names and values
1140  *
1141  * See object_initialize_child() for documentation.
1142  *
1143  * Returns: %true on success, %false on failure.
1144  */
1145 bool object_initialize_child_with_propsv(Object *parentobj,
1146                               const char *propname,
1147                               void *childobj, size_t size, const char *type,
1148                               Error **errp, va_list vargs);
1149 
1150 /**
1151  * object_initialize_child:
1152  * @parent: The parent object to add a property to
1153  * @propname: The name of the property
1154  * @child: A precisely typed pointer to the memory to be used for the
1155  * object.
1156  * @type: The name of the type of the object to instantiate.
1157  *
1158  * This is like
1159  * object_initialize_child_with_props(parent, propname,
1160  *                                    child, sizeof(*child), type,
1161  *                                    &error_abort, NULL)
1162  */
1163 #define object_initialize_child(parent, propname, child, type)          \
1164     object_initialize_child_internal((parent), (propname),              \
1165                                      (child), sizeof(*(child)), (type))
1166 void object_initialize_child_internal(Object *parent, const char *propname,
1167                                       void *child, size_t size,
1168                                       const char *type);
1169 
1170 /**
1171  * object_dynamic_cast:
1172  * @obj: The object to cast.
1173  * @typename: The @typename to cast to.
1174  *
1175  * This function will determine if @obj is-a @typename.  @obj can refer to an
1176  * object or an interface associated with an object.
1177  *
1178  * Returns: This function returns @obj on success or #NULL on failure.
1179  */
1180 Object *object_dynamic_cast(Object *obj, const char *typename);
1181 
1182 /**
1183  * object_dynamic_cast_assert:
1184  *
1185  * See object_dynamic_cast() for a description of the parameters of this
1186  * function.  The only difference in behavior is that this function asserts
1187  * instead of returning #NULL on failure if QOM cast debugging is enabled.
1188  * This function is not meant to be called directly, but only through
1189  * the wrapper macro OBJECT_CHECK.
1190  */
1191 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
1192                                    const char *file, int line, const char *func);
1193 
1194 /**
1195  * object_get_class:
1196  * @obj: A derivative of #Object
1197  *
1198  * Returns: The #ObjectClass of the type associated with @obj.
1199  */
1200 ObjectClass *object_get_class(Object *obj);
1201 
1202 /**
1203  * object_get_typename:
1204  * @obj: A derivative of #Object.
1205  *
1206  * Returns: The QOM typename of @obj.
1207  */
1208 const char *object_get_typename(const Object *obj);
1209 
1210 /**
1211  * type_register_static:
1212  * @info: The #TypeInfo of the new type.
1213  *
1214  * @info and all of the strings it points to should exist for the life time
1215  * that the type is registered.
1216  *
1217  * Returns: the new #Type.
1218  */
1219 Type type_register_static(const TypeInfo *info);
1220 
1221 /**
1222  * type_register:
1223  * @info: The #TypeInfo of the new type
1224  *
1225  * Unlike type_register_static(), this call does not require @info or its
1226  * string members to continue to exist after the call returns.
1227  *
1228  * Returns: the new #Type.
1229  */
1230 Type type_register(const TypeInfo *info);
1231 
1232 /**
1233  * type_register_static_array:
1234  * @infos: The array of the new type #TypeInfo structures.
1235  * @nr_infos: number of entries in @infos
1236  *
1237  * @infos and all of the strings it points to should exist for the life time
1238  * that the type is registered.
1239  */
1240 void type_register_static_array(const TypeInfo *infos, int nr_infos);
1241 
1242 /**
1243  * DEFINE_TYPES:
1244  * @type_array: The array containing #TypeInfo structures to register
1245  *
1246  * @type_array should be static constant that exists for the life time
1247  * that the type is registered.
1248  */
1249 #define DEFINE_TYPES(type_array)                                            \
1250 static void do_qemu_init_ ## type_array(void)                               \
1251 {                                                                           \
1252     type_register_static_array(type_array, ARRAY_SIZE(type_array));         \
1253 }                                                                           \
1254 type_init(do_qemu_init_ ## type_array)
1255 
1256 /**
1257  * object_class_dynamic_cast_assert:
1258  * @klass: The #ObjectClass to attempt to cast.
1259  * @typename: The QOM typename of the class to cast to.
1260  *
1261  * See object_class_dynamic_cast() for a description of the parameters
1262  * of this function.  The only difference in behavior is that this function
1263  * asserts instead of returning #NULL on failure if QOM cast debugging is
1264  * enabled.  This function is not meant to be called directly, but only through
1265  * the wrapper macro OBJECT_CLASS_CHECK.
1266  */
1267 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
1268                                               const char *typename,
1269                                               const char *file, int line,
1270                                               const char *func);
1271 
1272 /**
1273  * object_class_dynamic_cast:
1274  * @klass: The #ObjectClass to attempt to cast.
1275  * @typename: The QOM typename of the class to cast to.
