1 /* Interface definition for configurable Xtensa ISA support. 2 * 3 * Copyright (c) 2001-2013 Tensilica Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining 6 * a copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sublicense, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 17 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 18 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 19 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY 20 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 21 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 22 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 #ifndef XTENSA_LIBISA_H 26 #define XTENSA_LIBISA_H 27 28 #ifdef __cplusplus 29 extern "C" { 30 #endif 31 32 /* 33 * Version number: This is intended to help support code that works with 34 * versions of this library from multiple Xtensa releases. 35 */ 36 37 #define XTENSA_ISA_VERSION 7000 38 39 /* 40 * This file defines the interface to the Xtensa ISA library. This 41 * library contains most of the ISA-specific information for a 42 * particular Xtensa processor. For example, the set of valid 43 * instructions, their opcode encodings and operand fields are all 44 * included here. 45 * 46 * This interface basically defines a number of abstract data types. 47 * 48 * . an instruction buffer - for holding the raw instruction bits 49 * . ISA info - information about the ISA as a whole 50 * . instruction formats - instruction size and slot structure 51 * . opcodes - information about individual instructions 52 * . operands - information about register and immediate instruction operands 53 * . stateOperands - information about processor state instruction operands 54 * . interfaceOperands - information about interface instruction operands 55 * . register files - register file information 56 * . processor states - internal processor state information 57 * . system registers - "special registers" and "user registers" 58 * . interfaces - TIE interfaces that are external to the processor 59 * . functional units - TIE shared functions 60 * 61 * The interface defines a set of functions to access each data type. 62 * With the exception of the instruction buffer, the internal 63 * representations of the data structures are hidden. All accesses must 64 * be made through the functions defined here. 65 */ 66 67 typedef struct xtensa_isa_opaque { int unused; } *xtensa_isa; 68 69 70 /* 71 * Most of the Xtensa ISA entities (e.g., opcodes, regfiles, etc.) are 72 * represented here using sequential integers beginning with 0. The 73 * specific values are only fixed for a particular instantiation of an 74 * xtensa_isa structure, so these values should only be used 75 * internally. 76 */ 77 78 typedef int xtensa_opcode; 79 typedef int xtensa_format; 80 typedef int xtensa_regfile; 81 typedef int xtensa_state; 82 typedef int xtensa_sysreg; 83 typedef int xtensa_interface; 84 typedef int xtensa_funcUnit; 85 86 87 /* Define a unique value for undefined items. */ 88 89 #define XTENSA_UNDEFINED -1 90 91 92 /* 93 * Overview of using this interface to decode/encode instructions: 94 * 95 * Each Xtensa instruction is associated with a particular instruction 96 * format, where the format defines a fixed number of slots for 97 * operations. The formats for the core Xtensa ISA have only one slot, 98 * but FLIX instructions may have multiple slots. Within each slot, 99 * there is a single opcode and some number of associated operands. 100 * 101 * The encoding and decoding functions operate on instruction buffers, 102 * not on the raw bytes of the instructions. The same instruction 103 * buffer data structure is used for both entire instructions and 104 * individual slots in those instructions -- the contents of a slot need 105 * to be extracted from or inserted into the buffer for the instruction 106 * as a whole. 