xref: /openbmc/qemu/include/qom/object.h (revision 13b10e05)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include <glib.h>
18 #include <stdint.h>
19 #include <stdbool.h>
20 #include "qemu/queue.h"
21 
22 struct Visitor;
23 struct Error;
24 
25 struct TypeImpl;
26 typedef struct TypeImpl *Type;
27 
28 typedef struct ObjectClass ObjectClass;
29 typedef struct Object Object;
30 
31 typedef struct TypeInfo TypeInfo;
32 
33 typedef struct InterfaceClass InterfaceClass;
34 typedef struct InterfaceInfo InterfaceInfo;
35 
36 #define TYPE_OBJECT "object"
37 
38 /**
39  * SECTION:object.h
40  * @title:Base Object Type System
41  * @short_description: interfaces for creating new types and objects
42  *
43  * The QEMU Object Model provides a framework for registering user creatable
44  * types and instantiating objects from those types.  QOM provides the following
45  * features:
46  *
47  *  - System for dynamically registering types
48  *  - Support for single-inheritance of types
49  *  - Multiple inheritance of stateless interfaces
50  *
51  * <example>
52  *   <title>Creating a minimal type</title>
53  *   <programlisting>
54  * #include "qdev.h"
55  *
56  * #define TYPE_MY_DEVICE "my-device"
57  *
58  * // No new virtual functions: we can reuse the typedef for the
59  * // superclass.
60  * typedef DeviceClass MyDeviceClass;
61  * typedef struct MyDevice
62  * {
63  *     DeviceState parent;
64  *
65  *     int reg0, reg1, reg2;
66  * } MyDevice;
67  *
68  * static const TypeInfo my_device_info = {
69  *     .name = TYPE_MY_DEVICE,
70  *     .parent = TYPE_DEVICE,
71  *     .instance_size = sizeof(MyDevice),
72  * };
73  *
74  * static void my_device_register_types(void)
75  * {
76  *     type_register_static(&my_device_info);
77  * }
78  *
79  * type_init(my_device_register_types)
80  *   </programlisting>
81  * </example>
82  *
83  * In the above example, we create a simple type that is described by #TypeInfo.
84  * #TypeInfo describes information about the type including what it inherits
85  * from, the instance and class size, and constructor/destructor hooks.
86  *
87  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
88  * are instantiated dynamically but there is only ever one instance for any
89  * given type.  The #ObjectClass typically holds a table of function pointers
90  * for the virtual methods implemented by this type.
91  *
92  * Using object_new(), a new #Object derivative will be instantiated.  You can
93  * cast an #Object to a subclass (or base-class) type using
94  * object_dynamic_cast().  You typically want to define macro wrappers around
95  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
96  * specific type:
97  *
98  * <example>
99  *   <title>Typecasting macros</title>
100  *   <programlisting>
101  *    #define MY_DEVICE_GET_CLASS(obj) \
102  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
103  *    #define MY_DEVICE_CLASS(klass) \
104  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
105  *    #define MY_DEVICE(obj) \
106  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
107  *   </programlisting>
108  * </example>
109  *
110  * # Class Initialization #
111  *
112  * Before an object is initialized, the class for the object must be
113  * initialized.  There is only one class object for all instance objects
114  * that is created lazily.
115  *
116  * Classes are initialized by first initializing any parent classes (if
117  * necessary).  After the parent class object has initialized, it will be
118  * copied into the current class object and any additional storage in the
119  * class object is zero filled.
120  *
121  * The effect of this is that classes automatically inherit any virtual
122  * function pointers that the parent class has already initialized.  All
123  * other fields will be zero filled.