1276  *
1277  * Returns: If @typename is a class, this function returns @klass if
1278  * @typename is a subtype of @klass, else returns #NULL.
1279  *
1280  * If @typename is an interface, this function returns the interface
1281  * definition for @klass if @klass implements it unambiguously; #NULL
1282  * is returned if @klass does not implement the interface or if multiple
1283  * classes or interfaces on the hierarchy leading to @klass implement
1284  * it.  (FIXME: perhaps this can be detected at type definition time?)
1285  */
1286 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
1287                                        const char *typename);
1288 
1289 /**
1290  * object_class_get_parent:
1291  * @klass: The class to obtain the parent for.
1292  *
1293  * Returns: The parent for @klass or %NULL if none.
1294  */
1295 ObjectClass *object_class_get_parent(ObjectClass *klass);
1296 
1297 /**
1298  * object_class_get_name:
1299  * @klass: The class to obtain the QOM typename for.
1300  *
1301  * Returns: The QOM typename for @klass.
1302  */
1303 const char *object_class_get_name(ObjectClass *klass);
1304 
1305 /**
1306  * object_class_is_abstract:
1307  * @klass: The class to obtain the abstractness for.
1308  *
1309  * Returns: %true if @klass is abstract, %false otherwise.
1310  */
1311 bool object_class_is_abstract(ObjectClass *klass);
1312 
1313 /**
1314  * object_class_by_name:
1315  * @typename: The QOM typename to obtain the class for.
1316  *
1317  * Returns: The class for @typename or %NULL if not found.
1318  */
1319 ObjectClass *object_class_by_name(const char *typename);
1320 
1321 /**
1322  * module_object_class_by_name:
1323  * @typename: The QOM typename to obtain the class for.
1324  *
1325  * For objects which might be provided by a module.  Behaves like
1326  * object_class_by_name, but additionally tries to load the module
1327  * needed in case the class is not available.
1328  *
1329  * Returns: The class for @typename or %NULL if not found.
1330  */
1331 ObjectClass *module_object_class_by_name(const char *typename);
1332 
1333 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
1334                           const char *implements_type, bool include_abstract,
1335                           void *opaque);
1336 
1337 /**
1338  * object_class_get_list:
1339  * @implements_type: The type to filter for, including its derivatives.
1340  * @include_abstract: Whether to include abstract classes.
1341  *
1342  * Returns: A singly-linked list of the classes in reverse hashtable order.
1343  */
1344 GSList *object_class_get_list(const char *implements_type,
1345                               bool include_abstract);
1346 
1347 /**
1348  * object_class_get_list_sorted:
1349  * @implements_type: The type to filter for, including its derivatives.
1350  * @include_abstract: Whether to include abstract classes.
1351  *
1352  * Returns: A singly-linked list of the classes in alphabetical
1353  * case-insensitive order.
1354  */
1355 GSList *object_class_get_list_sorted(const char *implements_type,
1356                               bool include_abstract);
1357 
1358 /**
1359  * object_ref:
1360  * @obj: the object
1361  *
1362  * Increase the reference count of a object.  A object cannot be freed as long
1363  * as its reference count is greater than zero.
1364  * Returns: @obj
1365  */
1366 Object *object_ref(void *obj);
1367 
1368 /**
1369  * object_unref:
1370  * @obj: the object
1371  *
1372  * Decrease the reference count of a object.  A object cannot be freed as long
1373  * as its reference count is greater than zero.
1374  */
1375 void object_unref(void *obj);
1376 
1377 /**
1378  * object_property_try_add:
1379  * @obj: the object to add a property to
1380  * @name: the name of the property.  This can contain any character except for
1381  *  a forward slash.  In general, you should use hyphens '-' instead of
1382  *  underscores '_' when naming properties.
1383  * @type: the type name of the property.  This namespace is pretty loosely
1384  *   defined.  Sub namespaces are constructed by using a prefix and then
1385  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
1386  *   'link' namespace would be 'link<virtio-net-pci>'.
1387  * @get: The getter to be called to read a property.  If this is NULL, then
1388  *   the property cannot be read.
1389  * @set: the setter to be called to write a property.  If this is NULL,
1390  *   then the property cannot be written.
1391  * @release: called when the property is removed from the object.  This is
1392  *   meant to allow a property to free its opaque upon object
1393  *   destruction.  This may be NULL.
1394  * @opaque: an opaque pointer to pass to the callbacks for the property
1395  * @errp: pointer to error object
1396  *
1397  * Returns: The #ObjectProperty; this can be used to set the @resolve
1398  * callback for child and link properties.
1399  */
1400 ObjectProperty *object_property_try_add(Object *obj, const char *name,
1401                                         const char *type,
1402                                         ObjectPropertyAccessor *get,
1403                                         ObjectPropertyAccessor *set,
1404                                         ObjectPropertyRelease *release,
1405                                         void *opaque, Error **errp);
1406 
1407 /**
1408  * object_property_add:
1409  * Same as object_property_try_add() with @errp hardcoded to
1410  * &error_abort.