107 * 108 * Decoding an instruction involves first finding the format, which 109 * identifies the number of slots, and then decoding each slot 110 * separately. A slot is decoded by finding the opcode and then using 111 * the opcode to determine how many operands there are. For example: 112 * 113 * xtensa_insnbuf_from_chars 114 * xtensa_format_decode 115 * for each slot { 116 * xtensa_format_get_slot 117 * xtensa_opcode_decode 118 * for each operand { 119 * xtensa_operand_get_field 120 * xtensa_operand_decode 121 * } 122 * } 123 * 124 * Encoding an instruction is roughly the same procedure in reverse: 125 * 126 * xtensa_format_encode 127 * for each slot { 128 * xtensa_opcode_encode 129 * for each operand { 130 * xtensa_operand_encode 131 * xtensa_operand_set_field 132 * } 133 * xtensa_format_set_slot 134 * } 135 * xtensa_insnbuf_to_chars 136 */ 137 138 139 /* Error handling. */ 140 141 /* 142 * Error codes. The code for the most recent error condition can be 143 * retrieved with the "errno" function. For any result other than 144 * xtensa_isa_ok, an error message containing additional information 145 * about the problem can be retrieved using the "error_msg" function. 146 * The error messages are stored in an internal buffer, which should 147 * not be freed and may be overwritten by subsequent operations. 148 */ 149 150 typedef enum xtensa_isa_status_enum { 151 xtensa_isa_ok = 0, 152 xtensa_isa_bad_format, 153 xtensa_isa_bad_slot, 154 xtensa_isa_bad_opcode, 155 xtensa_isa_bad_operand, 156 xtensa_isa_bad_field, 157 xtensa_isa_bad_iclass, 158 xtensa_isa_bad_regfile, 159 xtensa_isa_bad_sysreg, 160 xtensa_isa_bad_state, 161 xtensa_isa_bad_interface, 162 xtensa_isa_bad_funcUnit, 163 xtensa_isa_wrong_slot, 164 xtensa_isa_no_field, 165 xtensa_isa_out_of_memory, 166 xtensa_isa_buffer_overflow, 167 xtensa_isa_internal_error, 168 xtensa_isa_bad_value 169 } xtensa_isa_status; 170 171 xtensa_isa_status xtensa_isa_errno(xtensa_isa isa); 172 173 char *xtensa_isa_error_msg(xtensa_isa isa); 174 175 176 177 /* Instruction buffers. */ 178 179 typedef uint32_t xtensa_insnbuf_word; 180 typedef xtensa_insnbuf_word *xtensa_insnbuf; 181 182 183 /* Get the size in "insnbuf_words" of the xtensa_insnbuf array. */ 184 185 int xtensa_insnbuf_size(xtensa_isa isa); 186 187 188 /* Allocate an xtensa_insnbuf of the right size. */ 189 190 xtensa_insnbuf xtensa_insnbuf_alloc(xtensa_isa isa); 191 192 193 /* Release an xtensa_insnbuf. */ 194 195 void xtensa_insnbuf_free(xtensa_isa isa, xtensa_insnbuf buf); 196 197 198 /* 199 * Conversion between raw memory (char arrays) and our internal 200 * instruction representation. This is complicated by the Xtensa ISA's 201 * variable instruction lengths. When converting to chars, the buffer 202 * must contain a valid instruction so we know how many bytes to copy; 203 * thus, the "to_chars" function returns the number of bytes copied or 204 * XTENSA_UNDEFINED on error. The "from_chars" function first reads the 205 * minimal number of bytes required to decode the instruction length and 206 * then proceeds to copy the entire instruction into the buffer; if the 207 * memory does not contain a valid instruction, it copies the maximum 208 * number of bytes required for the longest Xtensa instruction. The 209 * "num_chars" argument may be used to limit the number of bytes that 210 * can be read or written. Otherwise, if "num_chars" is zero, the 211 * functions may read or write past the end of the code. 212 */ 213 214 int xtensa_insnbuf_to_chars(xtensa_isa isa, const xtensa_insnbuf insn, 215 unsigned char *cp, int num_chars); 216 217 void xtensa_insnbuf_from_chars(xtensa_isa isa, xtensa_insnbuf insn, 218 const unsigned char *cp, int num_chars); 219 220 221 222 /* ISA information. */ 223 224 /* Initialize the ISA information. */ 225 226 xtensa_isa xtensa_isa_init(void *xtensa_modules, xtensa_isa_status *errno_p, 227 char **error_msg_p); 228 229 230 /* Deallocate an xtensa_isa structure. */ 231 232 void xtensa_isa_free(xtensa_isa isa); 233 234 235 /* Get the maximum instruction size in bytes. */ 236 237 int xtensa_isa_maxlength(xtensa_isa isa); 238 239 240 /* 241 * Decode the length in bytes of an instruction in raw memory (not an 242 * insnbuf). This function reads only the minimal number of bytes 243 * required to decode the instruction length. Returns 244 * XTENSA_UNDEFINED on error. 