1 /* 2 * QEMU Object Model 3 * 4 * Copyright IBM, Corp. 2011 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_OBJECT_H 15 #define QEMU_OBJECT_H 16 17 #include <glib.h> 18 #include <stdint.h> 19 #include <stdbool.h> 20 #include "qemu/queue.h" 21 22 struct Visitor; 23 struct Error; 24 25 struct TypeImpl; 26 typedef struct TypeImpl *Type; 27 28 typedef struct ObjectClass ObjectClass; 29 typedef struct Object Object; 30 31 typedef struct TypeInfo TypeInfo; 32 33 typedef struct InterfaceClass InterfaceClass; 34 typedef struct InterfaceInfo InterfaceInfo; 35 36 #define TYPE_OBJECT "object" 37 38 /** 39 * SECTION:object.h 40 * @title:Base Object Type System 41 * @short_description: interfaces for creating new types and objects 42 * 43 * The QEMU Object Model provides a framework for registering user creatable 44 * types and instantiating objects from those types. QOM provides the following 45 * features: 46 * 47 * - System for dynamically registering types 48 * - Support for single-inheritance of types 49 * - Multiple inheritance of stateless interfaces 50 * 51 * <example> 52 * <title>Creating a minimal type</title> 53 * <programlisting> 54 * #include "qdev.h" 55 * 56 * #define TYPE_MY_DEVICE "my-device" 57 * 58 * // No new virtual functions: we can reuse the typedef for the 59 * // superclass. 60 * typedef DeviceClass MyDeviceClass; 61 * typedef struct MyDevice 62 * { 63 * DeviceState parent; 64 * 65 * int reg0, reg1, reg2; 66 * } MyDevice; 67 * 68 * static const TypeInfo my_device_info = { 69 * .name = TYPE_MY_DEVICE, 70 * .parent = TYPE_DEVICE, 71 * .instance_size = sizeof(MyDevice), 72 * }; 73 * 74 * static void my_device_register_types(void) 75 * { 76 * type_register_static(&my_device_info); 77 * } 78 * 79 * type_init(my_device_register_types) 80 * </programlisting> 81 * </example> 82 * 83 * In the above example, we create a simple type that is described by #TypeInfo. 84 * #TypeInfo describes information about the type including what it inherits 85 * from, the instance and class size, and constructor/destructor hooks. 86 * 87 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives 88 * are instantiated dynamically but there is only ever one instance for any 89 * given type. The #ObjectClass typically holds a table of function pointers 90 * for the virtual methods implemented by this type. 91 * 92 * Using object_new(), a new #Object derivative will be instantiated. You can 93 * cast an #Object to a subclass (or base-class) type using 94 * object_dynamic_cast(). You typically want to define macro wrappers around 95 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a 96 * specific type: 97 * 98 * <example> 99 * <title>Typecasting macros</title> 100 * <programlisting> 101 * #define MY_DEVICE_GET_CLASS(obj) \ 102 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE) 103 * #define MY_DEVICE_CLASS(klass) \ 104 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE) 105 * #define MY_DEVICE(obj) \ 106 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE) 107 * </programlisting> 108 * </example> 109 * 110 * # Class Initialization # 111 * 112 * Before an object is initialized, the class for the object must be 113 * initialized. There is only one class object for all instance objects 114 * that is created lazily. 115 * 116 * Classes are initialized by first initializing any parent classes (if 117 * necessary). After the parent class object has initialized, it will be 118 * copied into the current class object and any additional storage in the 119 * class object is zero filled. 120 * 121 * The effect of this is that classes automatically inherit any virtual 122 * function pointers that the parent class has already initialized. All 123 * other fields will be zero filled. 124 * 125 * Once all of the parent classes have been initialized, #TypeInfo::class_init 126 * is called to let the class being instantiated provide default initialize for 127 * its virtual functions. Here is how the above example might be modified 128 * to introduce an overridden virtual function: 129 * 130 * <example> 131 * <title>Overriding a virtual function</title> 132 * <programlisting> 133 * #include "qdev.h" 134 * 135 * void my_device_class_init(ObjectClass *klass, void *class_data) 136 * { 137 * DeviceClass *dc = DEVICE_CLASS(klass); 138 * dc->reset = my_device_reset; 139 * } 140 * 141 * static const TypeInfo my_device_info = { 142 * .name = TYPE_MY_DEVICE, 143 * .parent = TYPE_DEVICE, 144 * .instance_size = sizeof(MyDevice), 145 * .class_init = my_device_class_init, 146 * }; 147 * </programlisting> 148 * </example> 149 * 150 * Introducing new virtual methods requires a class to define its own 151 * struct and to add a .class_size member to the #TypeInfo. Each method 152 * will also have a wrapper function to call it easily: 153 * 154 * <example> 155 * <title>Defining an abstract class</title> 156 * <programlisting> 157 * #include "qdev.h" 158 * 159 * typedef struct MyDeviceClass 160 * { 161 * DeviceClass parent; 162 * 163 * void (*frobnicate) (MyDevice *obj); 164 * } MyDeviceClass; 165 * 166 * static const TypeInfo my_device_info = { 167 * .name = TYPE_MY_DEVICE, 168 * .parent = TYPE_DEVICE, 169 * .instance_size = sizeof(MyDevice), 170 * .abstract = true, // or set a default in my_device_class_init 171 * .class_size = sizeof(MyDeviceClass), 172 * }; 173 * 174 * void my_device_frobnicate(MyDevice *obj) 175 * { 176 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj); 177 * 178 * klass->frobnicate(obj); 179 * } 180 * </programlisting> 181 * </example> 182 * 183 * # Interfaces # 184 * 185 * Interfaces allow a limited form of multiple inheritance. Instances are 186 * similar to normal types except for the fact that are only defined by 187 * their classes and never carry any state. You can dynamically cast an object 188 * to one of its #Interface types and vice versa. 189 * 190 * # Methods # 191 * 192 * A <emphasis>method</emphasis> is a function within the namespace scope of 193 * a class. It usually operates on the object instance by passing it as a 194 * strongly-typed first argument. 195 * If it does not operate on an object instance, it is dubbed 196 * <emphasis>class method</emphasis>. 197 * 198 * Methods cannot be overloaded. That is, the #ObjectClass and method name 199 * uniquely identity the function to be called; the signature does not vary 200 * except for trailing varargs. 201 * 202 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in 203 * #TypeInfo.class_init of a subclass leads to any user of the class obtained 204 * via OBJECT_GET_CLASS() accessing the overridden function. 205 * The original function is not automatically invoked. It is the responsibility 206 * of the overriding class to determine whether and when to invoke the method 207 * being overridden. 208 * 209 * To invoke the method being overridden, the preferred solution is to store 210 * the original value in the overriding class before overriding the method. 211 * This corresponds to |[ {super,base}.method(...) ]| in Java and C# 212 * respectively; this frees the overriding class from hardcoding its parent 213 * class, which someone might choose to change at some point. 214 * 215 * <example> 216 * <title>Overriding a virtual method</title> 217 * <programlisting> 218 * typedef struct MyState MyState; 219 * 220 * typedef void (*MyDoSomething)(MyState *obj); 221 * 222 * typedef struct MyClass { 223 * ObjectClass parent_class; 224 * 225 * MyDoSomething do_something; 226 * } MyClass; 227 * 228 * static void my_do_something(MyState *obj) 229 * { 230 * // do something 231 * } 232 * 233 * static void my_class_init(ObjectClass *oc, void *data) 234 * { 235 * MyClass *mc = MY_CLASS(oc); 236 * 237 * mc->do_something = my_do_something; 238 * } 239 * 240 * static const TypeInfo my_type_info = { 241 * .name = TYPE_MY, 242 * .parent = TYPE_OBJECT, 243 * .instance_size = sizeof(MyState), 244 * .class_size = sizeof(MyClass), 245 * .class_init = my_class_init, 246 * }; 247 * 248 * typedef struct DerivedClass { 249 * MyClass parent_class; 250 * 251 * MyDoSomething parent_do_something; 252 * } MyClass; 253 * 254 * static void derived_do_something(MyState *obj) 255 * { 256 * DerivedClass *dc = DERIVED_GET_CLASS(obj); 257 * 258 * // do something here 259 * dc->parent_do_something(obj); 260 * // do something else here 261 * } 262 * 263 * static void derived_class_init(ObjectClass *oc, void *data) 264 * { 265 * MyClass *mc = MY_CLASS(oc); 266 * DerivedClass *dc = DERIVED_CLASS(oc); 267 * 268 * dc->parent_do_something = mc->do_something; 269 * mc->do_something = derived_do_something; 270 * } 271 * 272 * static const TypeInfo derived_type_info = { 273 * .name = TYPE_DERIVED, 274 * .parent = TYPE_MY, 275 * .class_size = sizeof(DerivedClass), 276 * .class_init = my_class_init, 277 * }; 278 * </programlisting> 279 * </example> 280 * 281 * Alternatively, object_class_by_name() can be used to obtain the class and 282 * its non-overridden methods for a specific type. This would correspond to 283 * |[ MyClass::method(...) ]| in C++. 284 * 285 * The first example of such a QOM method was #CPUClass.reset, 286 * another example is #DeviceClass.realize. 287 */ 288 289 290 /** 291 * ObjectPropertyAccessor: 292 * @obj: the object that owns the property 293 * @v: the visitor that contains the property data 294 * @opaque: the object property opaque 295 * @name: the name of the property 296 * @errp: a pointer to an Error that is filled if getting/setting fails. 297 * 298 * Called when trying to get/set a property. 299 */ 300 typedef void (ObjectPropertyAccessor)(Object *obj, 301 struct Visitor *v, 302 void *opaque, 303 const char *name, 304 struct Error **errp); 305 306 /** 307 * ObjectPropertyRelease: 308 * @obj: the object that owns the property 309 * @name: the name of the property 310 * @opaque: the opaque registered with the property 311 * 312 * Called when a property is removed from a object. 