1411  */
1412 ObjectProperty *object_property_add(Object *obj, const char *name,
1413                                     const char *type,
1414                                     ObjectPropertyAccessor *get,
1415                                     ObjectPropertyAccessor *set,
1416                                     ObjectPropertyRelease *release,
1417                                     void *opaque);
1418 
1419 void object_property_del(Object *obj, const char *name);
1420 
1421 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
1422                                           const char *type,
1423                                           ObjectPropertyAccessor *get,
1424                                           ObjectPropertyAccessor *set,
1425                                           ObjectPropertyRelease *release,
1426                                           void *opaque);
1427 
1428 /**
1429  * object_property_set_default_bool:
1430  * @prop: the property to set
1431  * @value: the value to be written to the property
1432  *
1433  * Set the property default value.
1434  */
1435 void object_property_set_default_bool(ObjectProperty *prop, bool value);
1436 
1437 /**
1438  * object_property_set_default_str:
1439  * @prop: the property to set
1440  * @value: the value to be written to the property
1441  *
1442  * Set the property default value.
1443  */
1444 void object_property_set_default_str(ObjectProperty *prop, const char *value);
1445 
1446 /**
1447  * object_property_set_default_int:
1448  * @prop: the property to set
1449  * @value: the value to be written to the property
1450  *
1451  * Set the property default value.
1452  */
1453 void object_property_set_default_int(ObjectProperty *prop, int64_t value);
1454 
1455 /**
1456  * object_property_set_default_uint:
1457  * @prop: the property to set
1458  * @value: the value to be written to the property
1459  *
1460  * Set the property default value.
1461  */
1462 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value);
1463 
1464 /**
1465  * object_property_find:
1466  * @obj: the object
1467  * @name: the name of the property
1468  * @errp: returns an error if this function fails
1469  *
1470  * Look up a property for an object and return its #ObjectProperty if found.
1471  */
1472 ObjectProperty *object_property_find(Object *obj, const char *name,
1473                                      Error **errp);
1474 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
1475                                            Error **errp);
1476 
1477 typedef struct ObjectPropertyIterator {
1478     ObjectClass *nextclass;
1479     GHashTableIter iter;
1480 } ObjectPropertyIterator;
1481 
1482 /**
1483  * object_property_iter_init:
1484  * @obj: the object
1485  *
1486  * Initializes an iterator for traversing all properties
1487  * registered against an object instance, its class and all parent classes.
1488  *
1489  * It is forbidden to modify the property list while iterating,
1490  * whether removing or adding properties.
1491  *
1492  * Typical usage pattern would be
1493  *
1494  * <example>
1495  *   <title>Using object property iterators</title>
1496  *   <programlisting>
1497  *   ObjectProperty *prop;
1498  *   ObjectPropertyIterator iter;
1499  *
1500  *   object_property_iter_init(&iter, obj);
1501  *   while ((prop = object_property_iter_next(&iter))) {
1502  *     ... do something with prop ...
1503  *   }
1504  *   </programlisting>
1505  * </example>
1506  */
1507 void object_property_iter_init(ObjectPropertyIterator *iter,
1508                                Object *obj);
1509 
1510 /**
1511  * object_class_property_iter_init:
1512  * @klass: the class
1513  *
1514  * Initializes an iterator for traversing all properties
1515  * registered against an object class and all parent classes.
1516  *
1517  * It is forbidden to modify the property list while iterating,
1518  * whether removing or adding properties.
1519  *
1520  * This can be used on abstract classes as it does not create a temporary
1521  * instance.
1522  */
1523 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1524                                      ObjectClass *klass);
1525 
1526 /**
1527  * object_property_iter_next:
1528  * @iter: the iterator instance
1529  *
1530  * Return the next available property. If no further properties
1531  * are available, a %NULL value will be returned and the @iter
1532  * pointer should not be used again after this point without
1533  * re-initializing it.
1534  *
1535  * Returns: the next property, or %NULL when all properties
1536  * have been traversed.
1537  */
1538 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1539 
1540 void object_unparent(Object *obj);
1541 
1542 /**
1543  * object_property_get:
1544  * @obj: the object
1545  * @name: the name of the property
1546  * @v: the visitor that will receive the property value.  This should be an
1547  *   Output visitor and the data will be written with @name as the name.
1548  * @errp: returns an error if this function fails
1549  *
1550  * Reads a property from a object.
1551  *
1552  * Returns: %true on success, %false on failure.
1553  */
1554 bool object_property_get(Object *obj, const char *name, Visitor *v,
1555                          Error **errp);
1556 
1557 /**
1558  * object_property_set_str:
1559  * @name: the name of the property
1560  * @value: the value to be written to the property
1561  * @errp: returns an error if this function fails
1562  *
1563  * Writes a string value to a property.
1564  *
1565  * Returns: %true on success, %false on failure.