245 */ 246 247 int xtensa_isa_length_from_chars(xtensa_isa isa, const unsigned char *cp); 248 249 250 /* 251 * Get the number of stages in the processor's pipeline. The pipeline 252 * stage values returned by other functions in this library will range 253 * from 0 to N-1, where N is the value returned by this function. 254 * Note that the stage numbers used here may not correspond to the 255 * actual processor hardware, e.g., the hardware may have additional 256 * stages before stage 0. Returns XTENSA_UNDEFINED on error. 257 */ 258 259 int xtensa_isa_num_pipe_stages(xtensa_isa isa); 260 261 262 /* Get the number of various entities that are defined for this processor. */ 263 264 int xtensa_isa_num_formats(xtensa_isa isa); 265 266 int xtensa_isa_num_opcodes(xtensa_isa isa); 267 268 int xtensa_isa_num_regfiles(xtensa_isa isa); 269 270 int xtensa_isa_num_states(xtensa_isa isa); 271 272 int xtensa_isa_num_sysregs(xtensa_isa isa); 273 274 int xtensa_isa_num_interfaces(xtensa_isa isa); 275 276 int xtensa_isa_num_funcUnits(xtensa_isa isa); 277 278 279 280 /* Instruction formats. */ 281 282 /* Get the name of a format. Returns null on error. */ 283 284 const char *xtensa_format_name(xtensa_isa isa, xtensa_format fmt); 285 286 287 /* 288 * Given a format name, return the format number. Returns 289 * XTENSA_UNDEFINED if the name is not a valid format. 290 */ 291 292 xtensa_format xtensa_format_lookup(xtensa_isa isa, const char *fmtname); 293 294 295 /* 296 * Decode the instruction format from a binary instruction buffer. 297 * Returns XTENSA_UNDEFINED if the format is not recognized. 298 */ 299 300 xtensa_format xtensa_format_decode(xtensa_isa isa, const xtensa_insnbuf insn); 301 302 303 /* 304 * Set the instruction format field(s) in a binary instruction buffer. 305 * All the other fields are set to zero. Returns non-zero on error. 306 */ 307 308 int xtensa_format_encode(xtensa_isa isa, xtensa_format fmt, 309 xtensa_insnbuf insn); 310 311 312 /* 313 * Find the length (in bytes) of an instruction. Returns 314 * XTENSA_UNDEFINED on error. 315 */ 316 317 int xtensa_format_length(xtensa_isa isa, xtensa_format fmt); 318 319 320 /* 321 * Get the number of slots in an instruction. Returns XTENSA_UNDEFINED 322 * on error. 323 */ 324 325 int xtensa_format_num_slots(xtensa_isa isa, xtensa_format fmt); 326 327 328 /* 329 * Get the opcode for a no-op in a particular slot. 330 * Returns XTENSA_UNDEFINED on error. 331 */ 332 333 xtensa_opcode xtensa_format_slot_nop_opcode(xtensa_isa isa, xtensa_format fmt, 334 int slot); 335 336 337 /* 338 * Get the bits for a specified slot out of an insnbuf for the 339 * instruction as a whole and put them into an insnbuf for that one 340 * slot, and do the opposite to set a slot. Return non-zero on error. 341 */ 342 343 int xtensa_format_get_slot(xtensa_isa isa, xtensa_format fmt, int slot, 344 const xtensa_insnbuf insn, xtensa_insnbuf slotbuf); 345 346 int xtensa_format_set_slot(xtensa_isa isa, xtensa_format fmt, int slot, 347 xtensa_insnbuf insn, const xtensa_insnbuf slotbuf); 348 349 350 351 /* Opcode information. */ 352 353 /* 354 * Translate a mnemonic name to an opcode. Returns XTENSA_UNDEFINED if 355 * the name is not a valid opcode mnemonic. 356 */ 357 358 xtensa_opcode xtensa_opcode_lookup(xtensa_isa isa, const char *opname); 359 360 361 /* 362 * Decode the opcode for one instruction slot from a binary instruction 363 * buffer. Returns the opcode or XTENSA_UNDEFINED if the opcode is 364 * illegal. 