1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include "qapi/qapi-builtin-types.h" 18 #include "qemu/module.h" 19 #include "qom/object.h" 20 21 struct TypeImpl; 22 typedef struct TypeImpl *Type; 23 24 typedef struct TypeInfo TypeInfo; 25 26 typedef struct InterfaceClass InterfaceClass; 27 typedef struct InterfaceInfo InterfaceInfo; 28 29 #define TYPE_OBJECT "object" 30 31 /** 32 * SECTION:object.h 33 * @title:Base Object Type System 34 * @short_description: interfaces for creating new types and objects 35 * 36 * The QEMU Object Model provides a framework for registering user creatable 37 * types and instantiating objects from those types. QOM provides the following 38 * features: 39 * 40 * - System for dynamically registering types 41 * - Support for single-inheritance of types 42 * - Multiple inheritance of stateless interfaces 43 * 44 * <example> 45 * <title>Creating a minimal type</title> 46 * <programlisting> 47 * #include "qdev.h" 48 * 49 * #define TYPE_MY_DEVICE "my-device" 50 * 51 * // No new virtual functions: we can reuse the typedef for the 52 * // superclass. 53 * typedef DeviceClass MyDeviceClass; 54 * typedef struct MyDevice 55 * { 56 * DeviceState parent; 57 * 58 * int reg0, reg1, reg2; 59 * } MyDevice; 60 * 61 * static const TypeInfo my_device_info = { 62 * .name = TYPE_MY_DEVICE, 63 * .parent = TYPE_DEVICE, 64 * .instance_size = sizeof(MyDevice), 65 * }; 66 * 67 * static void my_device_register_types(void) 68 * { 69 * type_register_static(&my_device_info); 70 * } 71 * 72 * type_init(my_device_register_types) 73 * </programlisting> 74 * </example> 75 * 76 * In the above example, we create a simple type that is described by #TypeInfo. 77 * #TypeInfo describes information about the type including what it inherits 78 * from, the instance and class size, and constructor/destructor hooks. 79 * 80 * Alternatively several static types could be registered using helper macro 81 * DEFINE_TYPES() 82 * 83 * <example> 84 * <programlisting> 85 * static const TypeInfo device_types_info[] = { 86 * { 87 * .name = TYPE_MY_DEVICE_A, 88 * .parent = TYPE_DEVICE, 89 * .instance_size = sizeof(MyDeviceA), 90 * }, 91 * { 92 * .name = TYPE_MY_DEVICE_B, 93 * .parent = TYPE_DEVICE, 94 * .instance_size = sizeof(MyDeviceB), 95 * }, 96 * }; 97 * 98 * DEFINE_TYPES(device_types_info) 99 * </programlisting> 100 * </example> 101 * 102 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 103 * are instantiated dynamically but there is only ever one instance for any 104 * given type. The #ObjectClass typically holds a table of function pointers 105 * for the virtual methods implemented by this type. 106 * 107 * Using object_new(), a new #Object derivative will be instantiated. You can 108 * cast an #Object to a subclass (or base-class) type using 109 * object_dynamic_cast(). You typically want to define macro wrappers around 110 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 111 * specific type: 112 * 113 * <example> 114 * <title>Typecasting macros</title> 115 * <programlisting> 116 * #define MY_DEVICE_GET_CLASS(obj) \ 117 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 118 * #define MY_DEVICE_CLASS(klass) \ 119 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 120 * #define MY_DEVICE(obj) \ 121 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 122 * </programlisting> 123 * </example> 124 * 125 * # Class Initialization # 126 * 127 * Before an object is initialized, the class for the object must be 128 * initialized. There is only one class object for all instance objects 129 * that is created lazily. 130 * 131 * Classes are initialized by first initializing any parent classes (if 132 * necessary). After the parent class object has initialized, it will be 133 * copied into the current class object and any additional storage in the 134 * class object is zero filled. 135 * 136 * The effect of this is that classes automatically inherit any virtual 137 * function pointers that the parent class has already initialized. All 138 * other fields will be zero filled. 139 * 140 * Once all of the parent classes have been initialized, #TypeInfo::class_init 141 * is called to let the class being instantiated provide default initialize for 142 * its virtual functions. Here is how the above example might be modified 143 * to introduce an overridden virtual function: 144 * 145 * <example> 146 * <title>Overriding a virtual function</title> 147 * <programlisting> 148 * #include "qdev.h" 149 * 150 * void my_device_class_init(ObjectClass *klass, void *class_data) 151 * { 152 * DeviceClass *dc = DEVICE_CLASS(klass); 153 * dc->reset = my_device_reset; 154 * } 155 * 156 * static const TypeInfo my_device_info = { 157 * .name = TYPE_MY_DEVICE, 158 * .parent = TYPE_DEVICE, 159 * .instance_size = sizeof(MyDevice), 160 * .class_init = my_device_class_init, 161 * }; 162 * </programlisting> 163 * </example> 164 * 165 * Introducing new virtual methods requires a class to define its own 166 * struct and to add a .class_size member to the #TypeInfo. Each method 167 * will also have a wrapper function to call it easily: 168 * 169 * <example> 170 * <title>Defining an abstract class</title> 171 * <programlisting> 172 * #include "qdev.h" 173 * 174 * typedef struct MyDeviceClass 175 * { 176 * DeviceClass parent; 177 * 178 * void (*frobnicate) (MyDevice *obj); 179 * } MyDeviceClass; 180 * 181 * static const TypeInfo my_device_info = { 182 * .name = TYPE_MY_DEVICE, 183 * .parent = TYPE_DEVICE, 184 * .instance_size = sizeof(MyDevice), 185 * .abstract = true, // or set a default in my_device_class_init 186 * .class_size = sizeof(MyDeviceClass), 187 * }; 188 * 189 * void my_device_frobnicate(MyDevice *obj) 190 * { 191 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 192 * 193 * klass->frobnicate(obj); 194 * } 195 * </programlisting> 196 * </example> 197 * 198 * # Interfaces # 199 * 200 * Interfaces allow a limited form of multiple inheritance. Instances are 201 * similar to normal types except for the fact that are only defined by 202 * their classes and never carry any state. As a consequence, a pointer to 203 * an interface instance should always be of incomplete type in order to be 204 * sure it cannot be dereferenced. That is, you should define the 205 * 'typedef struct SomethingIf SomethingIf' so that you can pass around 206 * 'SomethingIf *si' arguments, but not define a 'struct SomethingIf { ... }'. 207 * The only things you can validly do with a 'SomethingIf *' are to pass it as 208 * an argument to a method on its corresponding SomethingIfClass, or to 209 * dynamically cast it to an object that implements the interface. 210 * 211 * # Methods # 212 * 213 * A <emphasis>method</emphasis> is a function within the namespace scope of 214 * a class. It usually operates on the object instance by passing it as a 215 * strongly-typed first argument. 216 * If it does not operate on an object instance, it is dubbed 217 * <emphasis>class method</emphasis>. 218 * 219 * Methods cannot be overloaded. That is, the #ObjectClass and method name 220 * uniquely identity the function to be called; the signature does not vary 221 * except for trailing varargs. 222 * 223 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 224 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 225 * via OBJECT_GET_CLASS() accessing the overridden function. 226 * The original function is not automatically invoked. It is the responsibility 227 * of the overriding class to determine whether and when to invoke the method 228 * being overridden. 229 * 230 * To invoke the method being overridden, the preferred solution is to store 231 * the original value in the overriding class before overriding the method. 232 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 233 * respectively; this frees the overriding class from hardcoding its parent 234 * class, which someone might choose to change at some point. 235 * 236 * <example> 237 * <title>Overriding a virtual method</title> 238 * <programlisting> 239 * typedef struct MyState MyState; 240 * 241 * typedef void (*MyDoSomething)(MyState *obj); 242 * 243 * typedef struct MyClass { 244 * ObjectClass parent_class; 245 * 246 * MyDoSomething do_something; 247 * } MyClass; 248 * 249 * static void my_do_something(MyState *obj) 250 * { 251 * // do something 252 * } 253 * 254 * static void my_class_init(ObjectClass *oc, void *data) 255 * { 256 * MyClass *mc = MY_CLASS(oc); 257 * 258 * mc->do_something = my_do_something; 259 * } 260 * 261 * static const TypeInfo my_type_info = { 262 * .name = TYPE_MY, 263 * .parent = TYPE_OBJECT, 264 * .instance_size = sizeof(MyState), 265 * .class_size = sizeof(MyClass), 266 * .class_init = my_class_init, 267 * }; 268 * 269 * typedef struct DerivedClass { 270 * MyClass parent_class; 271 * 272 * MyDoSomething parent_do_something; 273 * } DerivedClass; 274 * 275 * static void derived_do_something(MyState *obj) 276 * { 277 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 278 * 279 * // do something here 280 * dc->parent_do_something(obj); 281 * // do something else here 282 * } 283 * 284 * static void derived_class_init(ObjectClass *oc, void *data) 285 * { 286 * MyClass *mc = MY_CLASS(oc); 287 * DerivedClass *dc = DERIVED_CLASS(oc); 288 * 289 * dc->parent_do_something = mc->do_something; 290 * mc->do_something = derived_do_something; 291 * } 292 * 293 * static const TypeInfo derived_type_info = { 294 * .name = TYPE_DERIVED, 295 * .parent = TYPE_MY, 296 * .class_size = sizeof(DerivedClass), 297 * .class_init = derived_class_init, 298 * }; 299 * </programlisting> 300 * </example> 301 * 302 * Alternatively, object_class_by_name() can be used to obtain the class and 303 * its non-overridden methods for a specific type. This would correspond to 304 * |[ MyClass::method(...) ]| in C++. 305 * 306 * The first example of such a QOM method was #CPUClass.reset, 307 * another example is #DeviceClass.realize. 