1566  */
1567 bool object_property_set_str(Object *obj, const char *name,
1568                              const char *value, Error **errp);
1569 
1570 /**
1571  * object_property_get_str:
1572  * @obj: the object
1573  * @name: the name of the property
1574  * @errp: returns an error if this function fails
1575  *
1576  * Returns: the value of the property, converted to a C string, or NULL if
1577  * an error occurs (including when the property value is not a string).
1578  * The caller should free the string.
1579  */
1580 char *object_property_get_str(Object *obj, const char *name,
1581                               Error **errp);
1582 
1583 /**
1584  * object_property_set_link:
1585  * @name: the name of the property
1586  * @value: the value to be written to the property
1587  * @errp: returns an error if this function fails
1588  *
1589  * Writes an object's canonical path to a property.
1590  *
1591  * If the link property was created with
1592  * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is
1593  * unreferenced, and a reference is added to the new target object.
1594  *
1595  * Returns: %true on success, %false on failure.
1596  */
1597 bool object_property_set_link(Object *obj, const char *name,
1598                               Object *value, Error **errp);
1599 
1600 /**
1601  * object_property_get_link:
1602  * @obj: the object
1603  * @name: the name of the property
1604  * @errp: returns an error if this function fails
1605  *
1606  * Returns: the value of the property, resolved from a path to an Object,
1607  * or NULL if an error occurs (including when the property value is not a
1608  * string or not a valid object path).
1609  */
1610 Object *object_property_get_link(Object *obj, const char *name,
1611                                  Error **errp);
1612 
1613 /**
1614  * object_property_set_bool:
1615  * @name: the name of the property
1616  * @value: the value to be written to the property
1617  * @errp: returns an error if this function fails
1618  *
1619  * Writes a bool value to a property.
1620  *
1621  * Returns: %true on success, %false on failure.
1622  */
1623 bool object_property_set_bool(Object *obj, const char *name,
1624                               bool value, Error **errp);
1625 
1626 /**
1627  * object_property_get_bool:
1628  * @obj: the object
1629  * @name: the name of the property
1630  * @errp: returns an error if this function fails
1631  *
1632  * Returns: the value of the property, converted to a boolean, or false if
1633  * an error occurs (including when the property value is not a bool).
1634  */
1635 bool object_property_get_bool(Object *obj, const char *name,
1636                               Error **errp);
1637 
1638 /**
1639  * object_property_set_int:
1640  * @name: the name of the property
1641  * @value: the value to be written to the property
1642  * @errp: returns an error if this function fails
1643  *
1644  * Writes an integer value to a property.
1645  *
1646  * Returns: %true on success, %false on failure.
1647  */
1648 bool object_property_set_int(Object *obj, const char *name,
1649                              int64_t value, Error **errp);
1650 
1651 /**
1652  * object_property_get_int:
1653  * @obj: the object
1654  * @name: the name of the property
1655  * @errp: returns an error if this function fails
1656  *
1657  * Returns: the value of the property, converted to an integer, or -1 if
1658  * an error occurs (including when the property value is not an integer).
1659  */
1660 int64_t object_property_get_int(Object *obj, const char *name,
1661                                 Error **errp);
1662 
1663 /**
1664  * object_property_set_uint:
1665  * @name: the name of the property
1666  * @value: the value to be written to the property
1667  * @errp: returns an error if this function fails
1668  *
1669  * Writes an unsigned integer value to a property.
1670  *
1671  * Returns: %true on success, %false on failure.
1672  */
1673 bool object_property_set_uint(Object *obj, const char *name,
1674                               uint64_t value, Error **errp);
1675 
1676 /**
1677  * object_property_get_uint:
1678  * @obj: the object
1679  * @name: the name of the property
1680  * @errp: returns an error if this function fails
1681  *
1682  * Returns: the value of the property, converted to an unsigned integer, or 0
1683  * an error occurs (including when the property value is not an integer).
1684  */
1685 uint64_t object_property_get_uint(Object *obj, const char *name,
1686                                   Error **errp);
1687 
1688 /**
1689  * object_property_get_enum:
1690  * @obj: the object
1691  * @name: the name of the property
1692  * @typename: the name of the enum data type
1693  * @errp: returns an error if this function fails
1694  *
1695  * Returns: the value of the property, converted to an integer (which
1696  * can't be negative), or -1 on error (including when the property
1697  * value is not an enum).
1698  */
1699 int object_property_get_enum(Object *obj, const char *name,
1700                              const char *typename, Error **errp);
1701 
1702 /**
1703  * object_property_set:
1704  * @obj: the object
1705  * @name: the name of the property
1706  * @v: the visitor that will be used to write the property value.  This should
1707  *   be an Input visitor and the data will be first read with @name as the
1708  *   name and then written as the property value.
1709  * @errp: returns an error if this function fails
1710  *
1711  * Writes a property to a object.
1712  *
1713  * Returns: %true on success, %false on failure.
