xref: /openbmc/qemu/include/hw/xen/interface/xen.h (revision 83ecdb18)
1 /******************************************************************************
2  * xen.h
3  *
4  * Guest OS interface to Xen.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Copyright (c) 2004, K A Fraser
25  */
26 
27 #ifndef __XEN_PUBLIC_XEN_H__
28 #define __XEN_PUBLIC_XEN_H__
29 
30 #include "xen-compat.h"
31 
32 #if defined(__i386__) || defined(__x86_64__)
33 #include "arch-x86/xen.h"
34 #elif defined(__arm__) || defined (__aarch64__)
35 #include "arch-arm.h"
36 #else
37 #error "Unsupported architecture"
38 #endif
39 
40 #ifndef __ASSEMBLY__
41 /* Guest handles for primitive C types. */
42 DEFINE_XEN_GUEST_HANDLE(char);
43 __DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
44 DEFINE_XEN_GUEST_HANDLE(int);
45 __DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
46 #if __XEN_INTERFACE_VERSION__ < 0x00040300
47 DEFINE_XEN_GUEST_HANDLE(long);
48 __DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
49 #endif
50 DEFINE_XEN_GUEST_HANDLE(void);
51 
52 DEFINE_XEN_GUEST_HANDLE(uint64_t);
53 DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
54 DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
55 
56 /* Define a variable length array (depends on compiler). */
57 #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
58 #define XEN_FLEX_ARRAY_DIM
59 #elif defined(__GNUC__)
60 #define XEN_FLEX_ARRAY_DIM  0
61 #else
62 #define XEN_FLEX_ARRAY_DIM  1 /* variable size */
63 #endif
64 
65 /* Turn a plain number into a C unsigned (long (long)) constant. */
66 #define __xen_mk_uint(x)  x ## U
67 #define __xen_mk_ulong(x) x ## UL
68 #ifndef __xen_mk_ullong
69 # define __xen_mk_ullong(x) x ## ULL
70 #endif
71 #define xen_mk_uint(x)    __xen_mk_uint(x)
72 #define xen_mk_ulong(x)   __xen_mk_ulong(x)
73 #define xen_mk_ullong(x)  __xen_mk_ullong(x)
74 
75 #else
76 
77 /* In assembly code we cannot use C numeric constant suffixes. */
78 #define xen_mk_uint(x)   x
79 #define xen_mk_ulong(x)  x
80 #define xen_mk_ullong(x) x
81 
82 #endif
83 
84 /*
85  * HYPERCALLS
86  */
87 
88 /* `incontents 100 hcalls List of hypercalls
89  * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
90  */
91 
92 #define __HYPERVISOR_set_trap_table        0
93 #define __HYPERVISOR_mmu_update            1
94 #define __HYPERVISOR_set_gdt               2
95 #define __HYPERVISOR_stack_switch          3
96 #define __HYPERVISOR_set_callbacks         4
97 #define __HYPERVISOR_fpu_taskswitch        5
98 #define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
99 #define __HYPERVISOR_platform_op           7
100 #define __HYPERVISOR_set_debugreg          8
101 #define __HYPERVISOR_get_debugreg          9
102 #define __HYPERVISOR_update_descriptor    10
103 #define __HYPERVISOR_memory_op            12
104 #define __HYPERVISOR_multicall            13
105 #define __HYPERVISOR_update_va_mapping    14
106 #define __HYPERVISOR_set_timer_op         15
107 #define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
108 #define __HYPERVISOR_xen_version          17
109 #define __HYPERVISOR_console_io           18
110 #define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
111 #define __HYPERVISOR_grant_table_op       20
112 #define __HYPERVISOR_vm_assist            21
113 #define __HYPERVISOR_update_va_mapping_otherdomain 22
114 #define __HYPERVISOR_iret                 23 /* x86 only */
115 #define __HYPERVISOR_vcpu_op              24
116 #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
117 #define __HYPERVISOR_mmuext_op            26
118 #define __HYPERVISOR_xsm_op               27
119 #define __HYPERVISOR_nmi_op               28
120 #define __HYPERVISOR_sched_op             29
121 #define __HYPERVISOR_callback_op          30
122 #define __HYPERVISOR_xenoprof_op          31
123 #define __HYPERVISOR_event_channel_op     32
124 #define __HYPERVISOR_physdev_op           33