313 */ 314 typedef void (ObjectPropertyRelease)(Object *obj, 315 const char *name, 316 void *opaque); 317 318 typedef struct ObjectProperty 319 { 320 gchar *name; 321 gchar *type; 322 ObjectPropertyAccessor *get; 323 ObjectPropertyAccessor *set; 324 ObjectPropertyRelease *release; 325 void *opaque; 326 327 QTAILQ_ENTRY(ObjectProperty) node; 328 } ObjectProperty; 329 330 /** 331 * ObjectUnparent: 332 * @obj: the object that is being removed from the composition tree 333 * 334 * Called when an object is being removed from the QOM composition tree. 335 * The function should remove any backlinks from children objects to @obj. 336 */ 337 typedef void (ObjectUnparent)(Object *obj); 338 339 /** 340 * ObjectFree: 341 * @obj: the object being freed 342 * 343 * Called when an object's last reference is removed. 344 */ 345 typedef void (ObjectFree)(void *obj); 346 347 #define OBJECT_CLASS_CAST_CACHE 4 348 349 /** 350 * ObjectClass: 351 * 352 * The base for all classes. The only thing that #ObjectClass contains is an 353 * integer type handle. 354 */ 355 struct ObjectClass 356 { 357 /*< private >*/ 358 Type type; 359 GSList *interfaces; 360 361 const char *cast_cache[OBJECT_CLASS_CAST_CACHE]; 362 363 ObjectUnparent *unparent; 364 }; 365 366 /** 367 * Object: 368 * 369 * The base for all objects. The first member of this object is a pointer to 370 * a #ObjectClass. Since C guarantees that the first member of a structure 371 * always begins at byte 0 of that structure, as long as any sub-object places 372 * its parent as the first member, we can cast directly to a #Object. 373 * 374 * As a result, #Object contains a reference to the objects type as its 375 * first member. This allows identification of the real type of the object at 376 * run time. 377 * 378 * #Object also contains a list of #Interfaces that this object 379 * implements. 380 */ 381 struct Object 382 { 383 /*< private >*/ 384 ObjectClass *class; 385 ObjectFree *free; 386 QTAILQ_HEAD(, ObjectProperty) properties; 387 uint32_t ref; 388 Object *parent; 389 }; 390 391 /** 392 * TypeInfo: 393 * @name: The name of the type. 394 * @parent: The name of the parent type. 395 * @instance_size: The size of the object (derivative of #Object). If 396 * @instance_size is 0, then the size of the object will be the size of the 397 * parent object. 398 * @instance_init: This function is called to initialize an object. The parent 399 * class will have already been initialized so the type is only responsible 400 * for initializing its own members. 401 * @instance_finalize: This function is called during object destruction. This 402 * is called before the parent @instance_finalize function has been called. 403 * An object should only free the members that are unique to its type in this 404 * function. 405 * @abstract: If this field is true, then the class is considered abstract and 406 * cannot be directly instantiated. 407 * @class_size: The size of the class object (derivative of #ObjectClass) 408 * for this object. If @class_size is 0, then the size of the class will be 409 * assumed to be the size of the parent class. This allows a type to avoid 410 * implementing an explicit class type if they are not adding additional 411 * virtual functions. 412 * @class_init: This function is called after all parent class initialization 413 * has occurred to allow a class to set its default virtual method pointers. 414 * This is also the function to use to override virtual methods from a parent 415 * class. 416 * @class_base_init: This function is called for all base classes after all 417 * parent class initialization has occurred, but before the class itself 418 * is initialized. This is the function to use to undo the effects of 419 * memcpy from the parent class to the descendents. 420 * @class_finalize: This function is called during class destruction and is 421 * meant to release and dynamic parameters allocated by @class_init. 422 * @class_data: Data to pass to the @class_init, @class_base_init and 423 * @class_finalize functions. This can be useful when building dynamic 424 * classes. 425 * @interfaces: The list of interfaces associated with this type. This 426 * should point to a static array that's terminated with a zero filled 427 * element. 428 */ 429 struct TypeInfo 430 { 431 const char *name; 432 const char *parent; 433 434 size_t instance_size; 435 void (*instance_init)(Object *obj); 436 void (*instance_finalize)(Object *obj); 437 438 bool abstract; 439 size_t class_size; 440 441 void (*class_init)(ObjectClass *klass, void *data); 442 void (*class_base_init)(ObjectClass *klass, void *data); 443 void (*class_finalize)(ObjectClass *klass, void *data); 444 void *class_data; 445 446 InterfaceInfo *interfaces; 447 }; 448 449 /** 450 * OBJECT: 451 * @obj: A derivative of #Object 452 * 453 * Converts an object to a #Object. Since all objects are #Objects, 454 * this function will always succeed. 