308 * 309 * # Standard type declaration and definition macros # 310 * 311 * A lot of the code outlined above follows a standard pattern and naming 312 * convention. To reduce the amount of boilerplate code that needs to be 313 * written for a new type there are two sets of macros to generate the 314 * common parts in a standard format. 315 * 316 * A type is declared using the OBJECT_DECLARE macro family. In types 317 * which do not require any virtual functions in the class, the 318 * OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed 319 * in the header file: 320 * 321 * <example> 322 * <title>Declaring a simple type</title> 323 * <programlisting> 324 * OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 325 * </programlisting> 326 * </example> 327 * 328 * This is equivalent to the following: 329 * 330 * <example> 331 * <title>Expansion from declaring a simple type</title> 332 * <programlisting> 333 * typedef struct MyDevice MyDevice; 334 * typedef struct MyDeviceClass MyDeviceClass; 335 * 336 * G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref) 337 * 338 * #define MY_DEVICE_GET_CLASS(void *obj) \ 339 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 340 * #define MY_DEVICE_CLASS(void *klass) \ 341 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 342 * #define MY_DEVICE(void *obj) 343 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 344 * 345 * struct MyDeviceClass { 346 * DeviceClass parent_class; 347 * }; 348 * </programlisting> 349 * </example> 350 * 351 * The 'struct MyDevice' needs to be declared separately. 352 * If the type requires virtual functions to be declared in the class 353 * struct, then the alternative OBJECT_DECLARE_TYPE() macro can be 354 * used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without 355 * the 'struct MyDeviceClass' definition. 356 * 357 * To implement the type, the OBJECT_DEFINE macro family is available. 358 * In the simple case the OBJECT_DEFINE_TYPE macro is suitable: 359 * 360 * <example> 361 * <title>Defining a simple type</title> 362 * <programlisting> 363 * OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 364 * </programlisting> 365 * </example> 366 * 367 * This is equivalent to the following: 368 * 369 * <example> 370 * <title>Expansion from defining a simple type</title> 371 * <programlisting> 372 * static void my_device_finalize(Object *obj); 373 * static void my_device_class_init(ObjectClass *oc, void *data); 374 * static void my_device_init(Object *obj); 375 * 376 * static const TypeInfo my_device_info = { 377 * .parent = TYPE_DEVICE, 378 * .name = TYPE_MY_DEVICE, 379 * .instance_size = sizeof(MyDevice), 380 * .instance_init = my_device_init, 381 * .instance_finalize = my_device_finalize, 382 * .class_size = sizeof(MyDeviceClass), 383 * .class_init = my_device_class_init, 384 * }; 385 * 386 * static void 387 * my_device_register_types(void) 388 * { 389 * type_register_static(&my_device_info); 390 * } 391 * type_init(my_device_register_types); 392 * </programlisting> 393 * </example> 394 * 395 * This is sufficient to get the type registered with the type 396 * system, and the three standard methods now need to be implemented 397 * along with any other logic required for the type. 398 * 399 * If the type needs to implement one or more interfaces, then the 400 * OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead. 401 * This accepts an array of interface type names. 402 * 403 * <example> 404 * <title>Defining a simple type implementing interfaces</title> 405 * <programlisting> 406 * OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device, 407 * MY_DEVICE, DEVICE, 408 * { TYPE_USER_CREATABLE }, { NULL }) 409 * </programlisting> 410 * </example> 411 * 412 * If the type is not intended to be instantiated, then then 413 * the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead: 414 * 415 * <example> 416 * <title>Defining a simple type</title> 417 * <programlisting> 418 * OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE) 419 * </programlisting> 420 * </example> 421 */ 422 423 424 typedef struct ObjectProperty ObjectProperty; 425 426 /** 427 * ObjectPropertyAccessor: 428 * @obj: the object that owns the property 429 * @v: the visitor that contains the property data 430 * @name: the name of the property 431 * @opaque: the object property opaque 432 * @errp: a pointer to an Error that is filled if getting/setting fails. 433 * 434 * Called when trying to get/set a property. 435 */ 436 typedef void (ObjectPropertyAccessor)(Object *obj, 437 Visitor *v, 438 const char *name, 439 void *opaque, 440 Error **errp); 441 442 /** 443 * ObjectPropertyResolve: 444 * @obj: the object that owns the property 445 * @opaque: the opaque registered with the property 446 * @part: the name of the property 447 * 448 * Resolves the #Object corresponding to property @part. 449 * 450 * The returned object can also be used as a starting point 451 * to resolve a relative path starting with "@part". 452 * 453 * Returns: If @path is the path that led to @obj, the function 454 * returns the #Object corresponding to "@path/@part". 455 * If "@path/@part" is not a valid object path, it returns #NULL. 456 */ 457 typedef Object *(ObjectPropertyResolve)(Object *obj, 458 void *opaque, 459 const char *part); 460 461 /** 462 * ObjectPropertyRelease: 463 * @obj: the object that owns the property 464 * @name: the name of the property 465 * @opaque: the opaque registered with the property 466 * 467 * Called when a property is removed from a object. 468 */ 469 typedef void (ObjectPropertyRelease)(Object *obj, 470 const char *name, 471 void *opaque); 472 473 /** 474 * ObjectPropertyInit: 475 * @obj: the object that owns the property 476 * @prop: the property to set 477 * 478 * Called when a property is initialized. 479 */ 480 typedef void (ObjectPropertyInit)(Object *obj, ObjectProperty *prop); 481 482 struct ObjectProperty 483 { 484 char *name; 485 char *type; 486 char *description; 487 ObjectPropertyAccessor *get; 488 ObjectPropertyAccessor *set; 489 ObjectPropertyResolve *resolve; 490 ObjectPropertyRelease *release; 491 ObjectPropertyInit *init; 492 void *opaque; 493 QObject *defval; 494 }; 495 496 /** 497 * ObjectUnparent: 498 * @obj: the object that is being removed from the composition tree 499 * 500 * Called when an object is being removed from the QOM composition tree. 501 * The function should remove any backlinks from children objects to @obj. 502 */ 503 typedef void (ObjectUnparent)(Object *obj); 504 505 /** 506 * ObjectFree: 507 * @obj: the object being freed 508 * 509 * Called when an object's last reference is removed. 510 */ 511 typedef void (ObjectFree)(void *obj); 512 513 #define OBJECT_CLASS_CAST_CACHE 4 514 515 /** 516 * ObjectClass: 517 * 518 * The base for all classes. The only thing that #ObjectClass contains is an 519 * integer type handle. 520 */ 521 struct ObjectClass 522 { 523 /*< private >*/ 524 Type type; 525 GSList *interfaces; 526 527 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE]; 528 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE]; 529 530 ObjectUnparent *unparent; 531 532 GHashTable *properties; 533 }; 534 535 /** 536 * Object: 537 * 538 * The base for all objects. The first member of this object is a pointer to 539 * a #ObjectClass. Since C guarantees that the first member of a structure 540 * always begins at byte 0 of that structure, as long as any sub-object places 541 * its parent as the first member, we can cast directly to a #Object. 542 * 543 * As a result, #Object contains a reference to the objects type as its 544 * first member. This allows identification of the real type of the object at 545 * run time. 546 */ 547 struct Object 548 { 549 /*< private >*/ 550 ObjectClass *class; 551 ObjectFree *free; 552 GHashTable *properties; 553 uint32_t ref; 554 Object *parent; 555 }; 556 557 /** 558 * DECLARE_INSTANCE_CHECKER: 559 * @InstanceType: instance struct name 560 * @OBJ_NAME: the object name in uppercase with underscore separators 561 * @TYPENAME: type name 562 * 563 * Direct usage of this macro should be avoided, and the complete 564 * OBJECT_DECLARE_TYPE macro is recommended instead. 565 * 566 * This macro will provide the three standard type cast functions for a 567 * QOM type. 568 */ 569 #define DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \ 570 static inline G_GNUC_UNUSED InstanceType * \ 571 OBJ_NAME(const void *obj) \ 572 { return OBJECT_CHECK(InstanceType, obj, TYPENAME); } 573 574 /** 575 * DECLARE_CLASS_CHECKERS: 576 * @ClassType: class struct name 577 * @OBJ_NAME: the object name in uppercase with underscore separators 578 * @TYPENAME: type name 579 * 580 * Direct usage of this macro should be avoided, and the complete 581 * OBJECT_DECLARE_TYPE macro is recommended instead. 582 * 583 * This macro will provide the three standard type cast functions for a 584 * QOM type. 585 */ 586 #define DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) \ 587 static inline G_GNUC_UNUSED ClassType * \ 588 OBJ_NAME##_GET_CLASS(const void *obj) \ 589 { return OBJECT_GET_CLASS(ClassType, obj, TYPENAME); } \ 590 \ 591 static inline G_GNUC_UNUSED ClassType * \ 592 OBJ_NAME##_CLASS(const void *klass) \ 593 { return OBJECT_CLASS_CHECK(ClassType, klass, TYPENAME); } 594 595 /** 596 * DECLARE_OBJ_CHECKERS: 597 * @InstanceType: instance struct name 598 * @ClassType: class struct name 599 * @OBJ_NAME: the object name in uppercase with underscore separators 600 * @TYPENAME: type name 601 * 602 * Direct usage of this macro should be avoided, and the complete 603 * OBJECT_DECLARE_TYPE macro is recommended instead. 604 * 605 * This macro will provide the three standard type cast functions for a 606 * QOM type. 607 */ 608 #define DECLARE_OBJ_CHECKERS(InstanceType, ClassType, OBJ_NAME, TYPENAME) \ 609 DECLARE_INSTANCE_CHECKER(InstanceType, OBJ_NAME, TYPENAME) \ 610 \ 611 DECLARE_CLASS_CHECKERS(ClassType, OBJ_NAME, TYPENAME) 612 613 /** 614 * OBJECT_DECLARE_TYPE: 615 * @InstanceType: instance struct name 616 * @ClassType: class struct name 617 * @module_obj_name: the object name in lowercase with underscore separators 618 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 619 * 620 * This macro is typically used in a header file, and will: 621 * 622 * - create the typedefs for the object and class structs 623 * - register the type for use with g_autoptr 624 * - provide three standard type cast functions 625 * 626 * The object struct and class struct need to be declared manually. 