1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include <glib.h> 18 #include <stdint.h> 19 #include <stdbool.h> 20 #include "qemu/queue.h" 21 22 struct Visitor; 23 struct Error; 24 25 struct TypeImpl; 26 typedef struct TypeImpl *Type; 27 28 typedef struct ObjectClass ObjectClass; 29 typedef struct Object Object; 30 31 typedef struct TypeInfo TypeInfo; 32 33 typedef struct InterfaceClass InterfaceClass; 34 typedef struct InterfaceInfo InterfaceInfo; 35 36 #define TYPE_OBJECT "object" 37 38 /** 39 * SECTION:object.h 40 * @title:Base Object Type System 41 * @short_description: interfaces for creating new types and objects 42 * 43 * The QEMU Object Model provides a framework for registering user creatable 44 * types and instantiating objects from those types. QOM provides the following 45 * features: 46 * 47 * - System for dynamically registering types 48 * - Support for single-inheritance of types 49 * - Multiple inheritance of stateless interfaces 50 * 51 * <example> 52 * <title>Creating a minimal type</title> 53 * <programlisting> 54 * #include "qdev.h" 55 * 56 * #define TYPE_MY_DEVICE "my-device" 57 * 58 * // No new virtual functions: we can reuse the typedef for the 59 * // superclass. 60 * typedef DeviceClass MyDeviceClass; 61 * typedef struct MyDevice 62 * { 63 * DeviceState parent; 64 * 65 * int reg0, reg1, reg2; 66 * } MyDevice; 67 * 68 * static const TypeInfo my_device_info = { 69 * .name = TYPE_MY_DEVICE, 70 * .parent = TYPE_DEVICE, 71 * .instance_size = sizeof(MyDevice), 72 * }; 73 * 74 * static void my_device_register_types(void) 75 * { 76 * type_register_static(&my_device_info); 77 * } 78 * 79 * type_init(my_device_register_types) 80 * </programlisting> 81 * </example> 82 * 83 * In the above example, we create a simple type that is described by #TypeInfo. 84 * #TypeInfo describes information about the type including what it inherits 85 * from, the instance and class size, and constructor/destructor hooks. 86 * 87 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 88 * are instantiated dynamically but there is only ever one instance for any 89 * given type. The #ObjectClass typically holds a table of function pointers 90 * for the virtual methods implemented by this type. 91 * 92 * Using object_new(), a new #Object derivative will be instantiated. You can 93 * cast an #Object to a subclass (or base-class) type using 94 * object_dynamic_cast(). You typically want to define macro wrappers around 95 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 96 * specific type: 97 * 98 * <example> 99 * <title>Typecasting macros</title> 100 * <programlisting> 101 * #define MY_DEVICE_GET_CLASS(obj) \ 102 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 103 * #define MY_DEVICE_CLASS(klass) \ 104 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 105 * #define MY_DEVICE(obj) \ 106 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 107 * </programlisting> 108 * </example> 109 * 110 * # Class Initialization # 111 * 112 * Before an object is initialized, the class for the object must be 113 * initialized. There is only one class object for all instance objects 114 * that is created lazily. 115 * 116 * Classes are initialized by first initializing any parent classes (if 117 * necessary). After the parent class object has initialized, it will be 118 * copied into the current class object and any additional storage in the 119 * class object is zero filled. 120 * 121 * The effect of this is that classes automatically inherit any virtual 122 * function pointers that the parent class has already initialized. All 123 * other fields will be zero filled. 124 * 125 * Once all of the parent classes have been initialized, #TypeInfo::class_init 126 * is called to let the class being instantiated provide default initialize for 127 * its virtual functions. Here is how the above example might be modified 128 * to introduce an overridden virtual function: 129 * 130 * <example> 131 * <title>Overriding a virtual function</title> 132 * <programlisting> 133 * #include "qdev.h" 134 * 135 * void my_device_class_init(ObjectClass *klass, void *class_data) 136 * { 137 * DeviceClass *dc = DEVICE_CLASS(klass); 138 * dc->reset = my_device_reset; 139 * } 140 * 141 * static const TypeInfo my_device_info = { 142 * .name = TYPE_MY_DEVICE, 143 * .parent = TYPE_DEVICE, 144 * .instance_size = sizeof(MyDevice), 145 * .class_init = my_device_class_init, 146 * }; 147 * </programlisting> 148 * </example> 149 * 150 * Introducing new virtual methods requires a class to define its own 151 * struct and to add a .class_size member to the #TypeInfo. Each method 152 * will also have a wrapper function to call it easily: 153 * 154 * <example> 155 * <title>Defining an abstract class</title> 156 * <programlisting> 157 * #include "qdev.h" 158 * 159 * typedef struct MyDeviceClass 160 * { 161 * DeviceClass parent; 162 * 163 * void (*frobnicate) (MyDevice *obj); 164 * } MyDeviceClass; 165 * 166 * static const TypeInfo my_device_info = { 167 * .name = TYPE_MY_DEVICE, 168 * .parent = TYPE_DEVICE, 169 * .instance_size = sizeof(MyDevice), 170 * .abstract = true, // or set a default in my_device_class_init 171 * .class_size = sizeof(MyDeviceClass), 172 * }; 173 * 174 * void my_device_frobnicate(MyDevice *obj) 175 * { 176 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 177 * 178 * klass->frobnicate(obj); 179 * } 180 * </programlisting> 181 * </example> 182 * 183 * # Interfaces # 184 * 185 * Interfaces allow a limited form of multiple inheritance. Instances are 186 * similar to normal types except for the fact that are only defined by 187 * their classes and never carry any state. You can dynamically cast an object 188 * to one of its #Interface types and vice versa. 189 * 190 * # Methods # 191 * 192 * A <emphasis>method</emphasis> is a function within the namespace scope of 193 * a class. It usually operates on the object instance by passing it as a 194 * strongly-typed first argument. 195 * If it does not operate on an object instance, it is dubbed 196 * <emphasis>class method</emphasis>. 197 * 198 * Methods cannot be overloaded. That is, the #ObjectClass and method name 199 * uniquely identity the function to be called; the signature does not vary 200 * except for trailing varargs. 201 * 202 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 203 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 204 * via OBJECT_GET_CLASS() accessing the overridden function. 205 * The original function is not automatically invoked. It is the responsibility 206 * of the overriding class to determine whether and when to invoke the method 207 * being overridden. 208 * 209 * To invoke the method being overridden, the preferred solution is to store 210 * the original value in the overriding class before overriding the method. 211 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 212 * respectively; this frees the overriding class from hardcoding its parent 213 * class, which someone might choose to change at some point. 214 * 215 * <example> 216 * <title>Overriding a virtual method</title> 217 * <programlisting> 218 * typedef struct MyState MyState; 219 * 220 * typedef void (*MyDoSomething)(MyState *obj); 221 * 222 * typedef struct MyClass { 223 * ObjectClass parent_class; 224 * 225 * MyDoSomething do_something; 226 * } MyClass; 227 * 228 * static void my_do_something(MyState *obj) 229 * { 230 * // do something 231 * } 232 * 233 * static void my_class_init(ObjectClass *oc, void *data) 234 * { 235 * MyClass *mc = MY_CLASS(oc); 236 * 237 * mc->do_something = my_do_something; 238 * } 239 * 240 * static const TypeInfo my_type_info = { 241 * .name = TYPE_MY, 242 * .parent = TYPE_OBJECT, 243 * .instance_size = sizeof(MyState), 244 * .class_size = sizeof(MyClass), 245 * .class_init = my_class_init, 246 * }; 247 * 248 * typedef struct DerivedClass { 249 * MyClass parent_class; 250 * 251 * MyDoSomething parent_do_something; 252 * } DerivedClass; 253 * 254 * static void derived_do_something(MyState *obj) 255 * { 256 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 257 * 258 * // do something here 259 * dc->parent_do_something(obj); 260 * // do something else here 261 * } 262 * 263 * static void derived_class_init(ObjectClass *oc, void *data) 264 * { 265 * MyClass *mc = MY_CLASS(oc); 266 * DerivedClass *dc = DERIVED_CLASS(oc); 267 * 268 * dc->parent_do_something = mc->do_something; 269 * mc->do_something = derived_do_something; 270 * } 271 * 272 * static const TypeInfo derived_type_info = { 273 * .name = TYPE_DERIVED, 274 * .parent = TYPE_MY, 275 * .class_size = sizeof(DerivedClass), 276 * .class_init = my_class_init, 277 * }; 278 * </programlisting> 279 * </example> 280 * 281 * Alternatively, object_class_by_name() can be used to obtain the class and 282 * its non-overridden methods for a specific type. This would correspond to 283 * |[ MyClass::method(...) ]| in C++. 284 * 285 * The first example of such a QOM method was #CPUClass.reset, 286 * another example is #DeviceClass.realize. 287 */ 288 289 290 /** 291 * ObjectPropertyAccessor: 292 * @obj: the object that owns the property 293 * @v: the visitor that contains the property data 294 * @opaque: the object property opaque 295 * @name: the name of the property 296 * @errp: a pointer to an Error that is filled if getting/setting fails. 297 * 298 * Called when trying to get/set a property. 299 */ 300 typedef void (ObjectPropertyAccessor)(Object *obj, 301 struct Visitor *v, 302 void *opaque, 303 const char *name, 304 struct Error **errp); 305 306 /** 307 * ObjectPropertyRelease: 308 * @obj: the object that owns the property 309 * @name: the name of the property 310 * @opaque: the opaque registered with the property 311 * 312 * Called when a property is removed from a object. 