xref: /openbmc/qemu/include/qom/object.h (revision 5accc840)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include <glib.h>
18 #include <stdint.h>
19 #include <stdbool.h>
20 #include "qemu/queue.h"
21 
22 struct Visitor;
23 struct Error;
24 
25 struct TypeImpl;
26 typedef struct TypeImpl *Type;
27 
28 typedef struct ObjectClass ObjectClass;
29 typedef struct Object Object;
30 
31 typedef struct TypeInfo TypeInfo;
32 
33 typedef struct InterfaceClass InterfaceClass;
34 typedef struct InterfaceInfo InterfaceInfo;
35 
36 #define TYPE_OBJECT "object"
37 
38 /**
39  * SECTION:object.h
40  * @title:Base Object Type System
41  * @short_description: interfaces for creating new types and objects
42  *
43  * The QEMU Object Model provides a framework for registering user creatable
44  * types and instantiating objects from those types.  QOM provides the following
45  * features:
46  *
47  *  - System for dynamically registering types
48  *  - Support for single-inheritance of types
49  *  - Multiple inheritance of stateless interfaces
50  *
51  * <example>
52  *   <title>Creating a minimal type</title>
53  *   <programlisting>
54  * #include "qdev.h"
55  *
56  * #define TYPE_MY_DEVICE "my-device"
57  *
58  * // No new virtual functions: we can reuse the typedef for the
59  * // superclass.
60  * typedef DeviceClass MyDeviceClass;
61  * typedef struct MyDevice
62  * {
63  *     DeviceState parent;
64  *
65  *     int reg0, reg1, reg2;
66  * } MyDevice;
67  *
68  * static const TypeInfo my_device_info = {
69  *     .name = TYPE_MY_DEVICE,
70  *     .parent = TYPE_DEVICE,
71  *     .instance_size = sizeof(MyDevice),
72  * };
73  *
74  * static void my_device_register_types(void)
75  * {
76  *     type_register_static(&my_device_info);
77  * }
78  *
79  * type_init(my_device_register_types)
80  *   </programlisting>
81  * </example>
82  *
83  * In the above example, we create a simple type that is described by #TypeInfo.
84  * #TypeInfo describes information about the type including what it inherits
85  * from, the instance and class size, and constructor/destructor hooks.
86  *
87  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
88  * are instantiated dynamically but there is only ever one instance for any
89  * given type.  The #ObjectClass typically holds a table of function pointers
90  * for the virtual methods implemented by this type.
91  *
92  * Using object_new(), a new #Object derivative will be instantiated.  You can
93  * cast an #Object to a subclass (or base-class) type using
94  * object_dynamic_cast().  You typically want to define macro wrappers around
95  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
96  * specific type:
97  *
98  * <example>
99  *   <title>Typecasting macros</title>
100  *   <programlisting>
101  *    #define MY_DEVICE_GET_CLASS(obj) \
102  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
103  *    #define MY_DEVICE_CLASS(klass) \
104  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
105  *    #define MY_DEVICE(obj) \
106  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
107  *   </programlisting>
108  * </example>
109  *
110  * # Class Initialization #
111  *
112  * Before an object is initialized, the class for the object must be
113  * initialized.  There is only one class object for all instance objects
114  * that is created lazily.
115  *
116  * Classes are initialized by first initializing any parent classes (if
117  * necessary).  After the parent class object has initialized, it will be
118  * copied into the current class object and any additional storage in the
119  * class object is zero filled.
120  *
121  * The effect of this is that classes automatically inherit any virtual
122  * function pointers that the parent class has already initialized.  All
123  * other fields will be zero filled.