627 */ 628 #define OBJECT_DECLARE_TYPE(InstanceType, ClassType, module_obj_name, MODULE_OBJ_NAME) \ 629 typedef struct InstanceType InstanceType; \ 630 typedef struct ClassType ClassType; \ 631 \ 632 G_DEFINE_AUTOPTR_CLEANUP_FUNC(InstanceType, object_unref) \ 633 \ 634 DECLARE_OBJ_CHECKERS(InstanceType, ClassType, \ 635 MODULE_OBJ_NAME, TYPE_##MODULE_OBJ_NAME) 636 637 /** 638 * OBJECT_DECLARE_SIMPLE_TYPE: 639 * @InstanceType: instance struct name 640 * @module_obj_name: the object name in lowercase with underscore separators 641 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 642 * @ParentClassType: class struct name of parent type 643 * 644 * This does the same as OBJECT_DECLARE_TYPE(), but also declares 645 * the class struct, thus only the object struct needs to be declare 646 * manually. 647 * 648 * This macro should be used unless the class struct needs to have 649 * virtual methods declared. 650 */ 651 #define OBJECT_DECLARE_SIMPLE_TYPE(InstanceType, module_obj_name, \ 652 MODULE_OBJ_NAME, ParentClassType) \ 653 OBJECT_DECLARE_TYPE(InstanceType, InstanceType##Class, module_obj_name, MODULE_OBJ_NAME) \ 654 struct InstanceType##Class { ParentClassType parent_class; }; 655 656 657 /** 658 * OBJECT_DEFINE_TYPE_EXTENDED: 659 * @ModuleObjName: the object name with initial caps 660 * @module_obj_name: the object name in lowercase with underscore separators 661 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 662 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 663 * separators 664 * @ABSTRACT: boolean flag to indicate whether the object can be instantiated 665 * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces 666 * 667 * This macro is typically used in a source file, and will: 668 * 669 * - declare prototypes for _finalize, _class_init and _init methods 670 * - declare the TypeInfo struct instance 671 * - provide the constructor to register the type 672 * 673 * After using this macro, implementations of the _finalize, _class_init, 674 * and _init methods need to be written. Any of these can be zero-line 675 * no-op impls if no special logic is required for a given type. 676 * 677 * This macro should rarely be used, instead one of the more specialized 678 * macros is usually a better choice. 679 */ 680 #define OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 681 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 682 ABSTRACT, ...) \ 683 static void \ 684 module_obj_name##_finalize(Object *obj); \ 685 static void \ 686 module_obj_name##_class_init(ObjectClass *oc, void *data); \ 687 static void \ 688 module_obj_name##_init(Object *obj); \ 689 \ 690 static const TypeInfo module_obj_name##_info = { \ 691 .parent = TYPE_##PARENT_MODULE_OBJ_NAME, \ 692 .name = TYPE_##MODULE_OBJ_NAME, \ 693 .instance_size = sizeof(ModuleObjName), \ 694 .instance_align = __alignof__(ModuleObjName), \ 695 .instance_init = module_obj_name##_init, \ 696 .instance_finalize = module_obj_name##_finalize, \ 697 .class_size = sizeof(ModuleObjName##Class), \ 698 .class_init = module_obj_name##_class_init, \ 699 .abstract = ABSTRACT, \ 700 .interfaces = (InterfaceInfo[]) { __VA_ARGS__ } , \ 701 }; \ 702 \ 703 static void \ 704 module_obj_name##_register_types(void) \ 705 { \ 706 type_register_static(&module_obj_name##_info); \ 707 } \ 708 type_init(module_obj_name##_register_types); 709 710 /** 711 * OBJECT_DEFINE_TYPE: 712 * @ModuleObjName: the object name with initial caps 713 * @module_obj_name: the object name in lowercase with underscore separators 714 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 715 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 716 * separators 717 * 718 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 719 * for the common case of a non-abstract type, without any interfaces. 720 */ 721 #define OBJECT_DEFINE_TYPE(ModuleObjName, module_obj_name, MODULE_OBJ_NAME, \ 722 PARENT_MODULE_OBJ_NAME) \ 723 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 724 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 725 false, { NULL }) 726 727 /** 728 * OBJECT_DEFINE_TYPE_WITH_INTERFACES: 729 * @ModuleObjName: the object name with initial caps 730 * @module_obj_name: the object name in lowercase with underscore separators 731 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 732 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 733 * separators 734 * @...: list of initializers for "InterfaceInfo" to declare implemented interfaces 735 * 736 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 737 * for the common case of a non-abstract type, with one or more implemented 738 * interfaces. 739 * 740 * Note when passing the list of interfaces, be sure to include the final 741 * NULL entry, e.g. { TYPE_USER_CREATABLE }, { NULL } 742 */ 743 #define OBJECT_DEFINE_TYPE_WITH_INTERFACES(ModuleObjName, module_obj_name, \ 744 MODULE_OBJ_NAME, \ 745 PARENT_MODULE_OBJ_NAME, ...) \ 746 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 747 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 748 false, __VA_ARGS__) 749 750 /** 751 * OBJECT_DEFINE_ABSTRACT_TYPE: 752 * @ModuleObjName: the object name with initial caps 753 * @module_obj_name: the object name in lowercase with underscore separators 754 * @MODULE_OBJ_NAME: the object name in uppercase with underscore separators 755 * @PARENT_MODULE_OBJ_NAME: the parent object name in uppercase with underscore 756 * separators 757 * 758 * This is a specialization of OBJECT_DEFINE_TYPE_EXTENDED, which is suitable 759 * for defining an abstract type, without any interfaces. 760 */ 761 #define OBJECT_DEFINE_ABSTRACT_TYPE(ModuleObjName, module_obj_name, \ 762 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME) \ 763 OBJECT_DEFINE_TYPE_EXTENDED(ModuleObjName, module_obj_name, \ 764 MODULE_OBJ_NAME, PARENT_MODULE_OBJ_NAME, \ 765 true, { NULL }) 766 767 /** 768 * TypeInfo: 769 * @name: The name of the type. 770 * @parent: The name of the parent type. 771 * @instance_size: The size of the object (derivative of #Object). If 772 * @instance_size is 0, then the size of the object will be the size of the 773 * parent object. 774 * @instance_align: The required alignment of the object. If @instance_align 775 * is 0, then normal malloc alignment is sufficient; if non-zero, then we 776 * must use qemu_memalign for allocation. 777 * @instance_init: This function is called to initialize an object. The parent 778 * class will have already been initialized so the type is only responsible 779 * for initializing its own members. 780 * @instance_post_init: This function is called to finish initialization of 781 * an object, after all @instance_init functions were called. 782 * @instance_finalize: This function is called during object destruction. This 783 * is called before the parent @instance_finalize function has been called. 784 * An object should only free the members that are unique to its type in this 785 * function. 786 * @abstract: If this field is true, then the class is considered abstract and 787 * cannot be directly instantiated. 788 * @class_size: The size of the class object (derivative of #ObjectClass) 789 * for this object. If @class_size is 0, then the size of the class will be 790 * assumed to be the size of the parent class. This allows a type to avoid 791 * implementing an explicit class type if they are not adding additional 792 * virtual functions. 793 * @class_init: This function is called after all parent class initialization 794 * has occurred to allow a class to set its default virtual method pointers. 795 * This is also the function to use to override virtual methods from a parent 796 * class. 797 * @class_base_init: This function is called for all base classes after all 798 * parent class initialization has occurred, but before the class itself 799 * is initialized. This is the function to use to undo the effects of 800 * memcpy from the parent class to the descendants. 801 * @class_data: Data to pass to the @class_init, 802 * @class_base_init. This can be useful when building dynamic 803 * classes. 804 * @interfaces: The list of interfaces associated with this type. This 805 * should point to a static array that's terminated with a zero filled 806 * element. 807 */ 808 struct TypeInfo 809 { 810 const char *name; 811 const char *parent; 812 813 size_t instance_size; 814 size_t instance_align; 815 void (*instance_init)(Object *obj); 816 void (*instance_post_init)(Object *obj); 817 void (*instance_finalize)(Object *obj); 818 819 bool abstract; 820 size_t class_size; 821 822 void (*class_init)(ObjectClass *klass, void *data); 823 void (*class_base_init)(ObjectClass *klass, void *data); 824 void *class_data; 825 826 InterfaceInfo *interfaces; 827 }; 828 829 /** 830 * OBJECT: 831 * @obj: A derivative of #Object 832 * 833 * Converts an object to a #Object. Since all objects are #Objects, 834 * this function will always succeed. 835 */ 836 #define OBJECT(obj) \ 837 ((Object *)(obj)) 838 839 /** 840 * OBJECT_CLASS: 841 * @class: A derivative of #ObjectClass. 842 * 843 * Converts a class to an #ObjectClass. Since all objects are #Objects, 844 * this function will always succeed. 845 */ 846 #define OBJECT_CLASS(class) \ 847 ((ObjectClass *)(class)) 848 849 /** 850 * OBJECT_CHECK: 851 * @type: The C type to use for the return value. 852 * @obj: A derivative of @type to cast. 853 * @name: The QOM typename of @type 854 * 855 * A type safe version of @object_dynamic_cast_assert. Typically each class 856 * will define a macro based on this type to perform type safe dynamic_casts to 857 * this object type. 858 * 859 * If an invalid object is passed to this function, a run time assert will be 860 * generated. 