313 */ 314 typedef void (ObjectPropertyRelease)(Object *obj, 315 const char *name, 316 void *opaque); 317 318 typedef struct ObjectProperty 319 { 320 gchar *name; 321 gchar *type; 322 ObjectPropertyAccessor *get; 323 ObjectPropertyAccessor *set; 324 ObjectPropertyRelease *release; 325 void *opaque; 326 327 QTAILQ_ENTRY(ObjectProperty) node; 328 } ObjectProperty; 329 330 /** 331 * ObjectUnparent: 332 * @obj: the object that is being removed from the composition tree 333 * 334 * Called when an object is being removed from the QOM composition tree. 335 * The function should remove any backlinks from children objects to @obj. 336 */ 337 typedef void (ObjectUnparent)(Object *obj); 338 339 /** 340 * ObjectFree: 341 * @obj: the object being freed 342 * 343 * Called when an object's last reference is removed. 344 */ 345 typedef void (ObjectFree)(void *obj); 346 347 #define OBJECT_CLASS_CAST_CACHE 4 348 349 /** 350 * ObjectClass: 351 * 352 * The base for all classes. The only thing that #ObjectClass contains is an 353 * integer type handle. 354 */ 355 struct ObjectClass 356 { 357 /*< private >*/ 358 Type type; 359 GSList *interfaces; 360 361 const char *cast_cache[OBJECT_CLASS_CAST_CACHE]; 362 363 ObjectUnparent *unparent; 364 }; 365 366 /** 367 * Object: 368 * 369 * The base for all objects. The first member of this object is a pointer to 370 * a #ObjectClass. Since C guarantees that the first member of a structure 371 * always begins at byte 0 of that structure, as long as any sub-object places 372 * its parent as the first member, we can cast directly to a #Object. 373 * 374 * As a result, #Object contains a reference to the objects type as its 375 * first member. This allows identification of the real type of the object at 376 * run time. 377 * 378 * #Object also contains a list of #Interfaces that this object 379 * implements. 380 */ 381 struct Object 382 { 383 /*< private >*/ 384 ObjectClass *class; 385 ObjectFree *free; 386 QTAILQ_HEAD(, ObjectProperty) properties; 387 uint32_t ref; 388 Object *parent; 389 }; 390 391 /** 392 * TypeInfo: 393 * @name: The name of the type. 394 * @parent: The name of the parent type. 395 * @instance_size: The size of the object (derivative of #Object). If 396 * @instance_size is 0, then the size of the object will be the size of the 397 * parent object. 398 * @instance_init: This function is called to initialize an object. The parent 399 * class will have already been initialized so the type is only responsible 400 * for initializing its own members. 401 * @instance_post_init: This function is called to finish initialization of 402 * an object, after all @instance_init functions were called. 403 * @instance_finalize: This function is called during object destruction. This 404 * is called before the parent @instance_finalize function has been called. 405 * An object should only free the members that are unique to its type in this 406 * function. 407 * @abstract: If this field is true, then the class is considered abstract and 408 * cannot be directly instantiated. 409 * @class_size: The size of the class object (derivative of #ObjectClass) 410 * for this object. If @class_size is 0, then the size of the class will be 411 * assumed to be the size of the parent class. This allows a type to avoid 412 * implementing an explicit class type if they are not adding additional 413 * virtual functions. 414 * @class_init: This function is called after all parent class initialization 415 * has occurred to allow a class to set its default virtual method pointers. 416 * This is also the function to use to override virtual methods from a parent 417 * class. 418 * @class_base_init: This function is called for all base classes after all 419 * parent class initialization has occurred, but before the class itself 420 * is initialized. This is the function to use to undo the effects of 421 * memcpy from the parent class to the descendents. 422 * @class_finalize: This function is called during class destruction and is 423 * meant to release and dynamic parameters allocated by @class_init. 424 * @class_data: Data to pass to the @class_init, @class_base_init and 425 * @class_finalize functions. This can be useful when building dynamic 426 * classes. 427 * @interfaces: The list of interfaces associated with this type. This 428 * should point to a static array that's terminated with a zero filled 429 * element. 430 */ 431 struct TypeInfo 432 { 433 const char *name; 434 const char *parent; 435 436 size_t instance_size; 437 void (*instance_init)(Object *obj); 438 void (*instance_post_init)(Object *obj); 439 void (*instance_finalize)(Object *obj); 440 441 bool abstract; 442 size_t class_size; 443 444 void (*class_init)(ObjectClass *klass, void *data); 445 void (*class_base_init)(ObjectClass *klass, void *data); 446 void (*class_finalize)(ObjectClass *klass, void *data); 447 void *class_data; 448 449 InterfaceInfo *interfaces; 450 }; 451 452 /** 453 * OBJECT: 454 * @obj: A derivative of #Object 455 * 456 * Converts an object to a #Object. Since all objects are #Objects, 457 * this function will always succeed. 