124  *
125  * Once all of the parent classes have been initialized, #TypeInfo::class_init
126  * is called to let the class being instantiated provide default initialize for
127  * its virtual functions.  Here is how the above example might be modified
128  * to introduce an overridden virtual function:
129  *
130  * <example>
131  *   <title>Overriding a virtual function</title>
132  *   <programlisting>
133  * #include "qdev.h"
134  *
135  * void my_device_class_init(ObjectClass *klass, void *class_data)
136  * {
137  *     DeviceClass *dc = DEVICE_CLASS(klass);
138  *     dc->reset = my_device_reset;
139  * }
140  *
141  * static const TypeInfo my_device_info = {
142  *     .name = TYPE_MY_DEVICE,
143  *     .parent = TYPE_DEVICE,
144  *     .instance_size = sizeof(MyDevice),
145  *     .class_init = my_device_class_init,
146  * };
147  *   </programlisting>
148  * </example>
149  *
150  * Introducing new virtual methods requires a class to define its own
151  * struct and to add a .class_size member to the #TypeInfo.  Each method
152  * will also have a wrapper function to call it easily:
153  *
154  * <example>
155  *   <title>Defining an abstract class</title>
156  *   <programlisting>
157  * #include "qdev.h"
158  *
159  * typedef struct MyDeviceClass
160  * {
161  *     DeviceClass parent;
162  *
163  *     void (*frobnicate) (MyDevice *obj);
164  * } MyDeviceClass;
165  *
166  * static const TypeInfo my_device_info = {
167  *     .name = TYPE_MY_DEVICE,
168  *     .parent = TYPE_DEVICE,
169  *     .instance_size = sizeof(MyDevice),
170  *     .abstract = true, // or set a default in my_device_class_init
171  *     .class_size = sizeof(MyDeviceClass),
172  * };
173  *
174  * void my_device_frobnicate(MyDevice *obj)
175  * {
176  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
177  *
178  *     klass->frobnicate(obj);
179  * }
180  *   </programlisting>
181  * </example>
182  *
183  * # Interfaces #
184  *
185  * Interfaces allow a limited form of multiple inheritance.  Instances are
186  * similar to normal types except for the fact that are only defined by
187  * their classes and never carry any state.  You can dynamically cast an object
188  * to one of its #Interface types and vice versa.
189  *
190  * # Methods #
191  *
192  * A <emphasis>method</emphasis> is a function within the namespace scope of
193  * a class. It usually operates on the object instance by passing it as a
194  * strongly-typed first argument.
195  * If it does not operate on an object instance, it is dubbed
196  * <emphasis>class method</emphasis>.
197  *
198  * Methods cannot be overloaded. That is, the #ObjectClass and method name
199  * uniquely identity the function to be called; the signature does not vary
200  * except for trailing varargs.
201  *
202  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
203  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
204  * via OBJECT_GET_CLASS() accessing the overridden function.
205  * The original function is not automatically invoked. It is the responsibility
206  * of the overriding class to determine whether and when to invoke the method
207  * being overridden.
208  *
209  * To invoke the method being overridden, the preferred solution is to store
210  * the original value in the overriding class before overriding the method.
211  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
212  * respectively; this frees the overriding class from hardcoding its parent
213  * class, which someone might choose to change at some point.
214  *
215  * <example>
216  *   <title>Overriding a virtual method</title>
217  *   <programlisting>
218  * typedef struct MyState MyState;
219  *
220  * typedef void (*MyDoSomething)(MyState *obj);
221  *
222  * typedef struct MyClass {
223  *     ObjectClass parent_class;
224  *
225  *     MyDoSomething do_something;
226  * } MyClass;
227  *
228  * static void my_do_something(MyState *obj)
229  * {
230  *     // do something
231  * }
232  *
233  * static void my_class_init(ObjectClass *oc, void *data)
234  * {
235  *     MyClass *mc = MY_CLASS(oc);
236  *
237  *     mc->do_something = my_do_something;
238  * }
239  *
240  * static const TypeInfo my_type_info = {
241  *     .name = TYPE_MY,
242  *     .parent = TYPE_OBJECT,
243  *     .instance_size = sizeof(MyState),
244  *     .class_size = sizeof(MyClass),
245  *     .class_init = my_class_init,
246  * };
247  *
248  * typedef struct DerivedClass {
249  *     MyClass parent_class;
250  *
251  *     MyDoSomething parent_do_something;
252  * } DerivedClass;
253  *
254  * static void derived_do_something(MyState *obj)
255  * {
256  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
257  *
258  *     // do something here
259  *     dc->parent_do_something(obj);
260  *     // do something else here
261  * }
262  *
263  * static void derived_class_init(ObjectClass *oc, void *data)
264  * {
265  *     MyClass *mc = MY_CLASS(oc);
266  *     DerivedClass *dc = DERIVED_CLASS(oc);
267  *
268  *     dc->parent_do_something = mc->do_something;
269  *     mc->do_something = derived_do_something;
270  * }
271  *
272  * static const TypeInfo derived_type_info = {
273  *     .name = TYPE_DERIVED,
274  *     .parent = TYPE_MY,
275  *     .class_size = sizeof(DerivedClass),
276  *     .class_init = my_class_init,
277  * };
278  *   </programlisting>
279  * </example>
280  *
281  * Alternatively, object_class_by_name() can be used to obtain the class and
282  * its non-overridden methods for a specific type. This would correspond to
283  * |[ MyClass::method(...) ]| in C++.
284  *
285  * The first example of such a QOM method was #CPUClass.reset,
286  * another example is #DeviceClass.realize.
287  */
288 
289 
290 /**
291  * ObjectPropertyAccessor:
292  * @obj: the object that owns the property
293  * @v: the visitor that contains the property data
294  * @opaque: the object property opaque
295  * @name: the name of the property
296  * @errp: a pointer to an Error that is filled if getting/setting fails.