861 */ 862 #define OBJECT_CHECK(type, obj, name) \ 863 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 864 __FILE__, __LINE__, __func__)) 865 866 /** 867 * OBJECT_CLASS_CHECK: 868 * @class_type: The C type to use for the return value. 869 * @class: A derivative class of @class_type to cast. 870 * @name: the QOM typename of @class_type. 871 * 872 * A type safe version of @object_class_dynamic_cast_assert. This macro is 873 * typically wrapped by each type to perform type safe casts of a class to a 874 * specific class type. 875 */ 876 #define OBJECT_CLASS_CHECK(class_type, class, name) \ 877 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \ 878 __FILE__, __LINE__, __func__)) 879 880 /** 881 * OBJECT_GET_CLASS: 882 * @class: The C type to use for the return value. 883 * @obj: The object to obtain the class for. 884 * @name: The QOM typename of @obj. 885 * 886 * This function will return a specific class for a given object. Its generally 887 * used by each type to provide a type safe macro to get a specific class type 888 * from an object. 889 */ 890 #define OBJECT_GET_CLASS(class, obj, name) \ 891 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 892 893 /** 894 * InterfaceInfo: 895 * @type: The name of the interface. 896 * 897 * The information associated with an interface. 898 */ 899 struct InterfaceInfo { 900 const char *type; 901 }; 902 903 /** 904 * InterfaceClass: 905 * @parent_class: the base class 906 * 907 * The class for all interfaces. Subclasses of this class should only add 908 * virtual methods. 909 */ 910 struct InterfaceClass 911 { 912 ObjectClass parent_class; 913 /*< private >*/ 914 ObjectClass *concrete_class; 915 Type interface_type; 916 }; 917 918 #define TYPE_INTERFACE "interface" 919 920 /** 921 * INTERFACE_CLASS: 922 * @klass: class to cast from 923 * Returns: An #InterfaceClass or raise an error if cast is invalid 924 */ 925 #define INTERFACE_CLASS(klass) \ 926 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 927 928 /** 929 * INTERFACE_CHECK: 930 * @interface: the type to return 931 * @obj: the object to convert to an interface 932 * @name: the interface type name 933 * 934 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 935 */ 936 #define INTERFACE_CHECK(interface, obj, name) \ 937 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 938 __FILE__, __LINE__, __func__)) 939 940 /** 941 * object_new_with_class: 942 * @klass: The class to instantiate. 943 * 944 * This function will initialize a new object using heap allocated memory. 945 * The returned object has a reference count of 1, and will be freed when 946 * the last reference is dropped. 947 * 948 * Returns: The newly allocated and instantiated object. 949 */ 950 Object *object_new_with_class(ObjectClass *klass); 951 952 /** 953 * object_new: 954 * @typename: The name of the type of the object to instantiate. 955 * 956 * This function will initialize a new object using heap allocated memory. 957 * The returned object has a reference count of 1, and will be freed when 958 * the last reference is dropped. 959 * 960 * Returns: The newly allocated and instantiated object. 961 */ 962 Object *object_new(const char *typename); 963 964 /** 965 * object_new_with_props: 966 * @typename: The name of the type of the object to instantiate. 967 * @parent: the parent object 968 * @id: The unique ID of the object 969 * @errp: pointer to error object 970 * @...: list of property names and values 971 * 972 * This function will initialize a new object using heap allocated memory. 973 * The returned object has a reference count of 1, and will be freed when 974 * the last reference is dropped. 975 * 976 * The @id parameter will be used when registering the object as a 977 * child of @parent in the composition tree. 978 * 979 * The variadic parameters are a list of pairs of (propname, propvalue) 980 * strings. The propname of %NULL indicates the end of the property 981 * list. If the object implements the user creatable interface, the 982 * object will be marked complete once all the properties have been 983 * processed. 984 * 985 * <example> 986 * <title>Creating an object with properties</title> 987 * <programlisting> 988 * Error *err = NULL; 989 * Object *obj; 990 * 991 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE, 992 * object_get_objects_root(), 993 * "hostmem0", 994 * &err, 995 * "share", "yes", 996 * "mem-path", "/dev/shm/somefile", 997 * "prealloc", "yes", 998 * "size", "1048576", 999 * NULL); 1000 * 1001 * if (!obj) { 1002 * error_reportf_err(err, "Cannot create memory backend: "); 1003 * } 1004 * </programlisting> 1005 * </example> 1006 * 1007 * The returned object will have one stable reference maintained 1008 * for as long as it is present in the object hierarchy. 1009 * 1010 * Returns: The newly allocated, instantiated & initialized object. 1011 */ 1012 Object *object_new_with_props(const char *typename, 1013 Object *parent, 1014 const char *id, 1015 Error **errp, 1016 ...) QEMU_SENTINEL; 1017 1018 /** 1019 * object_new_with_propv: 1020 * @typename: The name of the type of the object to instantiate. 1021 * @parent: the parent object 1022 * @id: The unique ID of the object 1023 * @errp: pointer to error object 1024 * @vargs: list of property names and values 1025 * 1026 * See object_new_with_props() for documentation. 1027 */ 1028 Object *object_new_with_propv(const char *typename, 1029 Object *parent, 1030 const char *id, 1031 Error **errp, 1032 va_list vargs); 1033 1034 bool object_apply_global_props(Object *obj, const GPtrArray *props, 1035 Error **errp); 1036 void object_set_machine_compat_props(GPtrArray *compat_props); 1037 void object_set_accelerator_compat_props(GPtrArray *compat_props); 1038 void object_register_sugar_prop(const char *driver, const char *prop, const char *value); 1039 void object_apply_compat_props(Object *obj); 1040 1041 /** 1042 * object_set_props: 1043 * @obj: the object instance to set properties on 1044 * @errp: pointer to error object 1045 * @...: list of property names and values 1046 * 1047 * This function will set a list of properties on an existing object 1048 * instance. 1049 * 1050 * The variadic parameters are a list of pairs of (propname, propvalue) 1051 * strings. The propname of %NULL indicates the end of the property 1052 * list. 1053 * 1054 * <example> 1055 * <title>Update an object's properties</title> 1056 * <programlisting> 1057 * Error *err = NULL; 1058 * Object *obj = ...get / create object...; 1059 * 1060 * if (!object_set_props(obj, 1061 * &err, 1062 * "share", "yes", 1063 * "mem-path", "/dev/shm/somefile", 1064 * "prealloc", "yes", 1065 * "size", "1048576", 1066 * NULL)) { 1067 * error_reportf_err(err, "Cannot set properties: "); 1068 * } 1069 * </programlisting> 1070 * </example> 1071 * 1072 * The returned object will have one stable reference maintained 1073 * for as long as it is present in the object hierarchy. 1074 * 1075 * Returns: %true on success, %false on error. 1076 */ 1077 bool object_set_props(Object *obj, Error **errp, ...) QEMU_SENTINEL; 1078 1079 /** 1080 * object_set_propv: 1081 * @obj: the object instance to set properties on 1082 * @errp: pointer to error object 1083 * @vargs: list of property names and values 1084 * 1085 * See object_set_props() for documentation. 1086 * 1087 * Returns: %true on success, %false on error. 1088 */ 1089 bool object_set_propv(Object *obj, Error **errp, va_list vargs); 1090 1091 /** 1092 * object_initialize: 1093 * @obj: A pointer to the memory to be used for the object. 1094 * @size: The maximum size available at @obj for the object. 1095 * @typename: The name of the type of the object to instantiate. 1096 * 1097 * This function will initialize an object. The memory for the object should 1098 * have already been allocated. The returned object has a reference count of 1, 1099 * and will be finalized when the last reference is dropped. 1100 */ 1101 void object_initialize(void *obj, size_t size, const char *typename); 1102 1103 /** 1104 * object_initialize_child_with_props: 1105 * @parentobj: The parent object to add a property to 1106 * @propname: The name of the property 1107 * @childobj: A pointer to the memory to be used for the object. 1108 * @size: The maximum size available at @childobj for the object. 1109 * @type: The name of the type of the object to instantiate. 1110 * @errp: If an error occurs, a pointer to an area to store the error 1111 * @...: list of property names and values 1112 * 1113 * This function will initialize an object. The memory for the object should 1114 * have already been allocated. The object will then be added as child property 1115 * to a parent with object_property_add_child() function. The returned object 1116 * has a reference count of 1 (for the "child<...>" property from the parent), 1117 * so the object will be finalized automatically when the parent gets removed. 1118 * 1119 * The variadic parameters are a list of pairs of (propname, propvalue) 1120 * strings. The propname of %NULL indicates the end of the property list. 1121 * If the object implements the user creatable interface, the object will 1122 * be marked complete once all the properties have been processed. 1123 * 1124 * Returns: %true on success, %false on failure. 1125 */ 1126 bool object_initialize_child_with_props(Object *parentobj, 1127 const char *propname, 1128 void *childobj, size_t size, const char *type, 1129 Error **errp, ...) QEMU_SENTINEL; 1130 1131 /** 1132 * object_initialize_child_with_propsv: 1133 * @parentobj: The parent object to add a property to 1134 * @propname: The name of the property 1135 * @childobj: A pointer to the memory to be used for the object. 1136 * @size: The maximum size available at @childobj for the object. 1137 * @type: The name of the type of the object to instantiate. 1138 * @errp: If an error occurs, a pointer to an area to store the error 1139 * @vargs: list of property names and values 1140 * 1141 * See object_initialize_child() for documentation. 1142 * 1143 * Returns: %true on success, %false on failure. 