458 */ 459 #define OBJECT(obj) \ 460 ((Object *)(obj)) 461 462 /** 463 * OBJECT_CLASS: 464 * @class: A derivative of #ObjectClass. 465 * 466 * Converts a class to an #ObjectClass. Since all objects are #Objects, 467 * this function will always succeed. 468 */ 469 #define OBJECT_CLASS(class) \ 470 ((ObjectClass *)(class)) 471 472 /** 473 * OBJECT_CHECK: 474 * @type: The C type to use for the return value. 475 * @obj: A derivative of @type to cast. 476 * @name: The QOM typename of @type 477 * 478 * A type safe version of @object_dynamic_cast_assert. Typically each class 479 * will define a macro based on this type to perform type safe dynamic_casts to 480 * this object type. 481 * 482 * If an invalid object is passed to this function, a run time assert will be 483 * generated. 484 */ 485 #define OBJECT_CHECK(type, obj, name) \ 486 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 487 __FILE__, __LINE__, __func__)) 488 489 /** 490 * OBJECT_CLASS_CHECK: 491 * @class: The C type to use for the return value. 492 * @obj: A derivative of @type to cast. 493 * @name: the QOM typename of @class. 494 * 495 * A type safe version of @object_class_dynamic_cast_assert. This macro is 496 * typically wrapped by each type to perform type safe casts of a class to a 497 * specific class type. 498 */ 499 #define OBJECT_CLASS_CHECK(class, obj, name) \ 500 ((class *)object_class_dynamic_cast_assert(OBJECT_CLASS(obj), (name), \ 501 __FILE__, __LINE__, __func__)) 502 503 /** 504 * OBJECT_GET_CLASS: 505 * @class: The C type to use for the return value. 506 * @obj: The object to obtain the class for. 507 * @name: The QOM typename of @obj. 508 * 509 * This function will return a specific class for a given object. Its generally 510 * used by each type to provide a type safe macro to get a specific class type 511 * from an object. 512 */ 513 #define OBJECT_GET_CLASS(class, obj, name) \ 514 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 515 516 /** 517 * InterfaceInfo: 518 * @type: The name of the interface. 519 * 520 * The information associated with an interface. 521 */ 522 struct InterfaceInfo { 523 const char *type; 524 }; 525 526 /** 527 * InterfaceClass: 528 * @parent_class: the base class 529 * 530 * The class for all interfaces. Subclasses of this class should only add 531 * virtual methods. 532 */ 533 struct InterfaceClass 534 { 535 ObjectClass parent_class; 536 /*< private >*/ 537 ObjectClass *concrete_class; 538 }; 539 540 #define TYPE_INTERFACE "interface" 541 542 /** 543 * INTERFACE_CLASS: 544 * @klass: class to cast from 545 * Returns: An #InterfaceClass or raise an error if cast is invalid 546 */ 547 #define INTERFACE_CLASS(klass) \ 548 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 549 550 /** 551 * INTERFACE_CHECK: 552 * @interface: the type to return 553 * @obj: the object to convert to an interface 554 * @name: the interface type name 555 * 556 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 557 */ 558 #define INTERFACE_CHECK(interface, obj, name) \ 559 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 560 __FILE__, __LINE__, __func__)) 561 562 /** 563 * object_new: 564 * @typename: The name of the type of the object to instantiate. 565 * 566 * This function will initialize a new object using heap allocated memory. 567 * The returned object has a reference count of 1, and will be freed when 568 * the last reference is dropped. 569 * 570 * Returns: The newly allocated and instantiated object. 571 */ 572 Object *object_new(const char *typename); 573 574 /** 575 * object_new_with_type: 576 * @type: The type of the object to instantiate. 577 * 578 * This function will initialize a new object using heap allocated memory. 579 * The returned object has a reference count of 1, and will be freed when 580 * the last reference is dropped. 581 * 582 * Returns: The newly allocated and instantiated object. 583 */ 584 Object *object_new_with_type(Type type); 585 586 /** 587 * object_initialize_with_type: 588 * @data: A pointer to the memory to be used for the object. 589 * @size: The maximum size available at @data for the object. 590 * @type: The type of the object to instantiate. 591 * 592 * This function will initialize an object. The memory for the object should 593 * have already been allocated. The returned object has a reference count of 1, 594 * and will be finalized when the last reference is dropped. 595 */ 596 void object_initialize_with_type(void *data, size_t size, Type type); 597 598 /** 599 * object_initialize: 600 * @obj: A pointer to the memory to be used for the object. 601 * @size: The maximum size available at @obj for the object. 602 * @typename: The name of the type of the object to instantiate. 