297  *
298  * Called when trying to get/set a property.
299  */
300 typedef void (ObjectPropertyAccessor)(Object *obj,
301                                       struct Visitor *v,
302                                       void *opaque,
303                                       const char *name,
304                                       struct Error **errp);
305 
306 /**
307  * ObjectPropertyRelease:
308  * @obj: the object that owns the property
309  * @name: the name of the property
310  * @opaque: the opaque registered with the property
311  *
312  * Called when a property is removed from a object.
313  */
314 typedef void (ObjectPropertyRelease)(Object *obj,
315                                      const char *name,
316                                      void *opaque);
317 
318 typedef struct ObjectProperty
319 {
320     gchar *name;
321     gchar *type;
322     ObjectPropertyAccessor *get;
323     ObjectPropertyAccessor *set;
324     ObjectPropertyRelease *release;
325     void *opaque;
326 
327     QTAILQ_ENTRY(ObjectProperty) node;
328 } ObjectProperty;
329 
330 /**
331  * ObjectUnparent:
332  * @obj: the object that is being removed from the composition tree
333  *
334  * Called when an object is being removed from the QOM composition tree.
335  * The function should remove any backlinks from children objects to @obj.
336  */
337 typedef void (ObjectUnparent)(Object *obj);
338 
339 /**
340  * ObjectFree:
341  * @obj: the object being freed
342  *
343  * Called when an object's last reference is removed.
344  */
345 typedef void (ObjectFree)(void *obj);
346 
347 #define OBJECT_CLASS_CAST_CACHE 4
348 
349 /**
350  * ObjectClass:
351  *
352  * The base for all classes.  The only thing that #ObjectClass contains is an
353  * integer type handle.
354  */
355 struct ObjectClass
356 {
357     /*< private >*/
358     Type type;
359     GSList *interfaces;
360 
361     const char *cast_cache[OBJECT_CLASS_CAST_CACHE];
362 
363     ObjectUnparent *unparent;
364 };
365 
366 /**
367  * Object:
368  *
369  * The base for all objects.  The first member of this object is a pointer to
370  * a #ObjectClass.  Since C guarantees that the first member of a structure
371  * always begins at byte 0 of that structure, as long as any sub-object places
372  * its parent as the first member, we can cast directly to a #Object.
373  *
374  * As a result, #Object contains a reference to the objects type as its
375  * first member.  This allows identification of the real type of the object at
376  * run time.
377  *
378  * #Object also contains a list of #Interfaces that this object
379  * implements.
380  */
381 struct Object
382 {
383     /*< private >*/
384     ObjectClass *class;
385     ObjectFree *free;
386     QTAILQ_HEAD(, ObjectProperty) properties;
387     uint32_t ref;
388     Object *parent;
389 };
390 
391 /**
392  * TypeInfo:
393  * @name: The name of the type.
394  * @parent: The name of the parent type.
395  * @instance_size: The size of the object (derivative of #Object).  If
396  *   @instance_size is 0, then the size of the object will be the size of the
397  *   parent object.
398  * @instance_init: This function is called to initialize an object.  The parent
399  *   class will have already been initialized so the type is only responsible
400  *   for initializing its own members.
401  * @instance_post_init: This function is called to finish initialization of
402  *   an object, after all @instance_init functions were called.
403  * @instance_finalize: This function is called during object destruction.  This
404  *   is called before the parent @instance_finalize function has been called.
405  *   An object should only free the members that are unique to its type in this
406  *   function.
407  * @abstract: If this field is true, then the class is considered abstract and
408  *   cannot be directly instantiated.
409  * @class_size: The size of the class object (derivative of #ObjectClass)
410  *   for this object.  If @class_size is 0, then the size of the class will be
411  *   assumed to be the size of the parent class.  This allows a type to avoid
412  *   implementing an explicit class type if they are not adding additional
413  *   virtual functions.
414  * @class_init: This function is called after all parent class initialization
415  *   has occurred to allow a class to set its default virtual method pointers.
416  *   This is also the function to use to override virtual methods from a parent
417  *   class.
418  * @class_base_init: This function is called for all base classes after all
419  *   parent class initialization has occurred, but before the class itself
420  *   is initialized.  This is the function to use to undo the effects of
421  *   memcpy from the parent class to the descendents.
422  * @class_finalize: This function is called during class destruction and is
423  *   meant to release and dynamic parameters allocated by @class_init.
424  * @class_data: Data to pass to the @class_init, @class_base_init and
425  *   @class_finalize functions.  This can be useful when building dynamic
426  *   classes.
427  * @interfaces: The list of interfaces associated with this type.  This
428  *   should point to a static array that's terminated with a zero filled
429  *   element.