455 */ 456 #define OBJECT(obj) \ 457 ((Object *)(obj)) 458 459 /** 460 * OBJECT_CLASS: 461 * @class: A derivative of #ObjectClass. 462 * 463 * Converts a class to an #ObjectClass. Since all objects are #Objects, 464 * this function will always succeed. 465 */ 466 #define OBJECT_CLASS(class) \ 467 ((ObjectClass *)(class)) 468 469 /** 470 * OBJECT_CHECK: 471 * @type: The C type to use for the return value. 472 * @obj: A derivative of @type to cast. 473 * @name: The QOM typename of @type 474 * 475 * A type safe version of @object_dynamic_cast_assert. Typically each class 476 * will define a macro based on this type to perform type safe dynamic_casts to 477 * this object type. 478 * 479 * If an invalid object is passed to this function, a run time assert will be 480 * generated. 481 */ 482 #define OBJECT_CHECK(type, obj, name) \ 483 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \ 484 __FILE__, __LINE__, __func__)) 485 486 /** 487 * OBJECT_CLASS_CHECK: 488 * @class: The C type to use for the return value. 489 * @obj: A derivative of @type to cast. 490 * @name: the QOM typename of @class. 491 * 492 * A type safe version of @object_class_dynamic_cast_assert. This macro is 493 * typically wrapped by each type to perform type safe casts of a class to a 494 * specific class type. 495 */ 496 #define OBJECT_CLASS_CHECK(class, obj, name) \ 497 ((class *)object_class_dynamic_cast_assert(OBJECT_CLASS(obj), (name), \ 498 __FILE__, __LINE__, __func__)) 499 500 /** 501 * OBJECT_GET_CLASS: 502 * @class: The C type to use for the return value. 503 * @obj: The object to obtain the class for. 504 * @name: The QOM typename of @obj. 505 * 506 * This function will return a specific class for a given object. Its generally 507 * used by each type to provide a type safe macro to get a specific class type 508 * from an object. 509 */ 510 #define OBJECT_GET_CLASS(class, obj, name) \ 511 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name) 512 513 /** 514 * InterfaceInfo: 515 * @type: The name of the interface. 516 * 517 * The information associated with an interface. 518 */ 519 struct InterfaceInfo { 520 const char *type; 521 }; 522 523 /** 524 * InterfaceClass: 525 * @parent_class: the base class 526 * 527 * The class for all interfaces. Subclasses of this class should only add 528 * virtual methods. 529 */ 530 struct InterfaceClass 531 { 532 ObjectClass parent_class; 533 /*< private >*/ 534 ObjectClass *concrete_class; 535 }; 536 537 #define TYPE_INTERFACE "interface" 538 539 /** 540 * INTERFACE_CLASS: 541 * @klass: class to cast from 542 * Returns: An #InterfaceClass or raise an error if cast is invalid 543 */ 544 #define INTERFACE_CLASS(klass) \ 545 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE) 546 547 /** 548 * INTERFACE_CHECK: 549 * @interface: the type to return 550 * @obj: the object to convert to an interface 551 * @name: the interface type name 552 * 553 * Returns: @obj casted to @interface if cast is valid, otherwise raise error. 554 */ 555 #define INTERFACE_CHECK(interface, obj, name) \ 556 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \ 557 __FILE__, __LINE__, __func__)) 558 559 /** 560 * object_new: 561 * @typename: The name of the type of the object to instantiate. 562 * 563 * This function will initialize a new object using heap allocated memory. 564 * The returned object has a reference count of 1, and will be freed when 565 * the last reference is dropped. 566 * 567 * Returns: The newly allocated and instantiated object. 568 */ 569 Object *object_new(const char *typename); 570 571 /** 572 * object_new_with_type: 573 * @type: The type of the object to instantiate. 574 * 575 * This function will initialize a new object using heap allocated memory. 576 * The returned object has a reference count of 1, and will be freed when 577 * the last reference is dropped. 578 * 579 * Returns: The newly allocated and instantiated object. 580 */ 581 Object *object_new_with_type(Type type); 582 583 /** 584 * object_initialize_with_type: 585 * @obj: A pointer to the memory to be used for the object. 586 * @type: The type of the object to instantiate. 587 * 588 * This function will initialize an object. The memory for the object should 589 * have already been allocated. The returned object has a reference count of 1, 590 * and will be finalized when the last reference is dropped. 591 */ 592 void object_initialize_with_type(void *data, Type type); 593 594 /** 595 * object_initialize: 596 * @obj: A pointer to the memory to be used for the object. 597 * @typename: The name of the type of the object to instantiate. 598 * 599 * This function will initialize an object. The memory for the object should 600 * have already been allocated. The returned object has a reference count of 1, 601 * and will be finalized when the last reference is dropped. 