1714  */
1715 bool object_property_set(Object *obj, const char *name, Visitor *v,
1716                          Error **errp);
1717 
1718 /**
1719  * object_property_parse:
1720  * @obj: the object
1721  * @name: the name of the property
1722  * @string: the string that will be used to parse the property value.
1723  * @errp: returns an error if this function fails
1724  *
1725  * Parses a string and writes the result into a property of an object.
1726  *
1727  * Returns: %true on success, %false on failure.
1728  */
1729 bool object_property_parse(Object *obj, const char *name,
1730                            const char *string, Error **errp);
1731 
1732 /**
1733  * object_property_print:
1734  * @obj: the object
1735  * @name: the name of the property
1736  * @human: if true, print for human consumption
1737  * @errp: returns an error if this function fails
1738  *
1739  * Returns a string representation of the value of the property.  The
1740  * caller shall free the string.
1741  */
1742 char *object_property_print(Object *obj, const char *name, bool human,
1743                             Error **errp);
1744 
1745 /**
1746  * object_property_get_type:
1747  * @obj: the object
1748  * @name: the name of the property
1749  * @errp: returns an error if this function fails
1750  *
1751  * Returns:  The type name of the property.
1752  */
1753 const char *object_property_get_type(Object *obj, const char *name,
1754                                      Error **errp);
1755 
1756 /**
1757  * object_get_root:
1758  *
1759  * Returns: the root object of the composition tree
1760  */
1761 Object *object_get_root(void);
1762 
1763 
1764 /**
1765  * object_get_objects_root:
1766  *
1767  * Get the container object that holds user created
1768  * object instances. This is the object at path
1769  * "/objects"
1770  *
1771  * Returns: the user object container
1772  */
1773 Object *object_get_objects_root(void);
1774 
1775 /**
1776  * object_get_internal_root:
1777  *
1778  * Get the container object that holds internally used object
1779  * instances.  Any object which is put into this container must not be
1780  * user visible, and it will not be exposed in the QOM tree.
1781  *
1782  * Returns: the internal object container
1783  */
1784 Object *object_get_internal_root(void);
1785 
1786 /**
1787  * object_get_canonical_path_component:
1788  *
1789  * Returns: The final component in the object's canonical path.  The canonical
1790  * path is the path within the composition tree starting from the root.
1791  * %NULL if the object doesn't have a parent (and thus a canonical path).
1792  */
1793 const char *object_get_canonical_path_component(const Object *obj);
1794 
1795 /**
1796  * object_get_canonical_path:
1797  *
1798  * Returns: The canonical path for a object, newly allocated.  This is
1799  * the path within the composition tree starting from the root.  Use
1800  * g_free() to free it.
1801  */
1802 char *object_get_canonical_path(const Object *obj);
1803 
1804 /**
1805  * object_resolve_path:
1806  * @path: the path to resolve
1807  * @ambiguous: returns true if the path resolution failed because of an
1808  *   ambiguous match
1809  *
1810  * There are two types of supported paths--absolute paths and partial paths.
1811  *
1812  * Absolute paths are derived from the root object and can follow child<> or
1813  * link<> properties.  Since they can follow link<> properties, they can be
1814  * arbitrarily long.  Absolute paths look like absolute filenames and are
1815  * prefixed with a leading slash.
1816  *
1817  * Partial paths look like relative filenames.  They do not begin with a
1818  * prefix.  The matching rules for partial paths are subtle but designed to make
1819  * specifying objects easy.  At each level of the composition tree, the partial
1820  * path is matched as an absolute path.  The first match is not returned.  At
1821  * least two matches are searched for.  A successful result is only returned if
1822  * only one match is found.  If more than one match is found, a flag is
1823  * returned to indicate that the match was ambiguous.
1824  *
1825  * Returns: The matched object or NULL on path lookup failure.
1826  */
1827 Object *object_resolve_path(const char *path, bool *ambiguous);
1828 
1829 /**
1830  * object_resolve_path_type:
1831  * @path: the path to resolve
1832  * @typename: the type to look for.
1833  * @ambiguous: returns true if the path resolution failed because of an
1834  *   ambiguous match
1835  *
1836  * This is similar to object_resolve_path.  However, when looking for a
1837  * partial path only matches that implement the given type are considered.
1838  * This restricts the search and avoids spuriously flagging matches as
1839  * ambiguous.
1840  *
1841  * For both partial and absolute paths, the return value goes through
1842  * a dynamic cast to @typename.  This is important if either the link,
1843  * or the typename itself are of interface types.
1844  *
1845  * Returns: The matched object or NULL on path lookup failure.
1846  */
1847 Object *object_resolve_path_type(const char *path, const char *typename,
1848                                  bool *ambiguous);
1849 
1850 /**
1851  * object_resolve_path_component:
1852  * @parent: the object in which to resolve the path
1853  * @part: the component to resolve.
1854  *
1855  * This is similar to object_resolve_path with an absolute path, but it
1856  * only resolves one element (@part) and takes the others from @parent.