430  */
431 struct TypeInfo
432 {
433     const char *name;
434     const char *parent;
435 
436     size_t instance_size;
437     void (*instance_init)(Object *obj);
438     void (*instance_post_init)(Object *obj);
439     void (*instance_finalize)(Object *obj);
440 
441     bool abstract;
442     size_t class_size;
443 
444     void (*class_init)(ObjectClass *klass, void *data);
445     void (*class_base_init)(ObjectClass *klass, void *data);
446     void (*class_finalize)(ObjectClass *klass, void *data);
447     void *class_data;
448 
449     InterfaceInfo *interfaces;
450 };
451 
452 /**
453  * OBJECT:
454  * @obj: A derivative of #Object
455  *
456  * Converts an object to a #Object.  Since all objects are #Objects,
457  * this function will always succeed.
458  */
459 #define OBJECT(obj) \
460     ((Object *)(obj))
461 
462 /**
463  * OBJECT_CLASS:
464  * @class: A derivative of #ObjectClass.
465  *
466  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
467  * this function will always succeed.
468  */
469 #define OBJECT_CLASS(class) \
470     ((ObjectClass *)(class))
471 
472 /**
473  * OBJECT_CHECK:
474  * @type: The C type to use for the return value.
475  * @obj: A derivative of @type to cast.
476  * @name: The QOM typename of @type
477  *
478  * A type safe version of @object_dynamic_cast_assert.  Typically each class
479  * will define a macro based on this type to perform type safe dynamic_casts to
480  * this object type.
481  *
482  * If an invalid object is passed to this function, a run time assert will be
483  * generated.
484  */
485 #define OBJECT_CHECK(type, obj, name) \
486     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
487                                         __FILE__, __LINE__, __func__))
488 
489 /**
490  * OBJECT_CLASS_CHECK:
491  * @class: The C type to use for the return value.
492  * @obj: A derivative of @type to cast.
493  * @name: the QOM typename of @class.
494  *
495  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
496  * typically wrapped by each type to perform type safe casts of a class to a
497  * specific class type.
498  */
499 #define OBJECT_CLASS_CHECK(class, obj, name) \
500     ((class *)object_class_dynamic_cast_assert(OBJECT_CLASS(obj), (name), \
501                                                __FILE__, __LINE__, __func__))
502 
503 /**
504  * OBJECT_GET_CLASS:
505  * @class: The C type to use for the return value.
506  * @obj: The object to obtain the class for.
507  * @name: The QOM typename of @obj.
508  *
509  * This function will return a specific class for a given object.  Its generally
510  * used by each type to provide a type safe macro to get a specific class type
511  * from an object.
512  */
513 #define OBJECT_GET_CLASS(class, obj, name) \
514     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
515 
516 /**
517  * InterfaceInfo:
518  * @type: The name of the interface.
519  *
520  * The information associated with an interface.
521  */
522 struct InterfaceInfo {
523     const char *type;
524 };
525 
526 /**
527  * InterfaceClass:
528  * @parent_class: the base class
529  *
530  * The class for all interfaces.  Subclasses of this class should only add
531  * virtual methods.
532  */
533 struct InterfaceClass
534 {
535     ObjectClass parent_class;
536     /*< private >*/
537     ObjectClass *concrete_class;
538 };
539 
540 #define TYPE_INTERFACE "interface"
541 
542 /**
543  * INTERFACE_CLASS:
544  * @klass: class to cast from
545  * Returns: An #InterfaceClass or raise an error if cast is invalid
546  */
547 #define INTERFACE_CLASS(klass) \
548     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
549 
550 /**
551  * INTERFACE_CHECK:
552  * @interface: the type to return
553  * @obj: the object to convert to an interface
554  * @name: the interface type name
555  *
556  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
557  */
558 #define INTERFACE_CHECK(interface, obj, name) \
559     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
560                                              __FILE__, __LINE__, __func__))
561 
562 /**
563  * object_new:
564  * @typename: The name of the type of the object to instantiate.
565  *
566  * This function will initialize a new object using heap allocated memory.
567  * The returned object has a reference count of 1, and will be freed when
568  * the last reference is dropped.
569  *
570  * Returns: The newly allocated and instantiated object.
571  */
572 Object *object_new(const char *typename);
573 
574 /**
575  * object_new_with_type:
576  * @type: The type of the object to instantiate.
577  *
578  * This function will initialize a new object using heap allocated memory.
579  * The returned object has a reference count of 1, and will be freed when
580  * the last reference is dropped.
581  *
582  * Returns: The newly allocated and instantiated object.
583  */
584 Object *object_new_with_type(Type type);
585 
586 /**
587  * object_initialize_with_type:
588  * @data: A pointer to the memory to be used for the object.