603 * 604 * This function will initialize an object. The memory for the object should 605 * have already been allocated. The returned object has a reference count of 1, 606 * and will be finalized when the last reference is dropped. 607 */ 608 void object_initialize(void *obj, size_t size, const char *typename); 609 610 /** 611 * object_dynamic_cast: 612 * @obj: The object to cast. 613 * @typename: The @typename to cast to. 614 * 615 * This function will determine if @obj is-a @typename. @obj can refer to an 616 * object or an interface associated with an object. 617 * 618 * Returns: This function returns @obj on success or #NULL on failure. 619 */ 620 Object *object_dynamic_cast(Object *obj, const char *typename); 621 622 /** 623 * object_dynamic_cast_assert: 624 * 625 * See object_dynamic_cast() for a description of the parameters of this 626 * function. The only difference in behavior is that this function asserts 627 * instead of returning #NULL on failure if QOM cast debugging is enabled. 628 * This function is not meant to be called directly, but only through 629 * the wrapper macro OBJECT_CHECK. 630 */ 631 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 632 const char *file, int line, const char *func); 633 634 /** 635 * object_get_class: 636 * @obj: A derivative of #Object 637 * 638 * Returns: The #ObjectClass of the type associated with @obj. 639 */ 640 ObjectClass *object_get_class(Object *obj); 641 642 /** 643 * object_get_typename: 644 * @obj: A derivative of #Object. 645 * 646 * Returns: The QOM typename of @obj. 647 */ 648 const char *object_get_typename(Object *obj); 649 650 /** 651 * type_register_static: 652 * @info: The #TypeInfo of the new type. 653 * 654 * @info and all of the strings it points to should exist for the life time 655 * that the type is registered. 656 * 657 * Returns: 0 on failure, the new #Type on success. 658 */ 659 Type type_register_static(const TypeInfo *info); 660 661 /** 662 * type_register: 663 * @info: The #TypeInfo of the new type 664 * 665 * Unlike type_register_static(), this call does not require @info or its 666 * string members to continue to exist after the call returns. 667 * 668 * Returns: 0 on failure, the new #Type on success. 669 */ 670 Type type_register(const TypeInfo *info); 671 672 /** 673 * object_class_dynamic_cast_assert: 674 * @klass: The #ObjectClass to attempt to cast. 675 * @typename: The QOM typename of the class to cast to. 676 * 677 * See object_class_dynamic_cast() for a description of the parameters 678 * of this function. The only difference in behavior is that this function 679 * asserts instead of returning #NULL on failure if QOM cast debugging is 680 * enabled. This function is not meant to be called directly, but only through 681 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK. 682 */ 683 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 684 const char *typename, 685 const char *file, int line, 686 const char *func); 687 688 /** 689 * object_class_dynamic_cast: 690 * @klass: The #ObjectClass to attempt to cast. 691 * @typename: The QOM typename of the class to cast to. 692 * 693 * Returns: If @typename is a class, this function returns @klass if 694 * @typename is a subtype of @klass, else returns #NULL. 695 * 696 * If @typename is an interface, this function returns the interface 697 * definition for @klass if @klass implements it unambiguously; #NULL 698 * is returned if @klass does not implement the interface or if multiple 699 * classes or interfaces on the hierarchy leading to @klass implement 700 * it. (FIXME: perhaps this can be detected at type definition time?) 701 */ 702 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 703 const char *typename); 704 705 /** 706 * object_class_get_parent: 707 * @klass: The class to obtain the parent for. 708 * 709 * Returns: The parent for @klass or %NULL if none. 710 */ 711 ObjectClass *object_class_get_parent(ObjectClass *klass); 712 713 /** 714 * object_class_get_name: 715 * @klass: The class to obtain the QOM typename for. 716 * 717 * Returns: The QOM typename for @klass. 718 */ 719 const char *object_class_get_name(ObjectClass *klass); 720 721 /** 722 * object_class_is_abstract: 723 * @klass: The class to obtain the abstractness for. 724 * 725 * Returns: %true if @klass is abstract, %false otherwise. 726 */ 727 bool object_class_is_abstract(ObjectClass *klass); 728 729 /** 730 * object_class_by_name: 731 * @typename: The QOM typename to obtain the class for. 732 * 733 * Returns: The class for @typename or %NULL if not found. 734 */ 735 ObjectClass *object_class_by_name(const char *typename); 736 737 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 738 const char *implements_type, bool include_abstract, 739 void *opaque); 740 741 /** 742 * object_class_get_list: 743 * @implements_type: The type to filter for, including its derivatives. 744 * @include_abstract: Whether to include abstract classes. 