1144 */ 1145 bool object_initialize_child_with_propsv(Object *parentobj, 1146 const char *propname, 1147 void *childobj, size_t size, const char *type, 1148 Error **errp, va_list vargs); 1149 1150 /** 1151 * object_initialize_child: 1152 * @parent: The parent object to add a property to 1153 * @propname: The name of the property 1154 * @child: A precisely typed pointer to the memory to be used for the 1155 * object. 1156 * @type: The name of the type of the object to instantiate. 1157 * 1158 * This is like 1159 * object_initialize_child_with_props(parent, propname, 1160 * child, sizeof(*child), type, 1161 * &error_abort, NULL) 1162 */ 1163 #define object_initialize_child(parent, propname, child, type) \ 1164 object_initialize_child_internal((parent), (propname), \ 1165 (child), sizeof(*(child)), (type)) 1166 void object_initialize_child_internal(Object *parent, const char *propname, 1167 void *child, size_t size, 1168 const char *type); 1169 1170 /** 1171 * object_dynamic_cast: 1172 * @obj: The object to cast. 1173 * @typename: The @typename to cast to. 1174 * 1175 * This function will determine if @obj is-a @typename. @obj can refer to an 1176 * object or an interface associated with an object. 1177 * 1178 * Returns: This function returns @obj on success or #NULL on failure. 1179 */ 1180 Object *object_dynamic_cast(Object *obj, const char *typename); 1181 1182 /** 1183 * object_dynamic_cast_assert: 1184 * 1185 * See object_dynamic_cast() for a description of the parameters of this 1186 * function. The only difference in behavior is that this function asserts 1187 * instead of returning #NULL on failure if QOM cast debugging is enabled. 1188 * This function is not meant to be called directly, but only through 1189 * the wrapper macro OBJECT_CHECK. 1190 */ 1191 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 1192 const char *file, int line, const char *func); 1193 1194 /** 1195 * object_get_class: 1196 * @obj: A derivative of #Object 1197 * 1198 * Returns: The #ObjectClass of the type associated with @obj. 1199 */ 1200 ObjectClass *object_get_class(Object *obj); 1201 1202 /** 1203 * object_get_typename: 1204 * @obj: A derivative of #Object. 1205 * 1206 * Returns: The QOM typename of @obj. 1207 */ 1208 const char *object_get_typename(const Object *obj); 1209 1210 /** 1211 * type_register_static: 1212 * @info: The #TypeInfo of the new type. 1213 * 1214 * @info and all of the strings it points to should exist for the life time 1215 * that the type is registered. 1216 * 1217 * Returns: the new #Type. 1218 */ 1219 Type type_register_static(const TypeInfo *info); 1220 1221 /** 1222 * type_register: 1223 * @info: The #TypeInfo of the new type 1224 * 1225 * Unlike type_register_static(), this call does not require @info or its 1226 * string members to continue to exist after the call returns. 1227 * 1228 * Returns: the new #Type. 1229 */ 1230 Type type_register(const TypeInfo *info); 1231 1232 /** 1233 * type_register_static_array: 1234 * @infos: The array of the new type #TypeInfo structures. 1235 * @nr_infos: number of entries in @infos 1236 * 1237 * @infos and all of the strings it points to should exist for the life time 1238 * that the type is registered. 1239 */ 1240 void type_register_static_array(const TypeInfo *infos, int nr_infos); 1241 1242 /** 1243 * DEFINE_TYPES: 1244 * @type_array: The array containing #TypeInfo structures to register 1245 * 1246 * @type_array should be static constant that exists for the life time 1247 * that the type is registered. 1248 */ 1249 #define DEFINE_TYPES(type_array) \ 1250 static void do_qemu_init_ ## type_array(void) \ 1251 { \ 1252 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \ 1253 } \ 1254 type_init(do_qemu_init_ ## type_array) 1255 1256 /** 1257 * object_class_dynamic_cast_assert: 1258 * @klass: The #ObjectClass to attempt to cast. 1259 * @typename: The QOM typename of the class to cast to. 1260 * 1261 * See object_class_dynamic_cast() for a description of the parameters 1262 * of this function. The only difference in behavior is that this function 1263 * asserts instead of returning #NULL on failure if QOM cast debugging is 1264 * enabled. This function is not meant to be called directly, but only through 1265 * the wrapper macro OBJECT_CLASS_CHECK. 1266 */ 1267 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 1268 const char *typename, 1269 const char *file, int line, 1270 const char *func); 1271 1272 /** 1273 * object_class_dynamic_cast: 1274 * @klass: The #ObjectClass to attempt to cast. 1275 * @typename: The QOM typename of the class to cast to. 1276 * 1277 * Returns: If @typename is a class, this function returns @klass if 1278 * @typename is a subtype of @klass, else returns #NULL. 1279 * 1280 * If @typename is an interface, this function returns the interface 1281 * definition for @klass if @klass implements it unambiguously; #NULL 1282 * is returned if @klass does not implement the interface or if multiple 1283 * classes or interfaces on the hierarchy leading to @klass implement 1284 * it. (FIXME: perhaps this can be detected at type definition time?) 1285 */ 1286 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 1287 const char *typename); 1288 1289 /** 1290 * object_class_get_parent: 1291 * @klass: The class to obtain the parent for. 1292 * 1293 * Returns: The parent for @klass or %NULL if none. 1294 */ 1295 ObjectClass *object_class_get_parent(ObjectClass *klass); 1296 1297 /** 1298 * object_class_get_name: 1299 * @klass: The class to obtain the QOM typename for. 1300 * 1301 * Returns: The QOM typename for @klass. 1302 */ 1303 const char *object_class_get_name(ObjectClass *klass); 1304 1305 /** 1306 * object_class_is_abstract: 1307 * @klass: The class to obtain the abstractness for. 1308 * 1309 * Returns: %true if @klass is abstract, %false otherwise. 1310 */ 1311 bool object_class_is_abstract(ObjectClass *klass); 1312 1313 /** 1314 * object_class_by_name: 1315 * @typename: The QOM typename to obtain the class for. 1316 * 1317 * Returns: The class for @typename or %NULL if not found. 1318 */ 1319 ObjectClass *object_class_by_name(const char *typename); 1320 1321 /** 1322 * module_object_class_by_name: 1323 * @typename: The QOM typename to obtain the class for. 1324 * 1325 * For objects which might be provided by a module. Behaves like 1326 * object_class_by_name, but additionally tries to load the module 1327 * needed in case the class is not available. 1328 * 1329 * Returns: The class for @typename or %NULL if not found. 1330 */ 1331 ObjectClass *module_object_class_by_name(const char *typename); 1332 1333 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 1334 const char *implements_type, bool include_abstract, 1335 void *opaque); 1336 1337 /** 1338 * object_class_get_list: 1339 * @implements_type: The type to filter for, including its derivatives. 1340 * @include_abstract: Whether to include abstract classes. 1341 * 1342 * Returns: A singly-linked list of the classes in reverse hashtable order. 1343 */ 1344 GSList *object_class_get_list(const char *implements_type, 1345 bool include_abstract); 1346 1347 /** 1348 * object_class_get_list_sorted: 1349 * @implements_type: The type to filter for, including its derivatives. 1350 * @include_abstract: Whether to include abstract classes. 1351 * 1352 * Returns: A singly-linked list of the classes in alphabetical 1353 * case-insensitive order. 1354 */ 1355 GSList *object_class_get_list_sorted(const char *implements_type, 1356 bool include_abstract); 1357 1358 /** 1359 * object_ref: 1360 * @obj: the object 1361 * 1362 * Increase the reference count of a object. A object cannot be freed as long 1363 * as its reference count is greater than zero. 1364 * Returns: @obj 1365 */ 1366 Object *object_ref(void *obj); 1367 1368 /** 1369 * object_unref: 1370 * @obj: the object 1371 * 1372 * Decrease the reference count of a object. A object cannot be freed as long 1373 * as its reference count is greater than zero. 1374 */ 1375 void object_unref(void *obj); 1376 1377 /** 1378 * object_property_try_add: 1379 * @obj: the object to add a property to 1380 * @name: the name of the property. This can contain any character except for 1381 * a forward slash. In general, you should use hyphens '-' instead of 1382 * underscores '_' when naming properties. 1383 * @type: the type name of the property. This namespace is pretty loosely 1384 * defined. Sub namespaces are constructed by using a prefix and then 1385 * to angle brackets. For instance, the type 'virtio-net-pci' in the 1386 * 'link' namespace would be 'link<virtio-net-pci>'. 1387 * @get: The getter to be called to read a property. If this is NULL, then 1388 * the property cannot be read. 1389 * @set: the setter to be called to write a property. If this is NULL, 1390 * then the property cannot be written. 1391 * @release: called when the property is removed from the object. This is 1392 * meant to allow a property to free its opaque upon object 1393 * destruction. This may be NULL. 1394 * @opaque: an opaque pointer to pass to the callbacks for the property 1395 * @errp: pointer to error object 1396 * 1397 * Returns: The #ObjectProperty; this can be used to set the @resolve 1398 * callback for child and link properties. 1399 */ 1400 ObjectProperty *object_property_try_add(Object *obj, const char *name, 1401 const char *type, 1402 ObjectPropertyAccessor *get, 1403 ObjectPropertyAccessor *set, 1404 ObjectPropertyRelease *release, 1405 void *opaque, Error **errp); 1406 1407 /** 1408 * object_property_add: 1409 * Same as object_property_try_add() with @errp hardcoded to 1410 * &error_abort. 1411 */ 1412 ObjectProperty *object_property_add(Object *obj, const char *name, 1413 const char *type, 1414 ObjectPropertyAccessor *get, 1415 ObjectPropertyAccessor *set, 1416 ObjectPropertyRelease *release, 1417 void *opaque); 1418 1419 void object_property_del(Object *obj, const char *name); 1420 1421 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name, 1422 const char *type, 1423 ObjectPropertyAccessor *get, 1424 ObjectPropertyAccessor *set, 1425 ObjectPropertyRelease *release, 1426 void *opaque); 1427 1428 /** 1429 * object_property_set_default_bool: 1430 * @prop: the property to set 1431 * @value: the value to be written to the property 1432 * 1433 * Set the property default value. 