124  *
125  * Once all of the parent classes have been initialized, #TypeInfo::class_init
126  * is called to let the class being instantiated provide default initialize for
127  * its virtual functions.  Here is how the above example might be modified
128  * to introduce an overridden virtual function:
129  *
130  * <example>
131  *   <title>Overriding a virtual function</title>
132  *   <programlisting>
133  * #include "qdev.h"
134  *
135  * void my_device_class_init(ObjectClass *klass, void *class_data)
136  * {
137  *     DeviceClass *dc = DEVICE_CLASS(klass);
138  *     dc->reset = my_device_reset;
139  * }
140  *
141  * static const TypeInfo my_device_info = {
142  *     .name = TYPE_MY_DEVICE,
143  *     .parent = TYPE_DEVICE,
144  *     .instance_size = sizeof(MyDevice),
145  *     .class_init = my_device_class_init,
146  * };
147  *   </programlisting>
148  * </example>
149  *
150  * Introducing new virtual methods requires a class to define its own
151  * struct and to add a .class_size member to the #TypeInfo.  Each method
152  * will also have a wrapper function to call it easily:
153  *
154  * <example>
155  *   <title>Defining an abstract class</title>
156  *   <programlisting>
157  * #include "qdev.h"
158  *
159  * typedef struct MyDeviceClass
160  * {
161  *     DeviceClass parent;
162  *
163  *     void (*frobnicate) (MyDevice *obj);
164  * } MyDeviceClass;
165  *
166  * static const TypeInfo my_device_info = {
167  *     .name = TYPE_MY_DEVICE,
168  *     .parent = TYPE_DEVICE,
169  *     .instance_size = sizeof(MyDevice),
170  *     .abstract = true, // or set a default in my_device_class_init
171  *     .class_size = sizeof(MyDeviceClass),
172  * };
173  *
174  * void my_device_frobnicate(MyDevice *obj)
175  * {
176  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
177  *
178  *     klass->frobnicate(obj);
179  * }
180  *   </programlisting>
181  * </example>
182  *
183  * # Interfaces #
184  *
185  * Interfaces allow a limited form of multiple inheritance.  Instances are
186  * similar to normal types except for the fact that are only defined by
187  * their classes and never carry any state.  You can dynamically cast an object
188  * to one of its #Interface types and vice versa.
189  *
190  * # Methods #
191  *
192  * A <emphasis>method</emphasis> is a function within the namespace scope of
193  * a class. It usually operates on the object instance by passing it as a
194  * strongly-typed first argument.
195  * If it does not operate on an object instance, it is dubbed
196  * <emphasis>class method</emphasis>.
197  *
198  * Methods cannot be overloaded. That is, the #ObjectClass and method name
199  * uniquely identity the function to be called; the signature does not vary
200  * except for trailing varargs.
201  *
202  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
203  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
204  * via OBJECT_GET_CLASS() accessing the overridden function.
205  * The original function is not automatically invoked. It is the responsability
206  * of the overriding class to determine whether and when to invoke the method
207  * being overridden.
208  *
209  * To invoke the method being overridden, the preferred solution is to store
210  * the original value in the overriding class before overriding the method.
211  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
212  * respectively; this frees the overriding class from hardcoding its parent
213  * class, which someone might choose to change at some point.
214  *
215  * <example>
216  *   <title>Overriding a virtual method</title>
217  *   <programlisting>
218  * typedef struct MyState MyState;
219  *
220  * typedef void (*MyDoSomething)(MyState *obj);
221  *
222  * typedef struct MyClass {
223  *     ObjectClass parent_class;
224  *
225  *     MyDoSomething do_something;
226  * } MyClass;
227  *
228  * static void my_do_something(MyState *obj)
229  * {
230  *     // do something
231  * }
232  *
233  * static void my_class_init(ObjectClass *oc, void *data)
234  * {
235  *     MyClass *mc = MY_CLASS(oc);
236  *
237  *     mc->do_something = my_do_something;
238  * }
239  *
240  * static const TypeInfo my_type_info = {
241  *     .name = TYPE_MY,
242  *     .parent = TYPE_OBJECT,
243  *     .instance_size = sizeof(MyState),
244  *     .class_size = sizeof(MyClass),
245  *     .class_init = my_class_init,
246  * };
247  *
248  * typedef struct DerivedClass {
249  *     MyClass parent_class;
250  *
251  *     MyDoSomething parent_do_something;
252  * } MyClass;
253  *
254  * static void derived_do_something(MyState *obj)
255  * {
256  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
257  *
258  *     // do something here
259  *     dc->parent_do_something(obj);
260  *     // do something else here
261  * }
262  *
263  * static void derived_class_init(ObjectClass *oc, void *data)
264  * {
265  *     MyClass *mc = MY_CLASS(oc);
266  *     DerivedClass *dc = DERIVED_CLASS(oc);
267  *
268  *     dc->parent_do_something = mc->do_something;
269  *     mc->do_something = derived_do_something;
270  * }
271  *
272  * static const TypeInfo derived_type_info = {
273  *     .name = TYPE_DERIVED,
274  *     .parent = TYPE_MY,
275  *     .class_size = sizeof(DerivedClass),
276  *     .class_init = my_class_init,
277  * };
278  *   </programlisting>
279  * </example>
280  *
281  * Alternatively, object_class_by_name() can be used to obtain the class and
282  * its non-overridden methods for a specific type. This would correspond to
283  * |[ MyClass::method(...) ]| in C++.