745 * 746 * Returns: A singly-linked list of the classes in reverse hashtable order. 747 */ 748 GSList *object_class_get_list(const char *implements_type, 749 bool include_abstract); 750 751 /** 752 * object_ref: 753 * @obj: the object 754 * 755 * Increase the reference count of a object. A object cannot be freed as long 756 * as its reference count is greater than zero. 757 */ 758 void object_ref(Object *obj); 759 760 /** 761 * qdef_unref: 762 * @obj: the object 763 * 764 * Decrease the reference count of a object. A object cannot be freed as long 765 * as its reference count is greater than zero. 766 */ 767 void object_unref(Object *obj); 768 769 /** 770 * object_property_add: 771 * @obj: the object to add a property to 772 * @name: the name of the property. This can contain any character except for 773 * a forward slash. In general, you should use hyphens '-' instead of 774 * underscores '_' when naming properties. 775 * @type: the type name of the property. This namespace is pretty loosely 776 * defined. Sub namespaces are constructed by using a prefix and then 777 * to angle brackets. For instance, the type 'virtio-net-pci' in the 778 * 'link' namespace would be 'link<virtio-net-pci>'. 779 * @get: The getter to be called to read a property. If this is NULL, then 780 * the property cannot be read. 781 * @set: the setter to be called to write a property. If this is NULL, 782 * then the property cannot be written. 783 * @release: called when the property is removed from the object. This is 784 * meant to allow a property to free its opaque upon object 785 * destruction. This may be NULL. 786 * @opaque: an opaque pointer to pass to the callbacks for the property 787 * @errp: returns an error if this function fails 788 */ 789 void object_property_add(Object *obj, const char *name, const char *type, 790 ObjectPropertyAccessor *get, 791 ObjectPropertyAccessor *set, 792 ObjectPropertyRelease *release, 793 void *opaque, struct Error **errp); 794 795 void object_property_del(Object *obj, const char *name, struct Error **errp); 796 797 /** 798 * object_property_find: 799 * @obj: the object 800 * @name: the name of the property 801 * @errp: returns an error if this function fails 802 * 803 * Look up a property for an object and return its #ObjectProperty if found. 804 */ 805 ObjectProperty *object_property_find(Object *obj, const char *name, 806 struct Error **errp); 807 808 void object_unparent(Object *obj); 809 810 /** 811 * object_property_get: 812 * @obj: the object 813 * @v: the visitor that will receive the property value. This should be an 814 * Output visitor and the data will be written with @name as the name. 815 * @name: the name of the property 816 * @errp: returns an error if this function fails 817 * 818 * Reads a property from a object. 819 */ 820 void object_property_get(Object *obj, struct Visitor *v, const char *name, 821 struct Error **errp); 822 823 /** 824 * object_property_set_str: 825 * @value: the value to be written to the property 826 * @name: the name of the property 827 * @errp: returns an error if this function fails 828 * 829 * Writes a string value to a property. 830 */ 831 void object_property_set_str(Object *obj, const char *value, 832 const char *name, struct Error **errp); 833 834 /** 835 * object_property_get_str: 836 * @obj: the object 837 * @name: the name of the property 838 * @errp: returns an error if this function fails 839 * 840 * Returns: the value of the property, converted to a C string, or NULL if 841 * an error occurs (including when the property value is not a string). 842 * The caller should free the string. 843 */ 844 char *object_property_get_str(Object *obj, const char *name, 845 struct Error **errp); 846 847 /** 848 * object_property_set_link: 849 * @value: the value to be written to the property 850 * @name: the name of the property 851 * @errp: returns an error if this function fails 852 * 853 * Writes an object's canonical path to a property. 854 */ 855 void object_property_set_link(Object *obj, Object *value, 856 const char *name, struct Error **errp); 857 858 /** 859 * object_property_get_link: 860 * @obj: the object 861 * @name: the name of the property 862 * @errp: returns an error if this function fails 863 * 864 * Returns: the value of the property, resolved from a path to an Object, 865 * or NULL if an error occurs (including when the property value is not a 866 * string or not a valid object path). 867 */ 868 Object *object_property_get_link(Object *obj, const char *name, 869 struct Error **errp); 870 871 /** 872 * object_property_set_bool: 873 * @value: the value to be written to the property 874 * @name: the name of the property 875 * @errp: returns an error if this function fails 876 * 877 * Writes a bool value to a property. 