589  * @size: The maximum size available at @data for the object.
590  * @type: The type of the object to instantiate.
591  *
592  * This function will initialize an object.  The memory for the object should
593  * have already been allocated.  The returned object has a reference count of 1,
594  * and will be finalized when the last reference is dropped.
595  */
596 void object_initialize_with_type(void *data, size_t size, Type type);
597 
598 /**
599  * object_initialize:
600  * @obj: A pointer to the memory to be used for the object.
601  * @size: The maximum size available at @obj for the object.
602  * @typename: The name of the type of the object to instantiate.
603  *
604  * This function will initialize an object.  The memory for the object should
605  * have already been allocated.  The returned object has a reference count of 1,
606  * and will be finalized when the last reference is dropped.
607  */
608 void object_initialize(void *obj, size_t size, const char *typename);
609 
610 /**
611  * object_dynamic_cast:
612  * @obj: The object to cast.
613  * @typename: The @typename to cast to.
614  *
615  * This function will determine if @obj is-a @typename.  @obj can refer to an
616  * object or an interface associated with an object.
617  *
618  * Returns: This function returns @obj on success or #NULL on failure.
619  */
620 Object *object_dynamic_cast(Object *obj, const char *typename);
621 
622 /**
623  * object_dynamic_cast_assert:
624  *
625  * See object_dynamic_cast() for a description of the parameters of this
626  * function.  The only difference in behavior is that this function asserts
627  * instead of returning #NULL on failure if QOM cast debugging is enabled.
628  * This function is not meant to be called directly, but only through
629  * the wrapper macro OBJECT_CHECK.
630  */
631 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
632                                    const char *file, int line, const char *func);
633 
634 /**
635  * object_get_class:
636  * @obj: A derivative of #Object
637  *
638  * Returns: The #ObjectClass of the type associated with @obj.
639  */
640 ObjectClass *object_get_class(Object *obj);
641 
642 /**
643  * object_get_typename:
644  * @obj: A derivative of #Object.
645  *
646  * Returns: The QOM typename of @obj.
647  */
648 const char *object_get_typename(Object *obj);
649 
650 /**
651  * type_register_static:
652  * @info: The #TypeInfo of the new type.
653  *
654  * @info and all of the strings it points to should exist for the life time
655  * that the type is registered.
656  *
657  * Returns: 0 on failure, the new #Type on success.
658  */
659 Type type_register_static(const TypeInfo *info);
660 
661 /**
662  * type_register:
663  * @info: The #TypeInfo of the new type
664  *
665  * Unlike type_register_static(), this call does not require @info or its
666  * string members to continue to exist after the call returns.
667  *
668  * Returns: 0 on failure, the new #Type on success.
669  */
670 Type type_register(const TypeInfo *info);
671 
672 /**
673  * object_class_dynamic_cast_assert:
674  * @klass: The #ObjectClass to attempt to cast.
675  * @typename: The QOM typename of the class to cast to.
676  *
677  * See object_class_dynamic_cast() for a description of the parameters
678  * of this function.  The only difference in behavior is that this function
679  * asserts instead of returning #NULL on failure if QOM cast debugging is
680  * enabled.  This function is not meant to be called directly, but only through
681  * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
682  */
683 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
684                                               const char *typename,
685                                               const char *file, int line,
686                                               const char *func);
687 
688 /**
689  * object_class_dynamic_cast:
690  * @klass: The #ObjectClass to attempt to cast.
691  * @typename: The QOM typename of the class to cast to.
692  *
693  * Returns: If @typename is a class, this function returns @klass if
694  * @typename is a subtype of @klass, else returns #NULL.
695  *
696  * If @typename is an interface, this function returns the interface
697  * definition for @klass if @klass implements it unambiguously; #NULL
698  * is returned if @klass does not implement the interface or if multiple
699  * classes or interfaces on the hierarchy leading to @klass implement
700  * it.  (FIXME: perhaps this can be detected at type definition time?)
701  */
702 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
703                                        const char *typename);
704 
705 /**
706  * object_class_get_parent:
707  * @klass: The class to obtain the parent for.
708  *
709  * Returns: The parent for @klass or %NULL if none.
710  */
711 ObjectClass *object_class_get_parent(ObjectClass *klass);
712 
713 /**
714  * object_class_get_name:
715  * @klass: The class to obtain the QOM typename for.
716  *
717  * Returns: The QOM typename for @klass.
718  */
719 const char *object_class_get_name(ObjectClass *klass);
720 
721 /**
722  * object_class_is_abstract:
723  * @klass: The class to obtain the abstractness for.
724  *
725  * Returns: %true if @klass is abstract, %false otherwise.