365 */ 366 367 xtensa_opcode xtensa_opcode_decode(xtensa_isa isa, xtensa_format fmt, int slot, 368 const xtensa_insnbuf slotbuf); 369 370 371 /* 372 * Set the opcode field(s) for an instruction slot. All other fields 373 * in the slot are set to zero. Returns non-zero if the opcode cannot 374 * be encoded. 375 */ 376 377 int xtensa_opcode_encode(xtensa_isa isa, xtensa_format fmt, int slot, 378 xtensa_insnbuf slotbuf, xtensa_opcode opc); 379 380 381 /* Get the mnemonic name for an opcode. Returns null on error. */ 382 383 const char *xtensa_opcode_name(xtensa_isa isa, xtensa_opcode opc); 384 385 386 /* Check various properties of opcodes. These functions return 0 if 387 * the condition is false, 1 if the condition is true, and 388 * XTENSA_UNDEFINED on error. The instructions are classified as 389 * follows: 390 * 391 * branch: conditional branch; may fall through to next instruction (B*) 392 * jump: unconditional branch (J, JX, RET*, RF*) 393 * loop: zero-overhead loop (LOOP*) 394 * call: unconditional call; control returns to next instruction (CALL*) 395 * 396 * For the opcodes that affect control flow in some way, the branch 397 * target may be specified by an immediate operand or it may be an 398 * address stored in a register. You can distinguish these by 399 * checking if the instruction has a PC-relative immediate 400 * operand. 401 */ 402 403 int xtensa_opcode_is_branch(xtensa_isa isa, xtensa_opcode opc); 404 405 int xtensa_opcode_is_jump(xtensa_isa isa, xtensa_opcode opc); 406 407 int xtensa_opcode_is_loop(xtensa_isa isa, xtensa_opcode opc); 408 409 int xtensa_opcode_is_call(xtensa_isa isa, xtensa_opcode opc); 410 411 412 /* 413 * Find the number of ordinary operands, state operands, and interface 414 * operands for an instruction. These return XTENSA_UNDEFINED on 415 * error. 416 */ 417 418 int xtensa_opcode_num_operands(xtensa_isa isa, xtensa_opcode opc); 419 420 int xtensa_opcode_num_stateOperands(xtensa_isa isa, xtensa_opcode opc); 421 422 int xtensa_opcode_num_interfaceOperands(xtensa_isa isa, xtensa_opcode opc); 423 424 425 /* 426 * Get functional unit usage requirements for an opcode. Each "use" 427 * is identified by a <functional unit, pipeline stage> pair. The 428 * "num_funcUnit_uses" function returns the number of these "uses" or 429 * XTENSA_UNDEFINED on error. The "funcUnit_use" function returns 430 * a pointer to a "use" pair or null on error. 431 */ 432 433 typedef struct xtensa_funcUnit_use_struct { 434 xtensa_funcUnit unit; 435 int stage; 436 } xtensa_funcUnit_use; 437 438 int xtensa_opcode_num_funcUnit_uses(xtensa_isa isa, xtensa_opcode opc); 439 440 xtensa_funcUnit_use *xtensa_opcode_funcUnit_use(xtensa_isa isa, 441 xtensa_opcode opc, int u); 442 443 444 445 /* Operand information. */ 446 447 /* Get the name of an operand. Returns null on error. */ 448 449 const char *xtensa_operand_name(xtensa_isa isa, xtensa_opcode opc, int opnd); 450 451 452 /* 453 * Some operands are "invisible", i.e., not explicitly specified in 454 * assembly language. When assembling an instruction, you need not set 455 * the values of invisible operands, since they are either hardwired or 456 * derived from other field values. The values of invisible operands 457 * can be examined in the same way as other operands, but remember that 458 * an invisible operand may get its value from another visible one, so 459 * the entire instruction must be available before examining the 460 * invisible operand values. This function returns 1 if an operand is 461 * visible, 0 if it is invisible, or XTENSA_UNDEFINED on error. Note 462 * that whether an operand is visible is orthogonal to whether it is 463 * "implicit", i.e., whether it is encoded in a field in the 464 * instruction. 465 */ 466 467 int xtensa_operand_is_visible(xtensa_isa isa, xtensa_opcode opc, int opnd); 468 469 470 /* 471 * Check if an operand is an input ('i'), output ('o'), or inout ('m') 472 * operand. Note: The output operand of a conditional assignment 473 * (e.g., movnez) appears here as an inout ('m') even if it is declared 474 * in the TIE code as an output ('o'); this allows the compiler to 475 * properly handle register allocation for conditional assignments. 