602 */ 603 void object_initialize(void *obj, const char *typename); 604 605 /** 606 * object_dynamic_cast: 607 * @obj: The object to cast. 608 * @typename: The @typename to cast to. 609 * 610 * This function will determine if @obj is-a @typename. @obj can refer to an 611 * object or an interface associated with an object. 612 * 613 * Returns: This function returns @obj on success or #NULL on failure. 614 */ 615 Object *object_dynamic_cast(Object *obj, const char *typename); 616 617 /** 618 * object_dynamic_cast_assert: 619 * 620 * See object_dynamic_cast() for a description of the parameters of this 621 * function. The only difference in behavior is that this function asserts 622 * instead of returning #NULL on failure if QOM cast debugging is enabled. 623 * This function is not meant to be called directly, but only through 624 * the wrapper macro OBJECT_CHECK. 625 */ 626 Object *object_dynamic_cast_assert(Object *obj, const char *typename, 627 const char *file, int line, const char *func); 628 629 /** 630 * object_get_class: 631 * @obj: A derivative of #Object 632 * 633 * Returns: The #ObjectClass of the type associated with @obj. 634 */ 635 ObjectClass *object_get_class(Object *obj); 636 637 /** 638 * object_get_typename: 639 * @obj: A derivative of #Object. 640 * 641 * Returns: The QOM typename of @obj. 642 */ 643 const char *object_get_typename(Object *obj); 644 645 /** 646 * type_register_static: 647 * @info: The #TypeInfo of the new type. 648 * 649 * @info and all of the strings it points to should exist for the life time 650 * that the type is registered. 651 * 652 * Returns: 0 on failure, the new #Type on success. 653 */ 654 Type type_register_static(const TypeInfo *info); 655 656 /** 657 * type_register: 658 * @info: The #TypeInfo of the new type 659 * 660 * Unlike type_register_static(), this call does not require @info or its 661 * string members to continue to exist after the call returns. 662 * 663 * Returns: 0 on failure, the new #Type on success. 664 */ 665 Type type_register(const TypeInfo *info); 666 667 /** 668 * object_class_dynamic_cast_assert: 669 * @klass: The #ObjectClass to attempt to cast. 670 * @typename: The QOM typename of the class to cast to. 671 * 672 * See object_class_dynamic_cast() for a description of the parameters 673 * of this function. The only difference in behavior is that this function 674 * asserts instead of returning #NULL on failure if QOM cast debugging is 675 * enabled. This function is not meant to be called directly, but only through 676 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK. 677 */ 678 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass, 679 const char *typename, 680 const char *file, int line, 681 const char *func); 682 683 /** 684 * object_class_dynamic_cast: 685 * @klass: The #ObjectClass to attempt to cast. 686 * @typename: The QOM typename of the class to cast to. 687 * 688 * Returns: If @typename is a class, this function returns @klass if 689 * @typename is a subtype of @klass, else returns #NULL. 690 * 691 * If @typename is an interface, this function returns the interface 692 * definition for @klass if @klass implements it unambiguously; #NULL 693 * is returned if @klass does not implement the interface or if multiple 694 * classes or interfaces on the hierarchy leading to @klass implement 695 * it. (FIXME: perhaps this can be detected at type definition time?) 696 */ 697 ObjectClass *object_class_dynamic_cast(ObjectClass *klass, 698 const char *typename); 699 700 /** 701 * object_class_get_parent: 702 * @klass: The class to obtain the parent for. 703 * 704 * Returns: The parent for @klass or %NULL if none. 705 */ 706 ObjectClass *object_class_get_parent(ObjectClass *klass); 707 708 /** 709 * object_class_get_name: 710 * @klass: The class to obtain the QOM typename for. 711 * 712 * Returns: The QOM typename for @klass. 713 */ 714 const char *object_class_get_name(ObjectClass *klass); 715 716 /** 717 * object_class_is_abstract: 718 * @klass: The class to obtain the abstractness for. 719 * 720 * Returns: %true if @klass is abstract, %false otherwise. 721 */ 722 bool object_class_is_abstract(ObjectClass *klass); 723 724 /** 725 * object_class_by_name: 726 * @typename: The QOM typename to obtain the class for. 727 * 728 * Returns: The class for @typename or %NULL if not found. 729 */ 730 ObjectClass *object_class_by_name(const char *typename); 731 732 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque), 733 const char *implements_type, bool include_abstract, 734 void *opaque); 735 736 /** 737 * object_class_get_list: 738 * @implements_type: The type to filter for, including its derivatives. 739 * @include_abstract: Whether to include abstract classes. 740 * 741 * Returns: A singly-linked list of the classes in reverse hashtable order. 