284  *
285  * The first example of such a QOM method was #CPUClass.reset,
286  * another example is #DeviceClass.realize.
287  */
288 
289 
290 /**
291  * ObjectPropertyAccessor:
292  * @obj: the object that owns the property
293  * @v: the visitor that contains the property data
294  * @opaque: the object property opaque
295  * @name: the name of the property
296  * @errp: a pointer to an Error that is filled if getting/setting fails.
297  *
298  * Called when trying to get/set a property.
299  */
300 typedef void (ObjectPropertyAccessor)(Object *obj,
301                                       struct Visitor *v,
302                                       void *opaque,
303                                       const char *name,
304                                       struct Error **errp);
305 
306 /**
307  * ObjectPropertyRelease:
308  * @obj: the object that owns the property
309  * @name: the name of the property
310  * @opaque: the opaque registered with the property
311  *
312  * Called when a property is removed from a object.
313  */
314 typedef void (ObjectPropertyRelease)(Object *obj,
315                                      const char *name,
316                                      void *opaque);
317 
318 typedef struct ObjectProperty
319 {
320     gchar *name;
321     gchar *type;
322     ObjectPropertyAccessor *get;
323     ObjectPropertyAccessor *set;
324     ObjectPropertyRelease *release;
325     void *opaque;
326 
327     QTAILQ_ENTRY(ObjectProperty) node;
328 } ObjectProperty;
329 
330 /**
331  * ObjectUnparent:
332  * @obj: the object that is being removed from the composition tree
333  *
334  * Called when an object is being removed from the QOM composition tree.
335  * The function should remove any backlinks from children objects to @obj.
336  */
337 typedef void (ObjectUnparent)(Object *obj);
338 
339 /**
340  * ObjectFree:
341  * @obj: the object being freed
342  *
343  * Called when an object's last reference is removed.
344  */
345 typedef void (ObjectFree)(void *obj);
346 
347 /**
348  * ObjectClass:
349  *
350  * The base for all classes.  The only thing that #ObjectClass contains is an
351  * integer type handle.
352  */
353 struct ObjectClass
354 {
355     /*< private >*/
356     Type type;
357     GSList *interfaces;
358 
359     ObjectUnparent *unparent;
360 };
361 
362 /**
363  * Object:
364  *
365  * The base for all objects.  The first member of this object is a pointer to
366  * a #ObjectClass.  Since C guarantees that the first member of a structure
367  * always begins at byte 0 of that structure, as long as any sub-object places
368  * its parent as the first member, we can cast directly to a #Object.
369  *
370  * As a result, #Object contains a reference to the objects type as its
371  * first member.  This allows identification of the real type of the object at
372  * run time.
373  *
374  * #Object also contains a list of #Interfaces that this object
375  * implements.
376  */
377 struct Object
378 {
379     /*< private >*/
380     ObjectClass *class;
381     ObjectFree *free;
382     QTAILQ_HEAD(, ObjectProperty) properties;
383     uint32_t ref;
384     Object *parent;
385 };
386 
387 /**
388  * TypeInfo:
389  * @name: The name of the type.
390  * @parent: The name of the parent type.
391  * @instance_size: The size of the object (derivative of #Object).  If
392  *   @instance_size is 0, then the size of the object will be the size of the
393  *   parent object.
394  * @instance_init: This function is called to initialize an object.  The parent
395  *   class will have already been initialized so the type is only responsible
396  *   for initializing its own members.
397  * @instance_finalize: This function is called during object destruction.  This
398  *   is called before the parent @instance_finalize function has been called.
399  *   An object should only free the members that are unique to its type in this
400  *   function.
401  * @abstract: If this field is true, then the class is considered abstract and
402  *   cannot be directly instantiated.
403  * @class_size: The size of the class object (derivative of #ObjectClass)
404  *   for this object.  If @class_size is 0, then the size of the class will be
405  *   assumed to be the size of the parent class.  This allows a type to avoid
406  *   implementing an explicit class type if they are not adding additional
407  *   virtual functions.
408  * @class_init: This function is called after all parent class initialization
409  *   has occurred to allow a class to set its default virtual method pointers.
410  *   This is also the function to use to override virtual methods from a parent
411  *   class.
412  * @class_base_init: This function is called for all base classes after all
413  *   parent class initialization has occurred, but before the class itself
414  *   is initialized.  This is the function to use to undo the effects of
415  *   memcpy from the parent class to the descendents.