125 #define __HYPERVISOR_hvm_op               34
126 #define __HYPERVISOR_sysctl               35
127 #define __HYPERVISOR_domctl               36
128 #define __HYPERVISOR_kexec_op             37
129 #define __HYPERVISOR_tmem_op              38
130 #define __HYPERVISOR_argo_op              39
131 #define __HYPERVISOR_xenpmu_op            40
132 #define __HYPERVISOR_dm_op                41
133 #define __HYPERVISOR_hypfs_op             42
134 
135 /* Architecture-specific hypercall definitions. */
136 #define __HYPERVISOR_arch_0               48
137 #define __HYPERVISOR_arch_1               49
138 #define __HYPERVISOR_arch_2               50
139 #define __HYPERVISOR_arch_3               51
140 #define __HYPERVISOR_arch_4               52
141 #define __HYPERVISOR_arch_5               53
142 #define __HYPERVISOR_arch_6               54
143 #define __HYPERVISOR_arch_7               55
144 
145 /* ` } */
146 
147 /*
148  * HYPERCALL COMPATIBILITY.
149  */
150 
151 /* New sched_op hypercall introduced in 0x00030101. */
152 #if __XEN_INTERFACE_VERSION__ < 0x00030101
153 #undef __HYPERVISOR_sched_op
154 #define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
155 #endif
156 
157 /* New event-channel and physdev hypercalls introduced in 0x00030202. */
158 #if __XEN_INTERFACE_VERSION__ < 0x00030202
159 #undef __HYPERVISOR_event_channel_op
160 #define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
161 #undef __HYPERVISOR_physdev_op
162 #define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
163 #endif
164 
165 /* New platform_op hypercall introduced in 0x00030204. */
166 #if __XEN_INTERFACE_VERSION__ < 0x00030204
167 #define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
168 #endif
169 
170 /*
171  * VIRTUAL INTERRUPTS
172  *
173  * Virtual interrupts that a guest OS may receive from Xen.
174  *
175  * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
176  * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
177  * The latter can be allocated only once per guest: they must initially be
178  * allocated to VCPU0 but can subsequently be re-bound.
179  */
180 /* ` enum virq { */
181 #define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
182 #define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
183 #define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
184 #define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
185 #define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
186 #define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
187 #define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
188 #define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
189 #define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
190 #define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occurred          */
191 #define VIRQ_ARGO       11 /* G. Argo interdomain message notification       */
192 #define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
193 #define VIRQ_XENPMU     13 /* V.  PMC interrupt                              */
194 
195 /* Architecture-specific VIRQ definitions. */
196 #define VIRQ_ARCH_0    16
197 #define VIRQ_ARCH_1    17
198 #define VIRQ_ARCH_2    18
199 #define VIRQ_ARCH_3    19
200 #define VIRQ_ARCH_4    20
201 #define VIRQ_ARCH_5    21
202 #define VIRQ_ARCH_6    22
203 #define VIRQ_ARCH_7    23
204 /* ` } */
205 
206 #define NR_VIRQS       24
207 
208 /*
209  * ` enum neg_errnoval
210  * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
211  * `                       unsigned count, unsigned *done_out,
212  * `                       unsigned foreigndom)
213  * `
214  * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
215  * @count is the length of the above array.
216  * @pdone is an output parameter indicating number of completed operations
217  * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
218  *                    hypercall invocation. Can be DOMID_SELF.