878 */ 879 void object_property_set_bool(Object *obj, bool value, 880 const char *name, struct Error **errp); 881 882 /** 883 * object_property_get_bool: 884 * @obj: the object 885 * @name: the name of the property 886 * @errp: returns an error if this function fails 887 * 888 * Returns: the value of the property, converted to a boolean, or NULL if 889 * an error occurs (including when the property value is not a bool). 890 */ 891 bool object_property_get_bool(Object *obj, const char *name, 892 struct Error **errp); 893 894 /** 895 * object_property_set_int: 896 * @value: the value to be written to the property 897 * @name: the name of the property 898 * @errp: returns an error if this function fails 899 * 900 * Writes an integer value to a property. 901 */ 902 void object_property_set_int(Object *obj, int64_t value, 903 const char *name, struct Error **errp); 904 905 /** 906 * object_property_get_int: 907 * @obj: the object 908 * @name: the name of the property 909 * @errp: returns an error if this function fails 910 * 911 * Returns: the value of the property, converted to an integer, or NULL if 912 * an error occurs (including when the property value is not an integer). 913 */ 914 int64_t object_property_get_int(Object *obj, const char *name, 915 struct Error **errp); 916 917 /** 918 * object_property_set: 919 * @obj: the object 920 * @v: the visitor that will be used to write the property value. This should 921 * be an Input visitor and the data will be first read with @name as the 922 * name and then written as the property value. 923 * @name: the name of the property 924 * @errp: returns an error if this function fails 925 * 926 * Writes a property to a object. 927 */ 928 void object_property_set(Object *obj, struct Visitor *v, const char *name, 929 struct Error **errp); 930 931 /** 932 * object_property_parse: 933 * @obj: the object 934 * @string: the string that will be used to parse the property value. 935 * @name: the name of the property 936 * @errp: returns an error if this function fails 937 * 938 * Parses a string and writes the result into a property of an object. 939 */ 940 void object_property_parse(Object *obj, const char *string, 941 const char *name, struct Error **errp); 942 943 /** 944 * object_property_print: 945 * @obj: the object 946 * @name: the name of the property 947 * @errp: returns an error if this function fails 948 * 949 * Returns a string representation of the value of the property. The 950 * caller shall free the string. 951 */ 952 char *object_property_print(Object *obj, const char *name, 953 struct Error **errp); 954 955 /** 956 * object_property_get_type: 957 * @obj: the object 958 * @name: the name of the property 959 * @errp: returns an error if this function fails 960 * 961 * Returns: The type name of the property. 962 */ 963 const char *object_property_get_type(Object *obj, const char *name, 964 struct Error **errp); 965 966 /** 967 * object_get_root: 968 * 969 * Returns: the root object of the composition tree 970 */ 971 Object *object_get_root(void); 972 973 /** 974 * object_get_canonical_path: 975 * 976 * Returns: The canonical path for a object. This is the path within the 977 * composition tree starting from the root. 978 */ 979 gchar *object_get_canonical_path(Object *obj); 980 981 /** 982 * object_resolve_path: 983 * @path: the path to resolve 984 * @ambiguous: returns true if the path resolution failed because of an 985 * ambiguous match 986 * 987 * There are two types of supported paths--absolute paths and partial paths. 988 * 989 * Absolute paths are derived from the root object and can follow child<> or 990 * link<> properties. Since they can follow link<> properties, they can be 991 * arbitrarily long. Absolute paths look like absolute filenames and are 992 * prefixed with a leading slash. 993 * 994 * Partial paths look like relative filenames. They do not begin with a 995 * prefix. The matching rules for partial paths are subtle but designed to make 996 * specifying objects easy. At each level of the composition tree, the partial 997 * path is matched as an absolute path. The first match is not returned. At 998 * least two matches are searched for. A successful result is only returned if 999 * only one match is found. If more than one match is found, a flag is 1000 * returned to indicate that the match was ambiguous. 1001 * 1002 * Returns: The matched object or NULL on path lookup failure. 1003 */ 1004 Object *object_resolve_path(const char *path, bool *ambiguous); 1005 1006 /** 1007 * object_resolve_path_type: 1008 * @path: the path to resolve 1009 * @typename: the type to look for. 1010 * @ambiguous: returns true if the path resolution failed because of an 1011 * ambiguous match 1012 * 1013 * This is similar to object_resolve_path. However, when looking for a 1014 * partial path only matches that implement the given type are considered. 1015 * This restricts the search and avoids spuriously flagging matches as 1016 * ambiguous. 