416  * @class_finalize: This function is called during class destruction and is
417  *   meant to release and dynamic parameters allocated by @class_init.
418  * @class_data: Data to pass to the @class_init, @class_base_init and
419  *   @class_finalize functions.  This can be useful when building dynamic
420  *   classes.
421  * @interfaces: The list of interfaces associated with this type.  This
422  *   should point to a static array that's terminated with a zero filled
423  *   element.
424  */
425 struct TypeInfo
426 {
427     const char *name;
428     const char *parent;
429 
430     size_t instance_size;
431     void (*instance_init)(Object *obj);
432     void (*instance_finalize)(Object *obj);
433 
434     bool abstract;
435     size_t class_size;
436 
437     void (*class_init)(ObjectClass *klass, void *data);
438     void (*class_base_init)(ObjectClass *klass, void *data);
439     void (*class_finalize)(ObjectClass *klass, void *data);
440     void *class_data;
441 
442     InterfaceInfo *interfaces;
443 };
444 
445 /**
446  * OBJECT:
447  * @obj: A derivative of #Object
448  *
449  * Converts an object to a #Object.  Since all objects are #Objects,
450  * this function will always succeed.
451  */
452 #define OBJECT(obj) \
453     ((Object *)(obj))
454 
455 /**
456  * OBJECT_CLASS:
457  * @class: A derivative of #ObjectClass.
458  *
459  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
460  * this function will always succeed.
461  */
462 #define OBJECT_CLASS(class) \
463     ((ObjectClass *)(class))
464 
465 /**
466  * OBJECT_CHECK:
467  * @type: The C type to use for the return value.
468  * @obj: A derivative of @type to cast.
469  * @name: The QOM typename of @type
470  *
471  * A type safe version of @object_dynamic_cast_assert.  Typically each class
472  * will define a macro based on this type to perform type safe dynamic_casts to
473  * this object type.
474  *
475  * If an invalid object is passed to this function, a run time assert will be
476  * generated.
477  */
478 #define OBJECT_CHECK(type, obj, name) \
479     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name)))
480 
481 /**
482  * OBJECT_CLASS_CHECK:
483  * @class: The C type to use for the return value.
484  * @obj: A derivative of @type to cast.
485  * @name: the QOM typename of @class.
486  *
487  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
488  * typically wrapped by each type to perform type safe casts of a class to a
489  * specific class type.
490  */
491 #define OBJECT_CLASS_CHECK(class, obj, name) \
492     ((class *)object_class_dynamic_cast_assert(OBJECT_CLASS(obj), (name)))
493 
494 /**
495  * OBJECT_GET_CLASS:
496  * @class: The C type to use for the return value.
497  * @obj: The object to obtain the class for.
498  * @name: The QOM typename of @obj.
499  *
500  * This function will return a specific class for a given object.  Its generally
501  * used by each type to provide a type safe macro to get a specific class type
502  * from an object.
503  */
504 #define OBJECT_GET_CLASS(class, obj, name) \
505     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
506 
507 /**
508  * InterfaceInfo:
509  * @type: The name of the interface.
510  *
511  * The information associated with an interface.
512  */
513 struct InterfaceInfo {
514     const char *type;
515 };
516 
517 /**
518  * InterfaceClass:
519  * @parent_class: the base class
520  *
521  * The class for all interfaces.  Subclasses of this class should only add
522  * virtual methods.
523  */
524 struct InterfaceClass
525 {
526     ObjectClass parent_class;
527     /*< private >*/
528     ObjectClass *concrete_class;
529 };
530 
531 #define TYPE_INTERFACE "interface"
532 
533 /**
534  * INTERFACE_CLASS:
535  * @klass: class to cast from
536  * Returns: An #InterfaceClass or raise an error if cast is invalid
537  */
538 #define INTERFACE_CLASS(klass) \
539     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
540 
541 /**
542  * INTERFACE_CHECK:
543  * @interface: the type to return
544  * @obj: the object to convert to an interface
545  * @name: the interface type name
546  *
547  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
548  */
549 #define INTERFACE_CHECK(interface, obj, name) \
550     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name)))
551 
552 /**
553  * object_new:
554  * @typename: The name of the type of the object to instantiate.
555  *
556  * This function will initialize a new object using heap allocated memory.  This
557  * function should be paired with object_delete() to free the resources
558  * associated with the object.
559  *
560  * Returns: The newly allocated and instantiated object.