1857  *
1858  * Returns: The resolved object or NULL on path lookup failure.
1859  */
1860 Object *object_resolve_path_component(Object *parent, const char *part);
1861 
1862 /**
1863  * object_property_try_add_child:
1864  * @obj: the object to add a property to
1865  * @name: the name of the property
1866  * @child: the child object
1867  * @errp: pointer to error object
1868  *
1869  * Child properties form the composition tree.  All objects need to be a child
1870  * of another object.  Objects can only be a child of one object.
1871  *
1872  * There is no way for a child to determine what its parent is.  It is not
1873  * a bidirectional relationship.  This is by design.
1874  *
1875  * The value of a child property as a C string will be the child object's
1876  * canonical path. It can be retrieved using object_property_get_str().
1877  * The child object itself can be retrieved using object_property_get_link().
1878  *
1879  * Returns: The newly added property on success, or %NULL on failure.
1880  */
1881 ObjectProperty *object_property_try_add_child(Object *obj, const char *name,
1882                                               Object *child, Error **errp);
1883 
1884 /**
1885  * object_property_add_child:
1886  * Same as object_property_try_add_child() with @errp hardcoded to
1887  * &error_abort
1888  */
1889 ObjectProperty *object_property_add_child(Object *obj, const char *name,
1890                                           Object *child);
1891 
1892 typedef enum {
1893     /* Unref the link pointer when the property is deleted */
1894     OBJ_PROP_LINK_STRONG = 0x1,
1895 
1896     /* private */
1897     OBJ_PROP_LINK_DIRECT = 0x2,
1898     OBJ_PROP_LINK_CLASS = 0x4,
1899 } ObjectPropertyLinkFlags;
1900 
1901 /**
1902  * object_property_allow_set_link:
1903  *
1904  * The default implementation of the object_property_add_link() check()
1905  * callback function.  It allows the link property to be set and never returns
1906  * an error.
1907  */
1908 void object_property_allow_set_link(const Object *, const char *,
1909                                     Object *, Error **);
1910 
1911 /**
1912  * object_property_add_link:
1913  * @obj: the object to add a property to
1914  * @name: the name of the property
1915  * @type: the qobj type of the link
1916  * @targetp: a pointer to where the link object reference is stored
1917  * @check: callback to veto setting or NULL if the property is read-only
1918  * @flags: additional options for the link
1919  *
1920  * Links establish relationships between objects.  Links are unidirectional
1921  * although two links can be combined to form a bidirectional relationship
1922  * between objects.
1923  *
1924  * Links form the graph in the object model.
1925  *
1926  * The <code>@check()</code> callback is invoked when
1927  * object_property_set_link() is called and can raise an error to prevent the
1928  * link being set.  If <code>@check</code> is NULL, the property is read-only
1929  * and cannot be set.
1930  *
1931  * Ownership of the pointer that @child points to is transferred to the
1932  * link property.  The reference count for <code>*@child</code> is
1933  * managed by the property from after the function returns till the
1934  * property is deleted with object_property_del().  If the
1935  * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set,
1936  * the reference count is decremented when the property is deleted or
1937  * modified.
1938  *
1939  * Returns: The newly added property on success, or %NULL on failure.
1940  */
1941 ObjectProperty *object_property_add_link(Object *obj, const char *name,
1942                               const char *type, Object **targetp,
1943                               void (*check)(const Object *obj, const char *name,
1944                                             Object *val, Error **errp),
1945                               ObjectPropertyLinkFlags flags);
1946 
1947 ObjectProperty *object_class_property_add_link(ObjectClass *oc,
1948                               const char *name,
1949                               const char *type, ptrdiff_t offset,
1950                               void (*check)(const Object *obj, const char *name,
1951                                             Object *val, Error **errp),
1952                               ObjectPropertyLinkFlags flags);
1953 
1954 /**
1955  * object_property_add_str:
1956  * @obj: the object to add a property to
1957  * @name: the name of the property
1958  * @get: the getter or NULL if the property is write-only.  This function must
1959  *   return a string to be freed by g_free().
1960  * @set: the setter or NULL if the property is read-only
1961  *
1962  * Add a string property using getters/setters.  This function will add a
1963  * property of type 'string'.
1964  *
1965  * Returns: The newly added property on success, or %NULL on failure.
1966  */
1967 ObjectProperty *object_property_add_str(Object *obj, const char *name,
1968                              char *(*get)(Object *, Error **),
1969                              void (*set)(Object *, const char *, Error **));
1970 
1971 ObjectProperty *object_class_property_add_str(ObjectClass *klass,
1972                                    const char *name,
1973                                    char *(*get)(Object *, Error **),
1974                                    void (*set)(Object *, const char *,
1975                                                Error **));
1976 
1977 /**
1978  * object_property_add_bool:
1979  * @obj: the object to add a property to
1980  * @name: the name of the property
1981  * @get: the getter or NULL if the property is write-only.