219  * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
220  *                     in this hypercall invocation. The value of this field
221  *                     (x) encodes the PFD as follows:
222  *                     x == 0 => PFD == DOMID_SELF
223  *                     x != 0 => PFD == x - 1
224  *
225  * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
226  * -------------
227  * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
228  * Updates an entry in a page table belonging to PFD. If updating an L1 table,
229  * and the new table entry is valid/present, the mapped frame must belong to
230  * FD. If attempting to map an I/O page then the caller assumes the privilege
231  * of the FD.
232  * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
233  * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
234  * ptr[:2]  -- Machine address of the page-table entry to modify.
235  * val      -- Value to write.
236  *
237  * There also certain implicit requirements when using this hypercall. The
238  * pages that make up a pagetable must be mapped read-only in the guest.
239  * This prevents uncontrolled guest updates to the pagetable. Xen strictly
240  * enforces this, and will disallow any pagetable update which will end up
241  * mapping pagetable page RW, and will disallow using any writable page as a
242  * pagetable. In practice it means that when constructing a page table for a
243  * process, thread, etc, we MUST be very dilligient in following these rules:
244  *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
245  *      the entries.
246  *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
247  *      or L2).
248  *  3). Start filling out the PTE table (L1) with the PTE entries. Once
249  *  	done, make sure to set each of those entries to RO (so writeable bit
250  *  	is unset). Once that has been completed, set the PMD (L2) for this
251  *  	PTE table as RO.
252  *  4). When completed with all of the PMD (L2) entries, and all of them have
253  *  	been set to RO, make sure to set RO the PUD (L3). Do the same
254  *  	operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
255  *  5). Now before you can use those pages (so setting the cr3), you MUST also
256  *      pin them so that the hypervisor can verify the entries. This is done
257  *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
258  *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
259  *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
260  *      issued.
261  * For 32-bit guests, the L4 is not used (as there is less pagetables), so
262  * instead use L3.
263  * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
264  * hypercall. Also if so desired the OS can also try to write to the PTE
265  * and be trapped by the hypervisor (as the PTE entry is RO).
266  *
267  * To deallocate the pages, the operations are the reverse of the steps
268  * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
269  * pagetable MUST not be in use (meaning that the cr3 is not set to it).
270  *
271  * ptr[1:0] == MMU_MACHPHYS_UPDATE:
272  * Updates an entry in the machine->pseudo-physical mapping table.
273  * ptr[:2]  -- Machine address within the frame whose mapping to modify.
274  *             The frame must belong to the FD, if one is specified.
275  * val      -- Value to write into the mapping entry.
276  *
277  * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
278  * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
279  * with those in @val.
280  *
281  * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
282  * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
283  * page tables.
284  *
285  * @val is usually the machine frame number along with some attributes.
286  * The attributes by default follow the architecture defined bits. Meaning that
287  * if this is a X86_64 machine and four page table layout is used, the layout
288  * of val is:
289  *  - 63 if set means No execute (NX)
290  *  - 46-13 the machine frame number
291  *  - 12 available for guest
292  *  - 11 available for guest
293  *  - 10 available for guest
294  *  - 9 available for guest
295  *  - 8 global
296  *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
297  *  - 6 dirty
298  *  - 5 accessed
299  *  - 4 page cached disabled
300  *  - 3 page write through
301  *  - 2 userspace accessible
302  *  - 1 writeable
303  *  - 0 present
304  *
305  *  The one bits that does not fit with the default layout is the PAGE_PSE
306  *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
307  *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
308  *  (or 2MB) instead of using the PAGE_PSE bit.
309  *
310  *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
311  *  using it as the Page Attribute Table (PAT) bit - for details on it please
312  *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
313  *  pages instead of using MTRRs.