726  */
727 bool object_class_is_abstract(ObjectClass *klass);
728 
729 /**
730  * object_class_by_name:
731  * @typename: The QOM typename to obtain the class for.
732  *
733  * Returns: The class for @typename or %NULL if not found.
734  */
735 ObjectClass *object_class_by_name(const char *typename);
736 
737 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
738                           const char *implements_type, bool include_abstract,
739                           void *opaque);
740 
741 /**
742  * object_class_get_list:
743  * @implements_type: The type to filter for, including its derivatives.
744  * @include_abstract: Whether to include abstract classes.
745  *
746  * Returns: A singly-linked list of the classes in reverse hashtable order.
747  */
748 GSList *object_class_get_list(const char *implements_type,
749                               bool include_abstract);
750 
751 /**
752  * object_ref:
753  * @obj: the object
754  *
755  * Increase the reference count of a object.  A object cannot be freed as long
756  * as its reference count is greater than zero.
757  */
758 void object_ref(Object *obj);
759 
760 /**
761  * qdef_unref:
762  * @obj: the object
763  *
764  * Decrease the reference count of a object.  A object cannot be freed as long
765  * as its reference count is greater than zero.
766  */
767 void object_unref(Object *obj);
768 
769 /**
770  * object_property_add:
771  * @obj: the object to add a property to
772  * @name: the name of the property.  This can contain any character except for
773  *  a forward slash.  In general, you should use hyphens '-' instead of
774  *  underscores '_' when naming properties.
775  * @type: the type name of the property.  This namespace is pretty loosely
776  *   defined.  Sub namespaces are constructed by using a prefix and then
777  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
778  *   'link' namespace would be 'link<virtio-net-pci>'.
779  * @get: The getter to be called to read a property.  If this is NULL, then
780  *   the property cannot be read.
781  * @set: the setter to be called to write a property.  If this is NULL,
782  *   then the property cannot be written.
783  * @release: called when the property is removed from the object.  This is
784  *   meant to allow a property to free its opaque upon object
785  *   destruction.  This may be NULL.
786  * @opaque: an opaque pointer to pass to the callbacks for the property
787  * @errp: returns an error if this function fails
788  */
789 void object_property_add(Object *obj, const char *name, const char *type,
790                          ObjectPropertyAccessor *get,
791                          ObjectPropertyAccessor *set,
792                          ObjectPropertyRelease *release,
793                          void *opaque, struct Error **errp);
794 
795 void object_property_del(Object *obj, const char *name, struct Error **errp);
796 
797 /**
798  * object_property_find:
799  * @obj: the object
800  * @name: the name of the property
801  * @errp: returns an error if this function fails
802  *
803  * Look up a property for an object and return its #ObjectProperty if found.
804  */
805 ObjectProperty *object_property_find(Object *obj, const char *name,
806                                      struct Error **errp);
807 
808 void object_unparent(Object *obj);
809 
810 /**
811  * object_property_get:
812  * @obj: the object
813  * @v: the visitor that will receive the property value.  This should be an
814  *   Output visitor and the data will be written with @name as the name.
815  * @name: the name of the property
816  * @errp: returns an error if this function fails
817  *
818  * Reads a property from a object.
819  */
820 void object_property_get(Object *obj, struct Visitor *v, const char *name,
821                          struct Error **errp);
822 
823 /**
824  * object_property_set_str:
825  * @value: the value to be written to the property
826  * @name: the name of the property
827  * @errp: returns an error if this function fails
828  *
829  * Writes a string value to a property.
830  */
831 void object_property_set_str(Object *obj, const char *value,
832                              const char *name, struct Error **errp);
833 
834 /**
835  * object_property_get_str:
836  * @obj: the object
837  * @name: the name of the property
838  * @errp: returns an error if this function fails
839  *
840  * Returns: the value of the property, converted to a C string, or NULL if
841  * an error occurs (including when the property value is not a string).
842  * The caller should free the string.
843  */
844 char *object_property_get_str(Object *obj, const char *name,
845                               struct Error **errp);
846 
847 /**
848  * object_property_set_link:
849  * @value: the value to be written to the property
850  * @name: the name of the property
851  * @errp: returns an error if this function fails
852  *
853  * Writes an object's canonical path to a property.
854  */
855 void object_property_set_link(Object *obj, Object *value,
856                               const char *name, struct Error **errp);
857 
858 /**
859  * object_property_get_link:
860  * @obj: the object
861  * @name: the name of the property
862  * @errp: returns an error if this function fails
863  *
864  * Returns: the value of the property, resolved from a path to an Object,
865  * or NULL if an error occurs (including when the property value is not a
866  * string or not a valid object path).