742 */ 743 GSList *object_class_get_list(const char *implements_type, 744 bool include_abstract); 745 746 /** 747 * object_ref: 748 * @obj: the object 749 * 750 * Increase the reference count of a object. A object cannot be freed as long 751 * as its reference count is greater than zero. 752 */ 753 void object_ref(Object *obj); 754 755 /** 756 * qdef_unref: 757 * @obj: the object 758 * 759 * Decrease the reference count of a object. A object cannot be freed as long 760 * as its reference count is greater than zero. 761 */ 762 void object_unref(Object *obj); 763 764 /** 765 * object_property_add: 766 * @obj: the object to add a property to 767 * @name: the name of the property. This can contain any character except for 768 * a forward slash. In general, you should use hyphens '-' instead of 769 * underscores '_' when naming properties. 770 * @type: the type name of the property. This namespace is pretty loosely 771 * defined. Sub namespaces are constructed by using a prefix and then 772 * to angle brackets. For instance, the type 'virtio-net-pci' in the 773 * 'link' namespace would be 'link<virtio-net-pci>'. 774 * @get: The getter to be called to read a property. If this is NULL, then 775 * the property cannot be read. 776 * @set: the setter to be called to write a property. If this is NULL, 777 * then the property cannot be written. 778 * @release: called when the property is removed from the object. This is 779 * meant to allow a property to free its opaque upon object 780 * destruction. This may be NULL. 781 * @opaque: an opaque pointer to pass to the callbacks for the property 782 * @errp: returns an error if this function fails 783 */ 784 void object_property_add(Object *obj, const char *name, const char *type, 785 ObjectPropertyAccessor *get, 786 ObjectPropertyAccessor *set, 787 ObjectPropertyRelease *release, 788 void *opaque, struct Error **errp); 789 790 void object_property_del(Object *obj, const char *name, struct Error **errp); 791 792 /** 793 * object_property_find: 794 * @obj: the object 795 * @name: the name of the property 796 * @errp: returns an error if this function fails 797 * 798 * Look up a property for an object and return its #ObjectProperty if found. 799 */ 800 ObjectProperty *object_property_find(Object *obj, const char *name, 801 struct Error **errp); 802 803 void object_unparent(Object *obj); 804 805 /** 806 * object_property_get: 807 * @obj: the object 808 * @v: the visitor that will receive the property value. This should be an 809 * Output visitor and the data will be written with @name as the name. 810 * @name: the name of the property 811 * @errp: returns an error if this function fails 812 * 813 * Reads a property from a object. 814 */ 815 void object_property_get(Object *obj, struct Visitor *v, const char *name, 816 struct Error **errp); 817 818 /** 819 * object_property_set_str: 820 * @value: the value to be written to the property 821 * @name: the name of the property 822 * @errp: returns an error if this function fails 823 * 824 * Writes a string value to a property. 825 */ 826 void object_property_set_str(Object *obj, const char *value, 827 const char *name, struct Error **errp); 828 829 /** 830 * object_property_get_str: 831 * @obj: the object 832 * @name: the name of the property 833 * @errp: returns an error if this function fails 834 * 835 * Returns: the value of the property, converted to a C string, or NULL if 836 * an error occurs (including when the property value is not a string). 837 * The caller should free the string. 838 */ 839 char *object_property_get_str(Object *obj, const char *name, 840 struct Error **errp); 841 842 /** 843 * object_property_set_link: 844 * @value: the value to be written to the property 845 * @name: the name of the property 846 * @errp: returns an error if this function fails 847 * 848 * Writes an object's canonical path to a property. 849 */ 850 void object_property_set_link(Object *obj, Object *value, 851 const char *name, struct Error **errp); 852 853 /** 854 * object_property_get_link: 855 * @obj: the object 856 * @name: the name of the property 857 * @errp: returns an error if this function fails 858 * 859 * Returns: the value of the property, resolved from a path to an Object, 860 * or NULL if an error occurs (including when the property value is not a 861 * string or not a valid object path). 862 */ 863 Object *object_property_get_link(Object *obj, const char *name, 864 struct Error **errp); 865 866 /** 867 * object_property_set_bool: 868 * @value: the value to be written to the property 869 * @name: the name of the property 870 * @errp: returns an error if this function fails 871 * 872 * Writes a bool value to a property. 