476 * Returns 0 on error. 477 */ 478 479 char xtensa_operand_inout(xtensa_isa isa, xtensa_opcode opc, int opnd); 480 481 482 /* 483 * Get and set the raw (encoded) value of the field for the specified 484 * operand. The "set" function does not check if the value fits in the 485 * field; that is done by the "encode" function below. Both of these 486 * functions return non-zero on error, e.g., if the field is not defined 487 * for the specified slot. 488 */ 489 490 int xtensa_operand_get_field(xtensa_isa isa, xtensa_opcode opc, int opnd, 491 xtensa_format fmt, int slot, 492 const xtensa_insnbuf slotbuf, uint32_t *valp); 493 494 int xtensa_operand_set_field(xtensa_isa isa, xtensa_opcode opc, int opnd, 495 xtensa_format fmt, int slot, 496 xtensa_insnbuf slotbuf, uint32_t val); 497 498 499 /* 500 * Encode and decode operands. The raw bits in the operand field may 501 * be encoded in a variety of different ways. These functions hide 502 * the details of that encoding. The result values are returned through 503 * the argument pointer. The return value is non-zero on error. 504 */ 505 506 int xtensa_operand_encode(xtensa_isa isa, xtensa_opcode opc, int opnd, 507 uint32_t *valp); 508 509 int xtensa_operand_decode(xtensa_isa isa, xtensa_opcode opc, int opnd, 510 uint32_t *valp); 511 512 513 /* 514 * An operand may be either a register operand or an immediate of some 515 * sort (e.g., PC-relative or not). The "is_register" function returns 516 * 0 if the operand is an immediate, 1 if it is a register, and 517 * XTENSA_UNDEFINED on error. The "regfile" function returns the 518 * regfile for a register operand, or XTENSA_UNDEFINED on error. 519 */ 520 521 int xtensa_operand_is_register(xtensa_isa isa, xtensa_opcode opc, int opnd); 522 523 xtensa_regfile xtensa_operand_regfile(xtensa_isa isa, xtensa_opcode opc, 524 int opnd); 525 526 527 /* 528 * Register operands may span multiple consecutive registers, e.g., a 529 * 64-bit data type may occupy two 32-bit registers. Only the first 530 * register is encoded in the operand field. This function specifies 531 * the number of consecutive registers occupied by this operand. For 532 * non-register operands, the return value is undefined. Returns 533 * XTENSA_UNDEFINED on error. 534 */ 535 536 int xtensa_operand_num_regs(xtensa_isa isa, xtensa_opcode opc, int opnd); 537 538 539 /* 540 * Some register operands do not completely identify the register being 541 * accessed. For example, the operand value may be added to an internal 542 * state value. By definition, this implies that the corresponding 543 * regfile is not allocatable. Unknown registers should generally be 544 * treated with worst-case assumptions. The function returns 0 if the 545 * register value is unknown, 1 if known, and XTENSA_UNDEFINED on 546 * error. 547 */ 548 549 int xtensa_operand_is_known_reg(xtensa_isa isa, xtensa_opcode opc, int opnd); 550 551 552 /* 553 * Check if an immediate operand is PC-relative. Returns 0 for register 554 * operands and non-PC-relative immediates, 1 for PC-relative 555 * immediates, and XTENSA_UNDEFINED on error. 556 */ 557 558 int xtensa_operand_is_PCrelative(xtensa_isa isa, xtensa_opcode opc, int opnd); 559 560 561 /* 562 * For PC-relative offset operands, the interpretation of the offset may 563 * vary between opcodes, e.g., is it relative to the current PC or that 564 * of the next instruction? The following functions are defined to 565 * perform PC-relative relocations and to undo them (as in the 566 * disassembler). The "do_reloc" function takes the desired address 567 * value and the PC of the current instruction and sets the value to the 568 * corresponding PC-relative offset (which can then be encoded and 569 * stored into the operand field). The "undo_reloc" function takes the 570 * unencoded offset value and the current PC and sets the value to the 571 * appropriate address. The return values are non-zero on error. Note 572 * that these functions do not replace the encode/decode functions; the 573 * operands must be encoded/decoded separately and the encode functions 574 * are responsible for detecting invalid operand values. 