1017 * 1018 * For both partial and absolute paths, the return value goes through 1019 * a dynamic cast to @typename. This is important if either the link, 1020 * or the typename itself are of interface types. 1021 * 1022 * Returns: The matched object or NULL on path lookup failure. 1023 */ 1024 Object *object_resolve_path_type(const char *path, const char *typename, 1025 bool *ambiguous); 1026 1027 /** 1028 * object_resolve_path_component: 1029 * @parent: the object in which to resolve the path 1030 * @part: the component to resolve. 1031 * 1032 * This is similar to object_resolve_path with an absolute path, but it 1033 * only resolves one element (@part) and takes the others from @parent. 1034 * 1035 * Returns: The resolved object or NULL on path lookup failure. 1036 */ 1037 Object *object_resolve_path_component(Object *parent, const gchar *part); 1038 1039 /** 1040 * object_property_add_child: 1041 * @obj: the object to add a property to 1042 * @name: the name of the property 1043 * @child: the child object 1044 * @errp: if an error occurs, a pointer to an area to store the area 1045 * 1046 * Child properties form the composition tree. All objects need to be a child 1047 * of another object. Objects can only be a child of one object. 1048 * 1049 * There is no way for a child to determine what its parent is. It is not 1050 * a bidirectional relationship. This is by design. 1051 * 1052 * The value of a child property as a C string will be the child object's 1053 * canonical path. It can be retrieved using object_property_get_str(). 1054 * The child object itself can be retrieved using object_property_get_link(). 1055 */ 1056 void object_property_add_child(Object *obj, const char *name, 1057 Object *child, struct Error **errp); 1058 1059 /** 1060 * object_property_add_link: 1061 * @obj: the object to add a property to 1062 * @name: the name of the property 1063 * @type: the qobj type of the link 1064 * @child: a pointer to where the link object reference is stored 1065 * @errp: if an error occurs, a pointer to an area to store the area 1066 * 1067 * Links establish relationships between objects. Links are unidirectional 1068 * although two links can be combined to form a bidirectional relationship 1069 * between objects. 1070 * 1071 * Links form the graph in the object model. 1072 * 1073 * Ownership of the pointer that @child points to is transferred to the 1074 * link property. The reference count for <code>*@child</code> is 1075 * managed by the property from after the function returns till the 1076 * property is deleted with object_property_del(). 1077 */ 1078 void object_property_add_link(Object *obj, const char *name, 1079 const char *type, Object **child, 1080 struct Error **errp); 1081 1082 /** 1083 * object_property_add_str: 1084 * @obj: the object to add a property to 1085 * @name: the name of the property 1086 * @get: the getter or NULL if the property is write-only. This function must 1087 * return a string to be freed by g_free(). 1088 * @set: the setter or NULL if the property is read-only 1089 * @errp: if an error occurs, a pointer to an area to store the error 1090 * 1091 * Add a string property using getters/setters. This function will add a 1092 * property of type 'string'. 1093 */ 1094 void object_property_add_str(Object *obj, const char *name, 1095 char *(*get)(Object *, struct Error **), 1096 void (*set)(Object *, const char *, struct Error **), 1097 struct Error **errp); 1098 1099 /** 1100 * object_property_add_bool: 1101 * @obj: the object to add a property to 1102 * @name: the name of the property 1103 * @get: the getter or NULL if the property is write-only. 1104 * @set: the setter or NULL if the property is read-only 1105 * @errp: if an error occurs, a pointer to an area to store the error 1106 * 1107 * Add a bool property using getters/setters. This function will add a 1108 * property of type 'bool'. 1109 */ 1110 void object_property_add_bool(Object *obj, const char *name, 1111 bool (*get)(Object *, struct Error **), 1112 void (*set)(Object *, bool, struct Error **), 1113 struct Error **errp); 1114 1115 /** 1116 * object_child_foreach: 1117 * @obj: the object whose children will be navigated 1118 * @fn: the iterator function to be called 1119 * @opaque: an opaque value that will be passed to the iterator 1120 * 1121 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1122 * non-zero. 1123 * 1124 * Returns: The last value returned by @fn, or 0 if there is no child. 1125 */ 1126 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 1127 void *opaque); 1128 1129 /** 1130 * container_get: 1131 * @root: root of the #path, e.g., object_get_root() 1132 * @path: path to the container 1133 * 1134 * Return a container object whose path is @path. Create more containers 1135 * along the path if necessary. 1136 * 1137 * Returns: the container object. 1138 */ 1139 Object *container_get(Object *root, const char *path); 1140 1141 1142 #endif 1143