873 */ 874 void object_property_set_bool(Object *obj, bool value, 875 const char *name, struct Error **errp); 876 877 /** 878 * object_property_get_bool: 879 * @obj: the object 880 * @name: the name of the property 881 * @errp: returns an error if this function fails 882 * 883 * Returns: the value of the property, converted to a boolean, or NULL if 884 * an error occurs (including when the property value is not a bool). 885 */ 886 bool object_property_get_bool(Object *obj, const char *name, 887 struct Error **errp); 888 889 /** 890 * object_property_set_int: 891 * @value: the value to be written to the property 892 * @name: the name of the property 893 * @errp: returns an error if this function fails 894 * 895 * Writes an integer value to a property. 896 */ 897 void object_property_set_int(Object *obj, int64_t value, 898 const char *name, struct Error **errp); 899 900 /** 901 * object_property_get_int: 902 * @obj: the object 903 * @name: the name of the property 904 * @errp: returns an error if this function fails 905 * 906 * Returns: the value of the property, converted to an integer, or NULL if 907 * an error occurs (including when the property value is not an integer). 908 */ 909 int64_t object_property_get_int(Object *obj, const char *name, 910 struct Error **errp); 911 912 /** 913 * object_property_set: 914 * @obj: the object 915 * @v: the visitor that will be used to write the property value. This should 916 * be an Input visitor and the data will be first read with @name as the 917 * name and then written as the property value. 918 * @name: the name of the property 919 * @errp: returns an error if this function fails 920 * 921 * Writes a property to a object. 922 */ 923 void object_property_set(Object *obj, struct Visitor *v, const char *name, 924 struct Error **errp); 925 926 /** 927 * object_property_parse: 928 * @obj: the object 929 * @string: the string that will be used to parse the property value. 930 * @name: the name of the property 931 * @errp: returns an error if this function fails 932 * 933 * Parses a string and writes the result into a property of an object. 934 */ 935 void object_property_parse(Object *obj, const char *string, 936 const char *name, struct Error **errp); 937 938 /** 939 * object_property_print: 940 * @obj: the object 941 * @name: the name of the property 942 * @errp: returns an error if this function fails 943 * 944 * Returns a string representation of the value of the property. The 945 * caller shall free the string. 946 */ 947 char *object_property_print(Object *obj, const char *name, 948 struct Error **errp); 949 950 /** 951 * object_property_get_type: 952 * @obj: the object 953 * @name: the name of the property 954 * @errp: returns an error if this function fails 955 * 956 * Returns: The type name of the property. 957 */ 958 const char *object_property_get_type(Object *obj, const char *name, 959 struct Error **errp); 960 961 /** 962 * object_get_root: 963 * 964 * Returns: the root object of the composition tree 965 */ 966 Object *object_get_root(void); 967 968 /** 969 * object_get_canonical_path: 970 * 971 * Returns: The canonical path for a object. This is the path within the 972 * composition tree starting from the root. 973 */ 974 gchar *object_get_canonical_path(Object *obj); 975 976 /** 977 * object_resolve_path: 978 * @path: the path to resolve 979 * @ambiguous: returns true if the path resolution failed because of an 980 * ambiguous match 981 * 982 * There are two types of supported paths--absolute paths and partial paths. 983 * 984 * Absolute paths are derived from the root object and can follow child<> or 985 * link<> properties. Since they can follow link<> properties, they can be 986 * arbitrarily long. Absolute paths look like absolute filenames and are 987 * prefixed with a leading slash. 988 * 989 * Partial paths look like relative filenames. They do not begin with a 990 * prefix. The matching rules for partial paths are subtle but designed to make 991 * specifying objects easy. At each level of the composition tree, the partial 992 * path is matched as an absolute path. The first match is not returned. At 993 * least two matches are searched for. A successful result is only returned if 994 * only one match is found. If more than one match is found, a flag is 995 * returned to indicate that the match was ambiguous. 996 * 997 * Returns: The matched object or NULL on path lookup failure. 998 */ 999 Object *object_resolve_path(const char *path, bool *ambiguous); 1000 1001 /** 1002 * object_resolve_path_type: 1003 * @path: the path to resolve 1004 * @typename: the type to look for. 1005 * @ambiguous: returns true if the path resolution failed because of an 1006 * ambiguous match 1007 * 1008 * This is similar to object_resolve_path. However, when looking for a 1009 * partial path only matches that implement the given type are considered. 1010 * This restricts the search and avoids spuriously flagging matches as 1011 * ambiguous. 