561  */
562 Object *object_new(const char *typename);
563 
564 /**
565  * object_new_with_type:
566  * @type: The type of the object to instantiate.
567  *
568  * This function will initialize a new object using heap allocated memory.  This
569  * function should be paired with object_delete() to free the resources
570  * associated with the object.
571  *
572  * Returns: The newly allocated and instantiated object.
573  */
574 Object *object_new_with_type(Type type);
575 
576 /**
577  * object_delete:
578  * @obj: The object to free.
579  *
580  * Finalize an object and then free the memory associated with it.  This should
581  * be paired with object_new() to free the resources associated with an object.
582  */
583 void object_delete(Object *obj);
584 
585 /**
586  * object_initialize_with_type:
587  * @obj: A pointer to the memory to be used for the object.
588  * @type: The type of the object to instantiate.
589  *
590  * This function will initialize an object.  The memory for the object should
591  * have already been allocated.
592  */
593 void object_initialize_with_type(void *data, Type type);
594 
595 /**
596  * object_initialize:
597  * @obj: A pointer to the memory to be used for the object.
598  * @typename: The name of the type of the object to instantiate.
599  *
600  * This function will initialize an object.  The memory for the object should
601  * have already been allocated.
602  */
603 void object_initialize(void *obj, const char *typename);
604 
605 /**
606  * object_dynamic_cast:
607  * @obj: The object to cast.
608  * @typename: The @typename to cast to.
609  *
610  * This function will determine if @obj is-a @typename.  @obj can refer to an
611  * object or an interface associated with an object.
612  *
613  * Returns: This function returns @obj on success or #NULL on failure.
614  */
615 Object *object_dynamic_cast(Object *obj, const char *typename);
616 
617 /**
618  * object_dynamic_cast_assert:
619  *
620  * See object_dynamic_cast() for a description of the parameters of this
621  * function.  The only difference in behavior is that this function asserts
622  * instead of returning #NULL on failure.
623  */
624 Object *object_dynamic_cast_assert(Object *obj, const char *typename);
625 
626 /**
627  * object_get_class:
628  * @obj: A derivative of #Object
629  *
630  * Returns: The #ObjectClass of the type associated with @obj.
631  */
632 ObjectClass *object_get_class(Object *obj);
633 
634 /**
635  * object_get_typename:
636  * @obj: A derivative of #Object.
637  *
638  * Returns: The QOM typename of @obj.
639  */
640 const char *object_get_typename(Object *obj);
641 
642 /**
643  * type_register_static:
644  * @info: The #TypeInfo of the new type.
645  *
646  * @info and all of the strings it points to should exist for the life time
647  * that the type is registered.
648  *
649  * Returns: 0 on failure, the new #Type on success.
650  */
651 Type type_register_static(const TypeInfo *info);
652 
653 /**
654  * type_register:
655  * @info: The #TypeInfo of the new type
656  *
657  * Unlike type_register_static(), this call does not require @info or its
658  * string members to continue to exist after the call returns.
659  *
660  * Returns: 0 on failure, the new #Type on success.
661  */
662 Type type_register(const TypeInfo *info);
663 
664 /**
665  * object_class_dynamic_cast_assert:
666  * @klass: The #ObjectClass to attempt to cast.
667  * @typename: The QOM typename of the class to cast to.
668  *
669  * Returns: This function always returns @klass and asserts on failure.
670  */
671 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
672                                               const char *typename);
673 
674 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
675                                        const char *typename);
676 
677 /**
678  * object_class_get_parent:
679  * @klass: The class to obtain the parent for.
680  *
681  * Returns: The parent for @klass or %NULL if none.
682  */
683 ObjectClass *object_class_get_parent(ObjectClass *klass);
684 
685 /**
686  * object_class_get_name:
687  * @klass: The class to obtain the QOM typename for.
688  *
689  * Returns: The QOM typename for @klass.
690  */
691 const char *object_class_get_name(ObjectClass *klass);
692 
693 /**
694  * object_class_is_abstract:
695  * @klass: The class to obtain the abstractness for.
696  *
697  * Returns: %true if @klass is abstract, %false otherwise.
698  */
699 bool object_class_is_abstract(ObjectClass *klass);
700 
701 /**
702  * object_class_by_name:
703  * @typename: The QOM typename to obtain the class for.
704  *
705  * Returns: The class for @typename or %NULL if not found.
706  */
707 ObjectClass *object_class_by_name(const char *typename);
708 
709 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
710                           const char *implements_type, bool include_abstract,
711                           void *opaque);
712 
713 /**
714  * object_class_get_list:
715  * @implements_type: The type to filter for, including its derivatives.