1434 */ 1435 void object_property_set_default_bool(ObjectProperty *prop, bool value); 1436 1437 /** 1438 * object_property_set_default_str: 1439 * @prop: the property to set 1440 * @value: the value to be written to the property 1441 * 1442 * Set the property default value. 1443 */ 1444 void object_property_set_default_str(ObjectProperty *prop, const char *value); 1445 1446 /** 1447 * object_property_set_default_int: 1448 * @prop: the property to set 1449 * @value: the value to be written to the property 1450 * 1451 * Set the property default value. 1452 */ 1453 void object_property_set_default_int(ObjectProperty *prop, int64_t value); 1454 1455 /** 1456 * object_property_set_default_uint: 1457 * @prop: the property to set 1458 * @value: the value to be written to the property 1459 * 1460 * Set the property default value. 1461 */ 1462 void object_property_set_default_uint(ObjectProperty *prop, uint64_t value); 1463 1464 /** 1465 * object_property_find: 1466 * @obj: the object 1467 * @name: the name of the property 1468 * @errp: returns an error if this function fails 1469 * 1470 * Look up a property for an object and return its #ObjectProperty if found. 1471 */ 1472 ObjectProperty *object_property_find(Object *obj, const char *name, 1473 Error **errp); 1474 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name, 1475 Error **errp); 1476 1477 typedef struct ObjectPropertyIterator { 1478 ObjectClass *nextclass; 1479 GHashTableIter iter; 1480 } ObjectPropertyIterator; 1481 1482 /** 1483 * object_property_iter_init: 1484 * @obj: the object 1485 * 1486 * Initializes an iterator for traversing all properties 1487 * registered against an object instance, its class and all parent classes. 1488 * 1489 * It is forbidden to modify the property list while iterating, 1490 * whether removing or adding properties. 1491 * 1492 * Typical usage pattern would be 1493 * 1494 * <example> 1495 * <title>Using object property iterators</title> 1496 * <programlisting> 1497 * ObjectProperty *prop; 1498 * ObjectPropertyIterator iter; 1499 * 1500 * object_property_iter_init(&iter, obj); 1501 * while ((prop = object_property_iter_next(&iter))) { 1502 * ... do something with prop ... 1503 * } 1504 * </programlisting> 1505 * </example> 1506 */ 1507 void object_property_iter_init(ObjectPropertyIterator *iter, 1508 Object *obj); 1509 1510 /** 1511 * object_class_property_iter_init: 1512 * @klass: the class 1513 * 1514 * Initializes an iterator for traversing all properties 1515 * registered against an object class and all parent classes. 1516 * 1517 * It is forbidden to modify the property list while iterating, 1518 * whether removing or adding properties. 1519 * 1520 * This can be used on abstract classes as it does not create a temporary 1521 * instance. 1522 */ 1523 void object_class_property_iter_init(ObjectPropertyIterator *iter, 1524 ObjectClass *klass); 1525 1526 /** 1527 * object_property_iter_next: 1528 * @iter: the iterator instance 1529 * 1530 * Return the next available property. If no further properties 1531 * are available, a %NULL value will be returned and the @iter 1532 * pointer should not be used again after this point without 1533 * re-initializing it. 1534 * 1535 * Returns: the next property, or %NULL when all properties 1536 * have been traversed. 1537 */ 1538 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter); 1539 1540 void object_unparent(Object *obj); 1541 1542 /** 1543 * object_property_get: 1544 * @obj: the object 1545 * @name: the name of the property 1546 * @v: the visitor that will receive the property value. This should be an 1547 * Output visitor and the data will be written with @name as the name. 1548 * @errp: returns an error if this function fails 1549 * 1550 * Reads a property from a object. 1551 * 1552 * Returns: %true on success, %false on failure. 1553 */ 1554 bool object_property_get(Object *obj, const char *name, Visitor *v, 1555 Error **errp); 1556 1557 /** 1558 * object_property_set_str: 1559 * @name: the name of the property 1560 * @value: the value to be written to the property 1561 * @errp: returns an error if this function fails 1562 * 1563 * Writes a string value to a property. 1564 * 1565 * Returns: %true on success, %false on failure. 1566 */ 1567 bool object_property_set_str(Object *obj, const char *name, 1568 const char *value, Error **errp); 1569 1570 /** 1571 * object_property_get_str: 1572 * @obj: the object 1573 * @name: the name of the property 1574 * @errp: returns an error if this function fails 1575 * 1576 * Returns: the value of the property, converted to a C string, or NULL if 1577 * an error occurs (including when the property value is not a string). 1578 * The caller should free the string. 1579 */ 1580 char *object_property_get_str(Object *obj, const char *name, 1581 Error **errp); 1582 1583 /** 1584 * object_property_set_link: 1585 * @name: the name of the property 1586 * @value: the value to be written to the property 1587 * @errp: returns an error if this function fails 1588 * 1589 * Writes an object's canonical path to a property. 1590 * 1591 * If the link property was created with 1592 * <code>OBJ_PROP_LINK_STRONG</code> bit, the old target object is 1593 * unreferenced, and a reference is added to the new target object. 1594 * 1595 * Returns: %true on success, %false on failure. 1596 */ 1597 bool object_property_set_link(Object *obj, const char *name, 1598 Object *value, Error **errp); 1599 1600 /** 1601 * object_property_get_link: 1602 * @obj: the object 1603 * @name: the name of the property 1604 * @errp: returns an error if this function fails 1605 * 1606 * Returns: the value of the property, resolved from a path to an Object, 1607 * or NULL if an error occurs (including when the property value is not a 1608 * string or not a valid object path). 1609 */ 1610 Object *object_property_get_link(Object *obj, const char *name, 1611 Error **errp); 1612 1613 /** 1614 * object_property_set_bool: 1615 * @name: the name of the property 1616 * @value: the value to be written to the property 1617 * @errp: returns an error if this function fails 1618 * 1619 * Writes a bool value to a property. 1620 * 1621 * Returns: %true on success, %false on failure. 1622 */ 1623 bool object_property_set_bool(Object *obj, const char *name, 1624 bool value, Error **errp); 1625 1626 /** 1627 * object_property_get_bool: 1628 * @obj: the object 1629 * @name: the name of the property 1630 * @errp: returns an error if this function fails 1631 * 1632 * Returns: the value of the property, converted to a boolean, or false if 1633 * an error occurs (including when the property value is not a bool). 1634 */ 1635 bool object_property_get_bool(Object *obj, const char *name, 1636 Error **errp); 1637 1638 /** 1639 * object_property_set_int: 1640 * @name: the name of the property 1641 * @value: the value to be written to the property 1642 * @errp: returns an error if this function fails 1643 * 1644 * Writes an integer value to a property. 1645 * 1646 * Returns: %true on success, %false on failure. 1647 */ 1648 bool object_property_set_int(Object *obj, const char *name, 1649 int64_t value, Error **errp); 1650 1651 /** 1652 * object_property_get_int: 1653 * @obj: the object 1654 * @name: the name of the property 1655 * @errp: returns an error if this function fails 1656 * 1657 * Returns: the value of the property, converted to an integer, or -1 if 1658 * an error occurs (including when the property value is not an integer). 1659 */ 1660 int64_t object_property_get_int(Object *obj, const char *name, 1661 Error **errp); 1662 1663 /** 1664 * object_property_set_uint: 1665 * @name: the name of the property 1666 * @value: the value to be written to the property 1667 * @errp: returns an error if this function fails 1668 * 1669 * Writes an unsigned integer value to a property. 1670 * 1671 * Returns: %true on success, %false on failure. 1672 */ 1673 bool object_property_set_uint(Object *obj, const char *name, 1674 uint64_t value, Error **errp); 1675 1676 /** 1677 * object_property_get_uint: 1678 * @obj: the object 1679 * @name: the name of the property 1680 * @errp: returns an error if this function fails 1681 * 1682 * Returns: the value of the property, converted to an unsigned integer, or 0 1683 * an error occurs (including when the property value is not an integer). 1684 */ 1685 uint64_t object_property_get_uint(Object *obj, const char *name, 1686 Error **errp); 1687 1688 /** 1689 * object_property_get_enum: 1690 * @obj: the object 1691 * @name: the name of the property 1692 * @typename: the name of the enum data type 1693 * @errp: returns an error if this function fails 1694 * 1695 * Returns: the value of the property, converted to an integer (which 1696 * can't be negative), or -1 on error (including when the property 1697 * value is not an enum). 1698 */ 1699 int object_property_get_enum(Object *obj, const char *name, 1700 const char *typename, Error **errp); 1701 1702 /** 1703 * object_property_set: 1704 * @obj: the object 1705 * @name: the name of the property 1706 * @v: the visitor that will be used to write the property value. This should 1707 * be an Input visitor and the data will be first read with @name as the 1708 * name and then written as the property value. 1709 * @errp: returns an error if this function fails 1710 * 1711 * Writes a property to a object. 1712 * 1713 * Returns: %true on success, %false on failure. 1714 */ 1715 bool object_property_set(Object *obj, const char *name, Visitor *v, 1716 Error **errp); 1717 1718 /** 1719 * object_property_parse: 1720 * @obj: the object 1721 * @name: the name of the property 1722 * @string: the string that will be used to parse the property value. 