1012 * 1013 * For both partial and absolute paths, the return value goes through 1014 * a dynamic cast to @typename. This is important if either the link, 1015 * or the typename itself are of interface types. 1016 * 1017 * Returns: The matched object or NULL on path lookup failure. 1018 */ 1019 Object *object_resolve_path_type(const char *path, const char *typename, 1020 bool *ambiguous); 1021 1022 /** 1023 * object_resolve_path_component: 1024 * @parent: the object in which to resolve the path 1025 * @part: the component to resolve. 1026 * 1027 * This is similar to object_resolve_path with an absolute path, but it 1028 * only resolves one element (@part) and takes the others from @parent. 1029 * 1030 * Returns: The resolved object or NULL on path lookup failure. 1031 */ 1032 Object *object_resolve_path_component(Object *parent, const gchar *part); 1033 1034 /** 1035 * object_property_add_child: 1036 * @obj: the object to add a property to 1037 * @name: the name of the property 1038 * @child: the child object 1039 * @errp: if an error occurs, a pointer to an area to store the area 1040 * 1041 * Child properties form the composition tree. All objects need to be a child 1042 * of another object. Objects can only be a child of one object. 1043 * 1044 * There is no way for a child to determine what its parent is. It is not 1045 * a bidirectional relationship. This is by design. 1046 * 1047 * The value of a child property as a C string will be the child object's 1048 * canonical path. It can be retrieved using object_property_get_str(). 1049 * The child object itself can be retrieved using object_property_get_link(). 1050 */ 1051 void object_property_add_child(Object *obj, const char *name, 1052 Object *child, struct Error **errp); 1053 1054 /** 1055 * object_property_add_link: 1056 * @obj: the object to add a property to 1057 * @name: the name of the property 1058 * @type: the qobj type of the link 1059 * @child: a pointer to where the link object reference is stored 1060 * @errp: if an error occurs, a pointer to an area to store the area 1061 * 1062 * Links establish relationships between objects. Links are unidirectional 1063 * although two links can be combined to form a bidirectional relationship 1064 * between objects. 1065 * 1066 * Links form the graph in the object model. 1067 * 1068 * Ownership of the pointer that @child points to is transferred to the 1069 * link property. The reference count for <code>*@child</code> is 1070 * managed by the property from after the function returns till the 1071 * property is deleted with object_property_del(). 1072 */ 1073 void object_property_add_link(Object *obj, const char *name, 1074 const char *type, Object **child, 1075 struct Error **errp); 1076 1077 /** 1078 * object_property_add_str: 1079 * @obj: the object to add a property to 1080 * @name: the name of the property 1081 * @get: the getter or NULL if the property is write-only. This function must 1082 * return a string to be freed by g_free(). 1083 * @set: the setter or NULL if the property is read-only 1084 * @errp: if an error occurs, a pointer to an area to store the error 1085 * 1086 * Add a string property using getters/setters. This function will add a 1087 * property of type 'string'. 1088 */ 1089 void object_property_add_str(Object *obj, const char *name, 1090 char *(*get)(Object *, struct Error **), 1091 void (*set)(Object *, const char *, struct Error **), 1092 struct Error **errp); 1093 1094 /** 1095 * object_property_add_bool: 1096 * @obj: the object to add a property to 1097 * @name: the name of the property 1098 * @get: the getter or NULL if the property is write-only. 1099 * @set: the setter or NULL if the property is read-only 1100 * @errp: if an error occurs, a pointer to an area to store the error 1101 * 1102 * Add a bool property using getters/setters. This function will add a 1103 * property of type 'bool'. 1104 */ 1105 void object_property_add_bool(Object *obj, const char *name, 1106 bool (*get)(Object *, struct Error **), 1107 void (*set)(Object *, bool, struct Error **), 1108 struct Error **errp); 1109 1110 /** 1111 * object_child_foreach: 1112 * @obj: the object whose children will be navigated 1113 * @fn: the iterator function to be called 1114 * @opaque: an opaque value that will be passed to the iterator 1115 * 1116 * Call @fn passing each child of @obj and @opaque to it, until @fn returns 1117 * non-zero. 1118 * 1119 * Returns: The last value returned by @fn, or 0 if there is no child. 1120 */ 1121 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque), 1122 void *opaque); 1123 1124 /** 1125 * container_get: 1126 * @root: root of the #path, e.g., object_get_root() 1127 * @path: path to the container 1128 * 1129 * Return a container object whose path is @path. Create more containers 1130 * along the path if necessary. 1131 * 1132 * Returns: the container object. 1133 */ 1134 Object *container_get(Object *root, const char *path); 1135 1136 1137 #endif 1138