1982  * @set: the setter or NULL if the property is read-only
1983  *
1984  * Add a bool property using getters/setters.  This function will add a
1985  * property of type 'bool'.
1986  *
1987  * Returns: The newly added property on success, or %NULL on failure.
1988  */
1989 ObjectProperty *object_property_add_bool(Object *obj, const char *name,
1990                               bool (*get)(Object *, Error **),
1991                               void (*set)(Object *, bool, Error **));
1992 
1993 ObjectProperty *object_class_property_add_bool(ObjectClass *klass,
1994                                     const char *name,
1995                                     bool (*get)(Object *, Error **),
1996                                     void (*set)(Object *, bool, Error **));
1997 
1998 /**
1999  * object_property_add_enum:
2000  * @obj: the object to add a property to
2001  * @name: the name of the property
2002  * @typename: the name of the enum data type
2003  * @get: the getter or %NULL if the property is write-only.
2004  * @set: the setter or %NULL if the property is read-only
2005  *
2006  * Add an enum property using getters/setters.  This function will add a
2007  * property of type '@typename'.
2008  *
2009  * Returns: The newly added property on success, or %NULL on failure.
2010  */
2011 ObjectProperty *object_property_add_enum(Object *obj, const char *name,
2012                               const char *typename,
2013                               const QEnumLookup *lookup,
2014                               int (*get)(Object *, Error **),
2015                               void (*set)(Object *, int, Error **));
2016 
2017 ObjectProperty *object_class_property_add_enum(ObjectClass *klass,
2018                                     const char *name,
2019                                     const char *typename,
2020                                     const QEnumLookup *lookup,
2021                                     int (*get)(Object *, Error **),
2022                                     void (*set)(Object *, int, Error **));
2023 
2024 /**
2025  * object_property_add_tm:
2026  * @obj: the object to add a property to
2027  * @name: the name of the property
2028  * @get: the getter or NULL if the property is write-only.
2029  *
2030  * Add a read-only struct tm valued property using a getter function.
2031  * This function will add a property of type 'struct tm'.
2032  *
2033  * Returns: The newly added property on success, or %NULL on failure.
2034  */
2035 ObjectProperty *object_property_add_tm(Object *obj, const char *name,
2036                             void (*get)(Object *, struct tm *, Error **));
2037 
2038 ObjectProperty *object_class_property_add_tm(ObjectClass *klass,
2039                             const char *name,
2040                             void (*get)(Object *, struct tm *, Error **));
2041 
2042 typedef enum {
2043     /* Automatically add a getter to the property */
2044     OBJ_PROP_FLAG_READ = 1 << 0,
2045     /* Automatically add a setter to the property */
2046     OBJ_PROP_FLAG_WRITE = 1 << 1,
2047     /* Automatically add a getter and a setter to the property */
2048     OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE),
2049 } ObjectPropertyFlags;
2050 
2051 /**
2052  * object_property_add_uint8_ptr:
2053  * @obj: the object to add a property to
2054  * @name: the name of the property
2055  * @v: pointer to value
2056  * @flags: bitwise-or'd ObjectPropertyFlags
2057  *
2058  * Add an integer property in memory.  This function will add a
2059  * property of type 'uint8'.
2060  *
2061  * Returns: The newly added property on success, or %NULL on failure.
2062  */
2063 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name,
2064                                               const uint8_t *v,
2065                                               ObjectPropertyFlags flags);
2066 
2067 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass,
2068                                          const char *name,
2069                                          const uint8_t *v,
2070                                          ObjectPropertyFlags flags);
2071 
2072 /**
2073  * object_property_add_uint16_ptr:
2074  * @obj: the object to add a property to
2075  * @name: the name of the property
2076  * @v: pointer to value
2077  * @flags: bitwise-or'd ObjectPropertyFlags
2078  *
2079  * Add an integer property in memory.  This function will add a
2080  * property of type 'uint16'.
2081  *
2082  * Returns: The newly added property on success, or %NULL on failure.
2083  */
2084 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name,
2085                                     const uint16_t *v,
2086                                     ObjectPropertyFlags flags);
2087 
2088 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass,
2089                                           const char *name,
2090                                           const uint16_t *v,
2091                                           ObjectPropertyFlags flags);
2092 
2093 /**
2094  * object_property_add_uint32_ptr:
2095  * @obj: the object to add a property to
2096  * @name: the name of the property
2097  * @v: pointer to value
2098  * @flags: bitwise-or'd ObjectPropertyFlags
2099  *
2100  * Add an integer property in memory.  This function will add a
2101  * property of type 'uint32'.
2102  *
2103  * Returns: The newly added property on success, or %NULL on failure.
2104  */
2105 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name,
2106                                     const uint32_t *v,
2107                                     ObjectPropertyFlags flags);
2108 
2109 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass,
2110                                           const char *name,
2111                                           const uint32_t *v,
2112                                           ObjectPropertyFlags flags);
2113 
2114 /**
2115  * object_property_add_uint64_ptr:
2116  * @obj: the object to add a property to
2117  * @name: the name of the property
2118  * @v: pointer to value
2119  * @flags: bitwise-or'd ObjectPropertyFlags
2120  *
2121  * Add an integer property in memory.  This function will add a
2122  * property of type 'uint64'.