1723 * @errp: returns an error if this function fails 1724 * 1725 * Parses a string and writes the result into a property of an object. 1726 * 1727 * Returns: %true on success, %false on failure. 1728 */ 1729 bool object_property_parse(Object *obj, const char *name, 1730 const char *string, Error **errp); 1731 1732 /** 1733 * object_property_print: 1734 * @obj: the object 1735 * @name: the name of the property 1736 * @human: if true, print for human consumption 1737 * @errp: returns an error if this function fails 1738 * 1739 * Returns a string representation of the value of the property. The 1740 * caller shall free the string. 1741 */ 1742 char *object_property_print(Object *obj, const char *name, bool human, 1743 Error **errp); 1744 1745 /** 1746 * object_property_get_type: 1747 * @obj: the object 1748 * @name: the name of the property 1749 * @errp: returns an error if this function fails 1750 * 1751 * Returns: The type name of the property. 1752 */ 1753 const char *object_property_get_type(Object *obj, const char *name, 1754 Error **errp); 1755 1756 /** 1757 * object_get_root: 1758 * 1759 * Returns: the root object of the composition tree 1760 */ 1761 Object *object_get_root(void); 1762 1763 1764 /** 1765 * object_get_objects_root: 1766 * 1767 * Get the container object that holds user created 1768 * object instances. This is the object at path 1769 * "/objects" 1770 * 1771 * Returns: the user object container 1772 */ 1773 Object *object_get_objects_root(void); 1774 1775 /** 1776 * object_get_internal_root: 1777 * 1778 * Get the container object that holds internally used object 1779 * instances. Any object which is put into this container must not be 1780 * user visible, and it will not be exposed in the QOM tree. 1781 * 1782 * Returns: the internal object container 1783 */ 1784 Object *object_get_internal_root(void); 1785 1786 /** 1787 * object_get_canonical_path_component: 1788 * 1789 * Returns: The final component in the object's canonical path. The canonical 1790 * path is the path within the composition tree starting from the root. 1791 * %NULL if the object doesn't have a parent (and thus a canonical path). 1792 */ 1793 const char *object_get_canonical_path_component(const Object *obj); 1794 1795 /** 1796 * object_get_canonical_path: 1797 * 1798 * Returns: The canonical path for a object, newly allocated. This is 1799 * the path within the composition tree starting from the root. Use 1800 * g_free() to free it. 1801 */ 1802 char *object_get_canonical_path(const Object *obj); 1803 1804 /** 1805 * object_resolve_path: 1806 * @path: the path to resolve 1807 * @ambiguous: returns true if the path resolution failed because of an 1808 * ambiguous match 1809 * 1810 * There are two types of supported paths--absolute paths and partial paths. 1811 * 1812 * Absolute paths are derived from the root object and can follow child<> or 1813 * link<> properties. Since they can follow link<> properties, they can be 1814 * arbitrarily long. Absolute paths look like absolute filenames and are 1815 * prefixed with a leading slash. 1816 * 1817 * Partial paths look like relative filenames. They do not begin with a 1818 * prefix. The matching rules for partial paths are subtle but designed to make 1819 * specifying objects easy. At each level of the composition tree, the partial 1820 * path is matched as an absolute path. The first match is not returned. At 1821 * least two matches are searched for. A successful result is only returned if 1822 * only one match is found. If more than one match is found, a flag is 1823 * returned to indicate that the match was ambiguous. 1824 * 1825 * Returns: The matched object or NULL on path lookup failure. 1826 */ 1827 Object *object_resolve_path(const char *path, bool *ambiguous); 1828 1829 /** 1830 * object_resolve_path_type: 1831 * @path: the path to resolve 1832 * @typename: the type to look for. 1833 * @ambiguous: returns true if the path resolution failed because of an 1834 * ambiguous match 1835 * 1836 * This is similar to object_resolve_path. However, when looking for a 1837 * partial path only matches that implement the given type are considered. 1838 * This restricts the search and avoids spuriously flagging matches as 1839 * ambiguous. 1840 * 1841 * For both partial and absolute paths, the return value goes through 1842 * a dynamic cast to @typename. This is important if either the link, 1843 * or the typename itself are of interface types. 1844 * 1845 * Returns: The matched object or NULL on path lookup failure. 1846 */ 1847 Object *object_resolve_path_type(const char *path, const char *typename, 1848 bool *ambiguous); 1849 1850 /** 1851 * object_resolve_path_component: 1852 * @parent: the object in which to resolve the path 1853 * @part: the component to resolve. 1854 * 1855 * This is similar to object_resolve_path with an absolute path, but it 1856 * only resolves one element (@part) and takes the others from @parent. 1857 * 1858 * Returns: The resolved object or NULL on path lookup failure. 1859 */ 1860 Object *object_resolve_path_component(Object *parent, const char *part); 1861 1862 /** 1863 * object_property_try_add_child: 1864 * @obj: the object to add a property to 1865 * @name: the name of the property 1866 * @child: the child object 1867 * @errp: pointer to error object 1868 * 1869 * Child properties form the composition tree. All objects need to be a child 1870 * of another object. Objects can only be a child of one object. 1871 * 1872 * There is no way for a child to determine what its parent is. It is not 1873 * a bidirectional relationship. This is by design. 1874 * 1875 * The value of a child property as a C string will be the child object's 1876 * canonical path. It can be retrieved using object_property_get_str(). 1877 * The child object itself can be retrieved using object_property_get_link(). 1878 * 1879 * Returns: The newly added property on success, or %NULL on failure. 1880 */ 1881 ObjectProperty *object_property_try_add_child(Object *obj, const char *name, 1882 Object *child, Error **errp); 1883 1884 /** 1885 * object_property_add_child: 1886 * Same as object_property_try_add_child() with @errp hardcoded to 1887 * &error_abort 1888 */ 1889 ObjectProperty *object_property_add_child(Object *obj, const char *name, 1890 Object *child); 1891 1892 typedef enum { 1893 /* Unref the link pointer when the property is deleted */ 1894 OBJ_PROP_LINK_STRONG = 0x1, 1895 1896 /* private */ 1897 OBJ_PROP_LINK_DIRECT = 0x2, 1898 OBJ_PROP_LINK_CLASS = 0x4, 1899 } ObjectPropertyLinkFlags; 1900 1901 /** 1902 * object_property_allow_set_link: 1903 * 1904 * The default implementation of the object_property_add_link() check() 1905 * callback function. It allows the link property to be set and never returns 1906 * an error. 1907 */ 1908 void object_property_allow_set_link(const Object *, const char *, 1909 Object *, Error **); 1910 1911 /** 1912 * object_property_add_link: 1913 * @obj: the object to add a property to 1914 * @name: the name of the property 1915 * @type: the qobj type of the link 1916 * @targetp: a pointer to where the link object reference is stored 1917 * @check: callback to veto setting or NULL if the property is read-only 1918 * @flags: additional options for the link 1919 * 1920 * Links establish relationships between objects. Links are unidirectional 1921 * although two links can be combined to form a bidirectional relationship 1922 * between objects. 1923 * 1924 * Links form the graph in the object model. 1925 * 1926 * The <code>@check()</code> callback is invoked when 1927 * object_property_set_link() is called and can raise an error to prevent the 1928 * link being set. If <code>@check</code> is NULL, the property is read-only 1929 * and cannot be set. 1930 * 1931 * Ownership of the pointer that @child points to is transferred to the 1932 * link property. The reference count for <code>*@child</code> is 1933 * managed by the property from after the function returns till the 1934 * property is deleted with object_property_del(). If the 1935 * <code>@flags</code> <code>OBJ_PROP_LINK_STRONG</code> bit is set, 1936 * the reference count is decremented when the property is deleted or 1937 * modified. 1938 * 1939 * Returns: The newly added property on success, or %NULL on failure. 1940 */ 1941 ObjectProperty *object_property_add_link(Object *obj, const char *name, 1942 const char *type, Object **targetp, 1943 void (*check)(const Object *obj, const char *name, 1944 Object *val, Error **errp), 1945 ObjectPropertyLinkFlags flags); 1946 1947 ObjectProperty *object_class_property_add_link(ObjectClass *oc, 1948 const char *name, 1949 const char *type, ptrdiff_t offset, 1950 void (*check)(const Object *obj, const char *name, 1951 Object *val, Error **errp), 1952 ObjectPropertyLinkFlags flags); 1953 1954 /** 1955 * object_property_add_str: 1956 * @obj: the object to add a property to 1957 * @name: the name of the property 1958 * @get: the getter or NULL if the property is write-only. This function must 1959 * return a string to be freed by g_free(). 1960 * @set: the setter or NULL if the property is read-only 1961 * 1962 * Add a string property using getters/setters. This function will add a 1963 * property of type 'string'. 1964 * 1965 * Returns: The newly added property on success, or %NULL on failure. 1966 */ 1967 ObjectProperty *object_property_add_str(Object *obj, const char *name, 1968 char *(*get)(Object *, Error **), 1969 void (*set)(Object *, const char *, Error **)); 1970 1971 ObjectProperty *object_class_property_add_str(ObjectClass *klass, 1972 const char *name, 1973 char *(*get)(Object *, Error **), 1974 void (*set)(Object *, const char *, 1975 Error **)); 1976 1977 /** 1978 * object_property_add_bool: 1979 * @obj: the object to add a property to 1980 * @name: the name of the property 1981 * @get: the getter or NULL if the property is write-only. 1982 * @set: the setter or NULL if the property is read-only 1983 * 1984 * Add a bool property using getters/setters. This function will add a 1985 * property of type 'bool'. 