716  * @include_abstract: Whether to include abstract classes.
717  *
718  * Returns: A singly-linked list of the classes in reverse hashtable order.
719  */
720 GSList *object_class_get_list(const char *implements_type,
721                               bool include_abstract);
722 
723 /**
724  * object_ref:
725  * @obj: the object
726  *
727  * Increase the reference count of a object.  A object cannot be freed as long
728  * as its reference count is greater than zero.
729  */
730 void object_ref(Object *obj);
731 
732 /**
733  * qdef_unref:
734  * @obj: the object
735  *
736  * Decrease the reference count of a object.  A object cannot be freed as long
737  * as its reference count is greater than zero.
738  */
739 void object_unref(Object *obj);
740 
741 /**
742  * object_property_add:
743  * @obj: the object to add a property to
744  * @name: the name of the property.  This can contain any character except for
745  *  a forward slash.  In general, you should use hyphens '-' instead of
746  *  underscores '_' when naming properties.
747  * @type: the type name of the property.  This namespace is pretty loosely
748  *   defined.  Sub namespaces are constructed by using a prefix and then
749  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
750  *   'link' namespace would be 'link<virtio-net-pci>'.
751  * @get: The getter to be called to read a property.  If this is NULL, then
752  *   the property cannot be read.
753  * @set: the setter to be called to write a property.  If this is NULL,
754  *   then the property cannot be written.
755  * @release: called when the property is removed from the object.  This is
756  *   meant to allow a property to free its opaque upon object
757  *   destruction.  This may be NULL.
758  * @opaque: an opaque pointer to pass to the callbacks for the property
759  * @errp: returns an error if this function fails
760  */
761 void object_property_add(Object *obj, const char *name, const char *type,
762                          ObjectPropertyAccessor *get,
763                          ObjectPropertyAccessor *set,
764                          ObjectPropertyRelease *release,
765                          void *opaque, struct Error **errp);
766 
767 void object_property_del(Object *obj, const char *name, struct Error **errp);
768 
769 /**
770  * object_property_find:
771  * @obj: the object
772  * @name: the name of the property
773  * @errp: returns an error if this function fails
774  *
775  * Look up a property for an object and return its #ObjectProperty if found.
776  */
777 ObjectProperty *object_property_find(Object *obj, const char *name,
778                                      struct Error **errp);
779 
780 void object_unparent(Object *obj);
781 
782 /**
783  * object_property_get:
784  * @obj: the object
785  * @v: the visitor that will receive the property value.  This should be an
786  *   Output visitor and the data will be written with @name as the name.
787  * @name: the name of the property
788  * @errp: returns an error if this function fails
789  *
790  * Reads a property from a object.
791  */
792 void object_property_get(Object *obj, struct Visitor *v, const char *name,
793                          struct Error **errp);
794 
795 /**
796  * object_property_set_str:
797  * @value: the value to be written to the property
798  * @name: the name of the property
799  * @errp: returns an error if this function fails
800  *
801  * Writes a string value to a property.
802  */
803 void object_property_set_str(Object *obj, const char *value,
804                              const char *name, struct Error **errp);
805 
806 /**
807  * object_property_get_str:
808  * @obj: the object
809  * @name: the name of the property
810  * @errp: returns an error if this function fails
811  *
812  * Returns: the value of the property, converted to a C string, or NULL if
813  * an error occurs (including when the property value is not a string).
814  * The caller should free the string.
815  */
816 char *object_property_get_str(Object *obj, const char *name,
817                               struct Error **errp);
818 
819 /**
820  * object_property_set_link:
821  * @value: the value to be written to the property
822  * @name: the name of the property
823  * @errp: returns an error if this function fails
824  *
825  * Writes an object's canonical path to a property.
826  */
827 void object_property_set_link(Object *obj, Object *value,
828                               const char *name, struct Error **errp);
829 
830 /**
831  * object_property_get_link:
832  * @obj: the object
833  * @name: the name of the property
834  * @errp: returns an error if this function fails
835  *
836  * Returns: the value of the property, resolved from a path to an Object,
837  * or NULL if an error occurs (including when the property value is not a
838  * string or not a valid object path).
839  */
840 Object *object_property_get_link(Object *obj, const char *name,
841                                  struct Error **errp);
842 
843 /**
844  * object_property_set_bool:
845  * @value: the value to be written to the property
846  * @name: the name of the property
847  * @errp: returns an error if this function fails
848  *
849  * Writes a bool value to a property.