867  */
868 Object *object_property_get_link(Object *obj, const char *name,
869                                  struct Error **errp);
870 
871 /**
872  * object_property_set_bool:
873  * @value: the value to be written to the property
874  * @name: the name of the property
875  * @errp: returns an error if this function fails
876  *
877  * Writes a bool value to a property.
878  */
879 void object_property_set_bool(Object *obj, bool value,
880                               const char *name, struct Error **errp);
881 
882 /**
883  * object_property_get_bool:
884  * @obj: the object
885  * @name: the name of the property
886  * @errp: returns an error if this function fails
887  *
888  * Returns: the value of the property, converted to a boolean, or NULL if
889  * an error occurs (including when the property value is not a bool).
890  */
891 bool object_property_get_bool(Object *obj, const char *name,
892                               struct Error **errp);
893 
894 /**
895  * object_property_set_int:
896  * @value: the value to be written to the property
897  * @name: the name of the property
898  * @errp: returns an error if this function fails
899  *
900  * Writes an integer value to a property.
901  */
902 void object_property_set_int(Object *obj, int64_t value,
903                              const char *name, struct Error **errp);
904 
905 /**
906  * object_property_get_int:
907  * @obj: the object
908  * @name: the name of the property
909  * @errp: returns an error if this function fails
910  *
911  * Returns: the value of the property, converted to an integer, or NULL if
912  * an error occurs (including when the property value is not an integer).
913  */
914 int64_t object_property_get_int(Object *obj, const char *name,
915                                 struct Error **errp);
916 
917 /**
918  * object_property_set:
919  * @obj: the object
920  * @v: the visitor that will be used to write the property value.  This should
921  *   be an Input visitor and the data will be first read with @name as the
922  *   name and then written as the property value.
923  * @name: the name of the property
924  * @errp: returns an error if this function fails
925  *
926  * Writes a property to a object.
927  */
928 void object_property_set(Object *obj, struct Visitor *v, const char *name,
929                          struct Error **errp);
930 
931 /**
932  * object_property_parse:
933  * @obj: the object
934  * @string: the string that will be used to parse the property value.
935  * @name: the name of the property
936  * @errp: returns an error if this function fails
937  *
938  * Parses a string and writes the result into a property of an object.
939  */
940 void object_property_parse(Object *obj, const char *string,
941                            const char *name, struct Error **errp);
942 
943 /**
944  * object_property_print:
945  * @obj: the object
946  * @name: the name of the property
947  * @errp: returns an error if this function fails
948  *
949  * Returns a string representation of the value of the property.  The
950  * caller shall free the string.
951  */
952 char *object_property_print(Object *obj, const char *name,
953                             struct Error **errp);
954 
955 /**
956  * object_property_get_type:
957  * @obj: the object
958  * @name: the name of the property
959  * @errp: returns an error if this function fails
960  *
961  * Returns:  The type name of the property.
962  */
963 const char *object_property_get_type(Object *obj, const char *name,
964                                      struct Error **errp);
965 
966 /**
967  * object_get_root:
968  *
969  * Returns: the root object of the composition tree
970  */
971 Object *object_get_root(void);
972 
973 /**
974  * object_get_canonical_path:
975  *
976  * Returns: The canonical path for a object.  This is the path within the
977  * composition tree starting from the root.
978  */
979 gchar *object_get_canonical_path(Object *obj);
980 
981 /**
982  * object_resolve_path:
983  * @path: the path to resolve
984  * @ambiguous: returns true if the path resolution failed because of an
985  *   ambiguous match
986  *
987  * There are two types of supported paths--absolute paths and partial paths.
988  *
989  * Absolute paths are derived from the root object and can follow child<> or
990  * link<> properties.  Since they can follow link<> properties, they can be
991  * arbitrarily long.  Absolute paths look like absolute filenames and are
992  * prefixed with a leading slash.
993  *
994  * Partial paths look like relative filenames.  They do not begin with a
995  * prefix.  The matching rules for partial paths are subtle but designed to make
996  * specifying objects easy.  At each level of the composition tree, the partial
997  * path is matched as an absolute path.  The first match is not returned.  At
998  * least two matches are searched for.  A successful result is only returned if
999  * only one match is found.  If more than one match is found, a flag is
1000  * returned to indicate that the match was ambiguous.
1001  *
1002  * Returns: The matched object or NULL on path lookup failure.
1003  */
1004 Object *object_resolve_path(const char *path, bool *ambiguous);
1005 
1006 /**
1007  * object_resolve_path_type:
1008  * @path: the path to resolve
1009  * @typename: the type to look for.
1010  * @ambiguous: returns true if the path resolution failed because of an
1011  *   ambiguous match
1012  *
1013  * This is similar to object_resolve_path.  However, when looking for a
1014  * partial path only matches that implement the given type are considered.