1986 * 1987 * Returns: The newly added property on success, or %NULL on failure. 1988 */ 1989 ObjectProperty *object_property_add_bool(Object *obj, const char *name, 1990 bool (*get)(Object *, Error **), 1991 void (*set)(Object *, bool, Error **)); 1992 1993 ObjectProperty *object_class_property_add_bool(ObjectClass *klass, 1994 const char *name, 1995 bool (*get)(Object *, Error **), 1996 void (*set)(Object *, bool, Error **)); 1997 1998 /** 1999 * object_property_add_enum: 2000 * @obj: the object to add a property to 2001 * @name: the name of the property 2002 * @typename: the name of the enum data type 2003 * @get: the getter or %NULL if the property is write-only. 2004 * @set: the setter or %NULL if the property is read-only 2005 * 2006 * Add an enum property using getters/setters. This function will add a 2007 * property of type '@typename'. 2008 * 2009 * Returns: The newly added property on success, or %NULL on failure. 2010 */ 2011 ObjectProperty *object_property_add_enum(Object *obj, const char *name, 2012 const char *typename, 2013 const QEnumLookup *lookup, 2014 int (*get)(Object *, Error **), 2015 void (*set)(Object *, int, Error **)); 2016 2017 ObjectProperty *object_class_property_add_enum(ObjectClass *klass, 2018 const char *name, 2019 const char *typename, 2020 const QEnumLookup *lookup, 2021 int (*get)(Object *, Error **), 2022 void (*set)(Object *, int, Error **)); 2023 2024 /** 2025 * object_property_add_tm: 2026 * @obj: the object to add a property to 2027 * @name: the name of the property 2028 * @get: the getter or NULL if the property is write-only. 2029 * 2030 * Add a read-only struct tm valued property using a getter function. 2031 * This function will add a property of type 'struct tm'. 2032 * 2033 * Returns: The newly added property on success, or %NULL on failure. 2034 */ 2035 ObjectProperty *object_property_add_tm(Object *obj, const char *name, 2036 void (*get)(Object *, struct tm *, Error **)); 2037 2038 ObjectProperty *object_class_property_add_tm(ObjectClass *klass, 2039 const char *name, 2040 void (*get)(Object *, struct tm *, Error **)); 2041 2042 typedef enum { 2043 /* Automatically add a getter to the property */ 2044 OBJ_PROP_FLAG_READ = 1 << 0, 2045 /* Automatically add a setter to the property */ 2046 OBJ_PROP_FLAG_WRITE = 1 << 1, 2047 /* Automatically add a getter and a setter to the property */ 2048 OBJ_PROP_FLAG_READWRITE = (OBJ_PROP_FLAG_READ | OBJ_PROP_FLAG_WRITE), 2049 } ObjectPropertyFlags; 2050 2051 /** 2052 * object_property_add_uint8_ptr: 2053 * @obj: the object to add a property to 2054 * @name: the name of the property 2055 * @v: pointer to value 2056 * @flags: bitwise-or'd ObjectPropertyFlags 2057 * 2058 * Add an integer property in memory. This function will add a 2059 * property of type 'uint8'. 2060 * 2061 * Returns: The newly added property on success, or %NULL on failure. 2062 */ 2063 ObjectProperty *object_property_add_uint8_ptr(Object *obj, const char *name, 2064 const uint8_t *v, 2065 ObjectPropertyFlags flags); 2066 2067 ObjectProperty *object_class_property_add_uint8_ptr(ObjectClass *klass, 2068 const char *name, 2069 const uint8_t *v, 2070 ObjectPropertyFlags flags); 2071 2072 /** 2073 * object_property_add_uint16_ptr: 2074 * @obj: the object to add a property to 2075 * @name: the name of the property 2076 * @v: pointer to value 2077 * @flags: bitwise-or'd ObjectPropertyFlags 2078 * 2079 * Add an integer property in memory. This function will add a 2080 * property of type 'uint16'. 2081 * 2082 * Returns: The newly added property on success, or %NULL on failure. 2083 */ 2084 ObjectProperty *object_property_add_uint16_ptr(Object *obj, const char *name, 2085 const uint16_t *v, 2086 ObjectPropertyFlags flags); 2087 2088 ObjectProperty *object_class_property_add_uint16_ptr(ObjectClass *klass, 2089 const char *name, 2090 const uint16_t *v, 2091 ObjectPropertyFlags flags); 2092 2093 /** 2094 * object_property_add_uint32_ptr: 2095 * @obj: the object to add a property to 2096 * @name: the name of the property 2097 * @v: pointer to value 2098 * @flags: bitwise-or'd ObjectPropertyFlags 2099 * 2100 * Add an integer property in memory. This function will add a 2101 * property of type 'uint32'. 2102 * 2103 * Returns: The newly added property on success, or %NULL on failure. 2104 */ 2105 ObjectProperty *object_property_add_uint32_ptr(Object *obj, const char *name, 2106 const uint32_t *v, 2107 ObjectPropertyFlags flags); 2108 2109 ObjectProperty *object_class_property_add_uint32_ptr(ObjectClass *klass, 2110 const char *name, 2111 const uint32_t *v, 2112 ObjectPropertyFlags flags); 2113 2114 /** 2115 * object_property_add_uint64_ptr: 2116 * @obj: the object to add a property to 2117 * @name: the name of the property 2118 * @v: pointer to value 2119 * @flags: bitwise-or'd ObjectPropertyFlags 2120 * 2121 * Add an integer property in memory. This function will add a 2122 * property of type 'uint64'. 2123 * 2124 * Returns: The newly added property on success, or %NULL on failure. 2125 */ 2126 ObjectProperty *object_property_add_uint64_ptr(Object *obj, const char *name, 2127 const uint64_t *v, 2128 ObjectPropertyFlags flags); 2129 2130 ObjectProperty *object_class_property_add_uint64_ptr(ObjectClass *klass, 2131 const char *name, 2132 const uint64_t *v, 2133 ObjectPropertyFlags flags); 2134 2135 /** 2136 * object_property_add_alias: 2137 * @obj: the object to add a property to 2138 * @name: the name of the property 2139 * @target_obj: the object to forward property access to 2140 * @target_name: the name of the property on the forwarded object 2141 * 2142 * Add an alias for a property on an object. This function will add a property 2143 * of the same type as the forwarded property. 2144 * 2145 * The caller must ensure that <code>@target_obj</code> stays alive as long as 2146 * this property exists. In the case of a child object or an alias on the same 2147 * object this will be the case. For aliases to other objects the caller is 2148 * responsible for taking a reference. 2149 * 2150 * Returns: The newly added property on success, or %NULL on failure. 2151 */ 2152 ObjectProperty *object_property_add_alias(Object *obj, const char *name, 2153 Object *target_obj, const char *target_name); 2154 2155 /** 2156 * object_property_add_const_link: 2157 * @obj: the object to add a property to 2158 * @name: the name of the property 2159 * @target: the object to be referred by the link 2160 * 2161 * Add an unmodifiable link for a property on an object. This function will 2162 * add a property of type link<TYPE> where TYPE is the type of @target. 2163 * 2164 * The caller must ensure that @target stays alive as long as 2165 * this property exists. In the case @target is a child of @obj, 2166 * this will be the case. Otherwise, the caller is responsible for 2167 * taking a reference. 2168 * 2169 * Returns: The newly added property on success, or %NULL on failure. 2170 */ 2171 ObjectProperty *object_property_add_const_link(Object *obj, const char *name, 2172 Object *target); 2173 2174 /** 2175 * object_property_set_description: 2176 * @obj: the object owning the property 2177 * @name: the name of the property 2178 * @description: the description of the property on the object 2179 * 2180 * Set an object property's description. 2181 * 2182 * Returns: %true on success, %false on failure. 2183 */ 2184 void object_property_set_description(Object *obj, const char *name, 2185 const char *description); 2186 void object_class_property_set_description(ObjectClass *klass, const char *name, 2187 const char *description); 2188 2189 /** 2190 * object_child_foreach: 2191 * @obj: the object whose children will be navigated 2192 * @fn: the iterator function to be called 2193 * @opaque: an opaque value that will be passed to the iterator 2194 * 2195 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 2196 * non-zero. 2197 * 2198 * It is forbidden to add or remove children from @obj from the @fn 2199 * callback. 2200 * 2201 * Returns: The last value returned by @fn, or 0 if there is no child. 2202 */ 2203 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 2204 void *opaque); 2205 2206 /** 2207 * object_child_foreach_recursive: 2208 * @obj: the object whose children will be navigated 2209 * @fn: the iterator function to be called 2210 * @opaque: an opaque value that will be passed to the iterator 2211 * 2212 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 2213 * non-zero. Calls recursively, all child nodes of @obj will also be passed 2214 * all the way down to the leaf nodes of the tree. Depth first ordering. 2215 * 2216 * It is forbidden to add or remove children from @obj (or its 2217 * child nodes) from the @fn callback. 2218 * 2219 * Returns: The last value returned by @fn, or 0 if there is no child. 2220 */ 2221 int object_child_foreach_recursive(Object *obj, 2222 int (*fn)(Object *child, void *opaque), 2223 void *opaque); 2224 /** 2225 * container_get: 2226 * @root: root of the #path, e.g., object_get_root() 2227 * @path: path to the container 2228 * 2229 * Return a container object whose path is @path. Create more containers 2230 * along the path if necessary. 2231 * 2232 * Returns: the container object. 2233 */ 2234 Object *container_get(Object *root, const char *path); 2235 2236 /** 2237 * object_type_get_instance_size: 2238 * @typename: Name of the Type whose instance_size is required 2239 * 2240 * Returns the instance_size of the given @typename. 2241 */ 2242 size_t object_type_get_instance_size(const char *typename); 2243 2244 /** 2245 * object_property_help: 2246 * @name: the name of the property 2247 * @type: the type of the property 2248 * @defval: the default value 2249 * @description: description of the property 2250 * 2251 * Returns: a user-friendly formatted string describing the property 2252 * for help purposes. 2253 */ 2254 char *object_property_help(const char *name, const char *type, 2255 QObject *defval, const char *description); 2256 2257 G_DEFINE_AUTOPTR_CLEANUP_FUNC(Object, object_unref) 2258 2259 #endif 2260