850  */
851 void object_property_set_bool(Object *obj, bool value,
852                               const char *name, struct Error **errp);
853 
854 /**
855  * object_property_get_bool:
856  * @obj: the object
857  * @name: the name of the property
858  * @errp: returns an error if this function fails
859  *
860  * Returns: the value of the property, converted to a boolean, or NULL if
861  * an error occurs (including when the property value is not a bool).
862  */
863 bool object_property_get_bool(Object *obj, const char *name,
864                               struct Error **errp);
865 
866 /**
867  * object_property_set_int:
868  * @value: the value to be written to the property
869  * @name: the name of the property
870  * @errp: returns an error if this function fails
871  *
872  * Writes an integer value to a property.
873  */
874 void object_property_set_int(Object *obj, int64_t value,
875                              const char *name, struct Error **errp);
876 
877 /**
878  * object_property_get_int:
879  * @obj: the object
880  * @name: the name of the property
881  * @errp: returns an error if this function fails
882  *
883  * Returns: the value of the property, converted to an integer, or NULL if
884  * an error occurs (including when the property value is not an integer).
885  */
886 int64_t object_property_get_int(Object *obj, const char *name,
887                                 struct Error **errp);
888 
889 /**
890  * object_property_set:
891  * @obj: the object
892  * @v: the visitor that will be used to write the property value.  This should
893  *   be an Input visitor and the data will be first read with @name as the
894  *   name and then written as the property value.
895  * @name: the name of the property
896  * @errp: returns an error if this function fails
897  *
898  * Writes a property to a object.
899  */
900 void object_property_set(Object *obj, struct Visitor *v, const char *name,
901                          struct Error **errp);
902 
903 /**
904  * object_property_parse:
905  * @obj: the object
906  * @string: the string that will be used to parse the property value.
907  * @name: the name of the property
908  * @errp: returns an error if this function fails
909  *
910  * Parses a string and writes the result into a property of an object.
911  */
912 void object_property_parse(Object *obj, const char *string,
913                            const char *name, struct Error **errp);
914 
915 /**
916  * object_property_print:
917  * @obj: the object
918  * @name: the name of the property
919  * @errp: returns an error if this function fails
920  *
921  * Returns a string representation of the value of the property.  The
922  * caller shall free the string.
923  */
924 char *object_property_print(Object *obj, const char *name,
925                             struct Error **errp);
926 
927 /**
928  * object_property_get_type:
929  * @obj: the object
930  * @name: the name of the property
931  * @errp: returns an error if this function fails
932  *
933  * Returns:  The type name of the property.
934  */
935 const char *object_property_get_type(Object *obj, const char *name,
936                                      struct Error **errp);
937 
938 /**
939  * object_get_root:
940  *
941  * Returns: the root object of the composition tree
942  */
943 Object *object_get_root(void);
944 
945 /**
946  * object_get_canonical_path:
947  *
948  * Returns: The canonical path for a object.  This is the path within the
949  * composition tree starting from the root.
950  */
951 gchar *object_get_canonical_path(Object *obj);
952 
953 /**
954  * object_resolve_path:
955  * @path: the path to resolve
956  * @ambiguous: returns true if the path resolution failed because of an
957  *   ambiguous match
958  *
959  * There are two types of supported paths--absolute paths and partial paths.
960  *
961  * Absolute paths are derived from the root object and can follow child<> or
962  * link<> properties.  Since they can follow link<> properties, they can be
963  * arbitrarily long.  Absolute paths look like absolute filenames and are
964  * prefixed with a leading slash.
965  *
966  * Partial paths look like relative filenames.  They do not begin with a
967  * prefix.  The matching rules for partial paths are subtle but designed to make
968  * specifying objects easy.  At each level of the composition tree, the partial
969  * path is matched as an absolute path.  The first match is not returned.  At
970  * least two matches are searched for.  A successful result is only returned if
971  * only one match is found.  If more than one match is found, a flag is
972  * returned to indicate that the match was ambiguous.
973  *
974  * Returns: The matched object or NULL on path lookup failure.
975  */
976 Object *object_resolve_path(const char *path, bool *ambiguous);
977 
978 /**
979  * object_resolve_path_type:
980  * @path: the path to resolve
981  * @typename: the type to look for.
982  * @ambiguous: returns true if the path resolution failed because of an
983  *   ambiguous match
984  *
985  * This is similar to object_resolve_path.  However, when looking for a
986  * partial path only matches that implement the given type are considered.