1015  * This restricts the search and avoids spuriously flagging matches as
1016  * ambiguous.
1017  *
1018  * For both partial and absolute paths, the return value goes through
1019  * a dynamic cast to @typename.  This is important if either the link,
1020  * or the typename itself are of interface types.
1021  *
1022  * Returns: The matched object or NULL on path lookup failure.
1023  */
1024 Object *object_resolve_path_type(const char *path, const char *typename,
1025                                  bool *ambiguous);
1026 
1027 /**
1028  * object_resolve_path_component:
1029  * @parent: the object in which to resolve the path
1030  * @part: the component to resolve.
1031  *
1032  * This is similar to object_resolve_path with an absolute path, but it
1033  * only resolves one element (@part) and takes the others from @parent.
1034  *
1035  * Returns: The resolved object or NULL on path lookup failure.
1036  */
1037 Object *object_resolve_path_component(Object *parent, const gchar *part);
1038 
1039 /**
1040  * object_property_add_child:
1041  * @obj: the object to add a property to
1042  * @name: the name of the property
1043  * @child: the child object
1044  * @errp: if an error occurs, a pointer to an area to store the area
1045  *
1046  * Child properties form the composition tree.  All objects need to be a child
1047  * of another object.  Objects can only be a child of one object.
1048  *
1049  * There is no way for a child to determine what its parent is.  It is not
1050  * a bidirectional relationship.  This is by design.
1051  *
1052  * The value of a child property as a C string will be the child object's
1053  * canonical path. It can be retrieved using object_property_get_str().
1054  * The child object itself can be retrieved using object_property_get_link().
1055  */
1056 void object_property_add_child(Object *obj, const char *name,
1057                                Object *child, struct Error **errp);
1058 
1059 /**
1060  * object_property_add_link:
1061  * @obj: the object to add a property to
1062  * @name: the name of the property
1063  * @type: the qobj type of the link
1064  * @child: a pointer to where the link object reference is stored
1065  * @errp: if an error occurs, a pointer to an area to store the area
1066  *
1067  * Links establish relationships between objects.  Links are unidirectional
1068  * although two links can be combined to form a bidirectional relationship
1069  * between objects.
1070  *
1071  * Links form the graph in the object model.
1072  *
1073  * Ownership of the pointer that @child points to is transferred to the
1074  * link property.  The reference count for <code>*@child</code> is
1075  * managed by the property from after the function returns till the
1076  * property is deleted with object_property_del().
1077  */
1078 void object_property_add_link(Object *obj, const char *name,
1079                               const char *type, Object **child,
1080                               struct Error **errp);
1081 
1082 /**
1083  * object_property_add_str:
1084  * @obj: the object to add a property to
1085  * @name: the name of the property
1086  * @get: the getter or NULL if the property is write-only.  This function must
1087  *   return a string to be freed by g_free().
1088  * @set: the setter or NULL if the property is read-only
1089  * @errp: if an error occurs, a pointer to an area to store the error
1090  *
1091  * Add a string property using getters/setters.  This function will add a
1092  * property of type 'string'.
1093  */
1094 void object_property_add_str(Object *obj, const char *name,
1095                              char *(*get)(Object *, struct Error **),
1096                              void (*set)(Object *, const char *, struct Error **),
1097                              struct Error **errp);
1098 
1099 /**
1100  * object_property_add_bool:
1101  * @obj: the object to add a property to
1102  * @name: the name of the property
1103  * @get: the getter or NULL if the property is write-only.
1104  * @set: the setter or NULL if the property is read-only
1105  * @errp: if an error occurs, a pointer to an area to store the error
1106  *
1107  * Add a bool property using getters/setters.  This function will add a
1108  * property of type 'bool'.
1109  */
1110 void object_property_add_bool(Object *obj, const char *name,
1111                               bool (*get)(Object *, struct Error **),
1112                               void (*set)(Object *, bool, struct Error **),
1113                               struct Error **errp);
1114 
1115 /**
1116  * object_child_foreach:
1117  * @obj: the object whose children will be navigated
1118  * @fn: the iterator function to be called
1119  * @opaque: an opaque value that will be passed to the iterator
1120  *
1121  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1122  * non-zero.
1123  *
1124  * Returns: The last value returned by @fn, or 0 if there is no child.
1125  */
1126 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1127                          void *opaque);
1128 
1129 /**
1130  * container_get:
1131  * @root: root of the #path, e.g., object_get_root()
1132  * @path: path to the container
1133  *
1134  * Return a container object whose path is @path.  Create more containers
1135  * along the path if necessary.
1136  *
1137  * Returns: the container object.
1138  */
1139 Object *container_get(Object *root, const char *path);
1140 
1141 
1142 #endif
1143