575 */ 576 577 int xtensa_operand_do_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd, 578 uint32_t *valp, uint32_t pc); 579 580 int xtensa_operand_undo_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd, 581 uint32_t *valp, uint32_t pc); 582 583 584 585 /* State Operands. */ 586 587 /* 588 * Get the state accessed by a state operand. Returns XTENSA_UNDEFINED 589 * on error. 590 */ 591 592 xtensa_state xtensa_stateOperand_state(xtensa_isa isa, xtensa_opcode opc, 593 int stOp); 594 595 596 /* 597 * Check if a state operand is an input ('i'), output ('o'), or inout 598 * ('m') operand. Returns 0 on error. 599 */ 600 601 char xtensa_stateOperand_inout(xtensa_isa isa, xtensa_opcode opc, int stOp); 602 603 604 605 /* Interface Operands. */ 606 607 /* 608 * Get the external interface accessed by an interface operand. 609 * Returns XTENSA_UNDEFINED on error. 610 */ 611 612 xtensa_interface xtensa_interfaceOperand_interface(xtensa_isa isa, 613 xtensa_opcode opc, 614 int ifOp); 615 616 617 618 /* Register Files. */ 619 620 /* 621 * Regfiles include both "real" regfiles and "views", where a view 622 * allows a group of adjacent registers in a real "parent" regfile to be 623 * viewed as a single register. A regfile view has all the same 624 * properties as its parent except for its (long) name, bit width, number 625 * of entries, and default ctype. You can use the parent function to 626 * distinguish these two classes. 627 */ 628 629 /* 630 * Look up a regfile by either its name or its abbreviated "short name". 631 * Returns XTENSA_UNDEFINED on error. The "lookup_shortname" function 632 * ignores "view" regfiles since they always have the same shortname as 633 * their parents. 634 */ 635 636 xtensa_regfile xtensa_regfile_lookup(xtensa_isa isa, const char *name); 637 638 xtensa_regfile xtensa_regfile_lookup_shortname(xtensa_isa isa, 639 const char *shortname); 640 641 642 /* 643 * Get the name or abbreviated "short name" of a regfile. 644 * Returns null on error. 645 */ 646 647 const char *xtensa_regfile_name(xtensa_isa isa, xtensa_regfile rf); 648 649 const char *xtensa_regfile_shortname(xtensa_isa isa, xtensa_regfile rf); 650 651 652 /* 653 * Get the parent regfile of a "view" regfile. If the regfile is not a 654 * view, the result is the same as the input parameter. Returns 655 * XTENSA_UNDEFINED on error. 656 */ 657 658 xtensa_regfile xtensa_regfile_view_parent(xtensa_isa isa, xtensa_regfile rf); 659 660 661 /* 662 * Get the bit width of a regfile or regfile view. 663 * Returns XTENSA_UNDEFINED on error. 664 */ 665 666 int xtensa_regfile_num_bits(xtensa_isa isa, xtensa_regfile rf); 667 668 669 /* 670 * Get the number of regfile entries. Returns XTENSA_UNDEFINED on 671 * error. 672 */ 673 674 int xtensa_regfile_num_entries(xtensa_isa isa, xtensa_regfile rf); 675 676 677 678 /* Processor States. */ 679 680 /* Look up a state by name. Returns XTENSA_UNDEFINED on error. */ 681 682 xtensa_state xtensa_state_lookup(xtensa_isa isa, const char *name); 683 684 685 /* Get the name for a processor state. Returns null on error. */ 686 687 const char *xtensa_state_name(xtensa_isa isa, xtensa_state st); 688 689 690 /* 691 * Get the bit width for a processor state. 692 * Returns XTENSA_UNDEFINED on error. 693 */ 694 695 int xtensa_state_num_bits(xtensa_isa isa, xtensa_state st); 696 697 698 /* 699 * Check if a state is exported from the processor core. Returns 0 if 700 * the condition is false, 1 if the condition is true, and 701 * XTENSA_UNDEFINED on error. 