987  * This restricts the search and avoids spuriously flagging matches as
988  * ambiguous.
989  *
990  * For both partial and absolute paths, the return value goes through
991  * a dynamic cast to @typename.  This is important if either the link,
992  * or the typename itself are of interface types.
993  *
994  * Returns: The matched object or NULL on path lookup failure.
995  */
996 Object *object_resolve_path_type(const char *path, const char *typename,
997                                  bool *ambiguous);
998 
999 /**
1000  * object_resolve_path_component:
1001  * @parent: the object in which to resolve the path
1002  * @part: the component to resolve.
1003  *
1004  * This is similar to object_resolve_path with an absolute path, but it
1005  * only resolves one element (@part) and takes the others from @parent.
1006  *
1007  * Returns: The resolved object or NULL on path lookup failure.
1008  */
1009 Object *object_resolve_path_component(Object *parent, const gchar *part);
1010 
1011 /**
1012  * object_property_add_child:
1013  * @obj: the object to add a property to
1014  * @name: the name of the property
1015  * @child: the child object
1016  * @errp: if an error occurs, a pointer to an area to store the area
1017  *
1018  * Child properties form the composition tree.  All objects need to be a child
1019  * of another object.  Objects can only be a child of one object.
1020  *
1021  * There is no way for a child to determine what its parent is.  It is not
1022  * a bidirectional relationship.  This is by design.
1023  *
1024  * The value of a child property as a C string will be the child object's
1025  * canonical path. It can be retrieved using object_property_get_str().
1026  * The child object itself can be retrieved using object_property_get_link().
1027  */
1028 void object_property_add_child(Object *obj, const char *name,
1029                                Object *child, struct Error **errp);
1030 
1031 /**
1032  * object_property_add_link:
1033  * @obj: the object to add a property to
1034  * @name: the name of the property
1035  * @type: the qobj type of the link
1036  * @child: a pointer to where the link object reference is stored
1037  * @errp: if an error occurs, a pointer to an area to store the area
1038  *
1039  * Links establish relationships between objects.  Links are unidirectional
1040  * although two links can be combined to form a bidirectional relationship
1041  * between objects.
1042  *
1043  * Links form the graph in the object model.
1044  */
1045 void object_property_add_link(Object *obj, const char *name,
1046                               const char *type, Object **child,
1047                               struct Error **errp);
1048 
1049 /**
1050  * object_property_add_str:
1051  * @obj: the object to add a property to
1052  * @name: the name of the property
1053  * @get: the getter or NULL if the property is write-only.  This function must
1054  *   return a string to be freed by g_free().
1055  * @set: the setter or NULL if the property is read-only
1056  * @errp: if an error occurs, a pointer to an area to store the error
1057  *
1058  * Add a string property using getters/setters.  This function will add a
1059  * property of type 'string'.
1060  */
1061 void object_property_add_str(Object *obj, const char *name,
1062                              char *(*get)(Object *, struct Error **),
1063                              void (*set)(Object *, const char *, struct Error **),
1064                              struct Error **errp);
1065 
1066 /**
1067  * object_property_add_bool:
1068  * @obj: the object to add a property to
1069  * @name: the name of the property
1070  * @get: the getter or NULL if the property is write-only.
1071  * @set: the setter or NULL if the property is read-only
1072  * @errp: if an error occurs, a pointer to an area to store the error
1073  *
1074  * Add a bool property using getters/setters.  This function will add a
1075  * property of type 'bool'.
1076  */
1077 void object_property_add_bool(Object *obj, const char *name,
1078                               bool (*get)(Object *, struct Error **),
1079                               void (*set)(Object *, bool, struct Error **),
1080                               struct Error **errp);
1081 
1082 /**
1083  * object_child_foreach:
1084  * @obj: the object whose children will be navigated
1085  * @fn: the iterator function to be called
1086  * @opaque: an opaque value that will be passed to the iterator
1087  *
1088  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1089  * non-zero.
1090  *
1091  * Returns: The last value returned by @fn, or 0 if there is no child.
1092  */
1093 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1094                          void *opaque);
1095 
1096 /**
1097  * container_get:
1098  * @root: root of the #path, e.g., object_get_root()
1099  * @path: path to the container
1100  *
1101  * Return a container object whose path is @path.  Create more containers
1102  * along the path if necessary.
1103  *
1104  * Returns: the container object.
1105  */
1106 Object *container_get(Object *root, const char *path);
1107 
1108 
1109 #endif
1110