2123  *
2124  * Returns: The newly added property on success, or %NULL on failure.
2125  */
2126 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name,
2127                                     const uint64_t *v,
2128                                     ObjectPropertyFlags flags);
2129 
2130 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass,
2131                                           const char *name,
2132                                           const uint64_t *v,
2133                                           ObjectPropertyFlags flags);
2134 
2135 /**
2136  * object_property_add_alias:
2137  * @obj: the object to add a property to
2138  * @name: the name of the property
2139  * @target_obj: the object to forward property access to
2140  * @target_name: the name of the property on the forwarded object
2141  *
2142  * Add an alias for a property on an object.  This function will add a property
2143  * of the same type as the forwarded property.
2144  *
2145  * The caller must ensure that <code>@target_obj</code> stays alive as long as
2146  * this property exists.  In the case of a child object or an alias on the same
2147  * object this will be the case.  For aliases to other objects the caller is
2148  * responsible for taking a reference.
2149  *
2150  * Returns: The newly added property on success, or %NULL on failure.
2151  */
2152 ObjectProperty *object_property_add_alias(Object *obj, const char *name,
2153                                Object *target_obj, const char *target_name);
2154 
2155 /**
2156  * object_property_add_const_link:
2157  * @obj: the object to add a property to
2158  * @name: the name of the property
2159  * @target: the object to be referred by the link
2160  *
2161  * Add an unmodifiable link for a property on an object.  This function will
2162  * add a property of type link<TYPE> where TYPE is the type of @target.
2163  *
2164  * The caller must ensure that @target stays alive as long as
2165  * this property exists.  In the case @target is a child of @obj,
2166  * this will be the case.  Otherwise, the caller is responsible for
2167  * taking a reference.
2168  *
2169  * Returns: The newly added property on success, or %NULL on failure.
2170  */
2171 ObjectProperty *object_property_add_const_link(Object *obj, const char *name,
2172                                                Object *target);
2173 
2174 /**
2175  * object_property_set_description:
2176  * @obj: the object owning the property
2177  * @name: the name of the property
2178  * @description: the description of the property on the object
2179  *
2180  * Set an object property's description.
2181  *
2182  * Returns: %true on success, %false on failure.
2183  */
2184 void object_property_set_description(Object *obj, const char *name,
2185                                      const char *description);
2186 void object_class_property_set_description(ObjectClass *klass, const char *name,
2187                                            const char *description);
2188 
2189 /**
2190  * object_child_foreach:
2191  * @obj: the object whose children will be navigated
2192  * @fn: the iterator function to be called
2193  * @opaque: an opaque value that will be passed to the iterator
2194  *
2195  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2196  * non-zero.
2197  *
2198  * It is forbidden to add or remove children from @obj from the @fn
2199  * callback.
2200  *
2201  * Returns: The last value returned by @fn, or 0 if there is no child.
2202  */
2203 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
2204                          void *opaque);
2205 
2206 /**
2207  * object_child_foreach_recursive:
2208  * @obj: the object whose children will be navigated
2209  * @fn: the iterator function to be called
2210  * @opaque: an opaque value that will be passed to the iterator
2211  *
2212  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
2213  * non-zero. Calls recursively, all child nodes of @obj will also be passed
2214  * all the way down to the leaf nodes of the tree. Depth first ordering.
2215  *
2216  * It is forbidden to add or remove children from @obj (or its
2217  * child nodes) from the @fn callback.
2218  *
2219  * Returns: The last value returned by @fn, or 0 if there is no child.
2220  */
2221 int object_child_foreach_recursive(Object *obj,
2222                                    int (*fn)(Object *child, void *opaque),
2223                                    void *opaque);
2224 /**
2225  * container_get:
2226  * @root: root of the #path, e.g., object_get_root()
2227  * @path: path to the container
2228  *
2229  * Return a container object whose path is @path.  Create more containers
2230  * along the path if necessary.
2231  *
2232  * Returns: the container object.
2233  */
2234 Object *container_get(Object *root, const char *path);
2235 
2236 /**
2237  * object_type_get_instance_size:
2238  * @typename: Name of the Type whose instance_size is required
2239  *
2240  * Returns the instance_size of the given @typename.
2241  */
2242 size_t object_type_get_instance_size(const char *typename);
2243 
2244 /**
2245  * object_property_help:
2246  * @name: the name of the property
2247  * @type: the type of the property
2248  * @defval: the default value
2249  * @description: description of the property
2250  *
2251  * Returns: a user-friendly formatted string describing the property
2252  * for help purposes.
2253  */
2254 char *object_property_help(const char *name, const char *type,
2255                            QObject *defval, const char *description);
2256 
2257 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref)
2258 
2259 #endif
2260