702 */ 703 704 int xtensa_state_is_exported(xtensa_isa isa, xtensa_state st); 705 706 707 /* 708 * Check for a "shared_or" state. Returns 0 if the condition is false, 709 * 1 if the condition is true, and XTENSA_UNDEFINED on error. 710 */ 711 712 int xtensa_state_is_shared_or(xtensa_isa isa, xtensa_state st); 713 714 715 716 /* Sysregs ("special registers" and "user registers"). */ 717 718 /* 719 * Look up a register by its number and whether it is a "user register" 720 * or a "special register". Returns XTENSA_UNDEFINED if the sysreg does 721 * not exist. 722 */ 723 724 xtensa_sysreg xtensa_sysreg_lookup(xtensa_isa isa, int num, int is_user); 725 726 727 /* 728 * Check if there exists a sysreg with a given name. 729 * If not, this function returns XTENSA_UNDEFINED. 730 */ 731 732 xtensa_sysreg xtensa_sysreg_lookup_name(xtensa_isa isa, const char *name); 733 734 735 /* Get the name of a sysreg. Returns null on error. */ 736 737 const char *xtensa_sysreg_name(xtensa_isa isa, xtensa_sysreg sysreg); 738 739 740 /* Get the register number. Returns XTENSA_UNDEFINED on error. */ 741 742 int xtensa_sysreg_number(xtensa_isa isa, xtensa_sysreg sysreg); 743 744 745 /* 746 * Check if a sysreg is a "special register" or a "user register". 747 * Returns 0 for special registers, 1 for user registers and 748 * XTENSA_UNDEFINED on error. 749 */ 750 751 int xtensa_sysreg_is_user(xtensa_isa isa, xtensa_sysreg sysreg); 752 753 754 755 /* Interfaces. */ 756 757 /* 758 * Find an interface by name. The return value is XTENSA_UNDEFINED if 759 * the specified interface is not found. 760 */ 761 762 xtensa_interface xtensa_interface_lookup(xtensa_isa isa, const char *ifname); 763 764 765 /* Get the name of an interface. Returns null on error. */ 766 767 const char *xtensa_interface_name(xtensa_isa isa, xtensa_interface intf); 768 769 770 /* 771 * Get the bit width for an interface. 772 * Returns XTENSA_UNDEFINED on error. 773 */ 774 775 int xtensa_interface_num_bits(xtensa_isa isa, xtensa_interface intf); 776 777 778 /* 779 * Check if an interface is an input ('i') or output ('o') with respect 780 * to the Xtensa processor core. Returns 0 on error. 781 */ 782 783 char xtensa_interface_inout(xtensa_isa isa, xtensa_interface intf); 784 785 786 /* 787 * Check if accessing an interface has potential side effects. 788 * Currently "data" interfaces have side effects and "control" 789 * interfaces do not. Returns 1 if there are side effects, 0 if not, 790 * and XTENSA_UNDEFINED on error. 791 */ 792 793 int xtensa_interface_has_side_effect(xtensa_isa isa, xtensa_interface intf); 794 795 796 /* 797 * Some interfaces may be related such that accessing one interface 798 * has side effects on a set of related interfaces. The interfaces 799 * are partitioned into equivalence classes of related interfaces, and 800 * each class is assigned a unique identifier number. This function 801 * returns the class identifier for an interface, or XTENSA_UNDEFINED 802 * on error. These identifiers can be compared to determine if two 803 * interfaces are related; the specific values of the identifiers have 804 * no particular meaning otherwise. 805 */ 806 807 int xtensa_interface_class_id(xtensa_isa isa, xtensa_interface intf); 808 809 810 /* Functional Units. */ 811 812 /* 813 * Find a functional unit by name. The return value is XTENSA_UNDEFINED if 814 * the specified unit is not found. 815 */ 816 817 xtensa_funcUnit xtensa_funcUnit_lookup(xtensa_isa isa, const char *fname); 818 819 820 /* Get the name of a functional unit. Returns null on error. */ 821 822 const char *xtensa_funcUnit_name(xtensa_isa isa, xtensa_funcUnit fun); 823 824 825 /* 826 * Functional units may be replicated. See how many instances of a 827 * particular function unit exist. Returns XTENSA_UNDEFINED on error. 828 */ 829 830 int xtensa_funcUnit_num_copies(xtensa_isa isa, xtensa_funcUnit fun); 831 832 833 #ifdef __cplusplus 834 } 835 #endif 836 #endif /* XTENSA_LIBISA_H */ 837