314  *
315  *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
316  *                    PAT4                 PAT0
317  *  +-----+-----+----+----+----+-----+----+----+
318  *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
319  *  +-----+-----+----+----+----+-----+----+----+
320  *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
321  *  +-----+-----+----+----+----+-----+----+----+
322  *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
323  *  +-----+-----+----+----+----+-----+----+----+
324  *
325  *  The lookup of this index table translates to looking up
326  *  Bit 7, Bit 4, and Bit 3 of val entry:
327  *
328  *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
329  *
330  *  If all bits are off, then we are using PAT0. If bit 3 turned on,
331  *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
332  *
333  *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
334  *  that if a guest that follows Linux's PAT setup and would like to set Write
335  *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
336  *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
337  *  caching as:
338  *
339  *   WB = none (so PAT0)
340  *   WC = PWT (bit 3 on)
341  *   UC = PWT | PCD (bit 3 and 4 are on).
342  *
343  * To make it work with Xen, it needs to translate the WC bit as so:
344  *
345  *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
346  *
347  * And to translate back it would:
348  *
349  * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
350  */
351 #define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
352 #define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
353 #define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
354 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
355                                      /* val never translated.                 */
356 
357 /*
358  * MMU EXTENDED OPERATIONS
359  *
360  * ` enum neg_errnoval
361  * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
362  * `                      unsigned int count,
363  * `                      unsigned int *pdone,
364  * `                      unsigned int foreigndom)
365  */
366 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
367  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
368  * Where the FD has some effect, it is described below.
369  *
370  * cmd: MMUEXT_(UN)PIN_*_TABLE
371  * mfn: Machine frame number to be (un)pinned as a p.t. page.
372  *      The frame must belong to the FD, if one is specified.
373  *
374  * cmd: MMUEXT_NEW_BASEPTR
375  * mfn: Machine frame number of new page-table base to install in MMU.
376  *
377  * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
378  * mfn: Machine frame number of new page-table base to install in MMU
379  *      when in user space.
380  *
381  * cmd: MMUEXT_TLB_FLUSH_LOCAL
382  * No additional arguments. Flushes local TLB.
383  *
384  * cmd: MMUEXT_INVLPG_LOCAL
385  * linear_addr: Linear address to be flushed from the local TLB.
386  *
387  * cmd: MMUEXT_TLB_FLUSH_MULTI
388  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
389  *
390  * cmd: MMUEXT_INVLPG_MULTI
391  * linear_addr: Linear address to be flushed.
392  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
393  *
394  * cmd: MMUEXT_TLB_FLUSH_ALL
395  * No additional arguments. Flushes all VCPUs' TLBs.
396  *
397  * cmd: MMUEXT_INVLPG_ALL
398  * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
399  *
400  * cmd: MMUEXT_FLUSH_CACHE
401  * No additional arguments. Writes back and flushes cache contents.
402  *
403  * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
404  * No additional arguments. Writes back and flushes cache contents
405  * on all CPUs in the system.
406  *
407  * cmd: MMUEXT_SET_LDT
408  * linear_addr: Linear address of LDT base (NB. must be page-aligned).
409  * nr_ents: Number of entries in LDT.
410  *
411  * cmd: MMUEXT_CLEAR_PAGE
412  * mfn: Machine frame number to be cleared.
413  *
414  * cmd: MMUEXT_COPY_PAGE
415  * mfn: Machine frame number of the destination page.
416  * src_mfn: Machine frame number of the source page.
417  *
418  * cmd: MMUEXT_[UN]MARK_SUPER
419  * mfn: Machine frame number of head of superpage to be [un]marked.
420  */
421 /* ` enum mmuext_cmd { */
422 #define MMUEXT_PIN_L1_TABLE      0
423 #define MMUEXT_PIN_L2_TABLE      1
424 #define MMUEXT_PIN_L3_TABLE      2
425 #define MMUEXT_PIN_L4_TABLE      3
426 #define MMUEXT_UNPIN_TABLE       4
427 #define MMUEXT_NEW_BASEPTR       5
428 #define MMUEXT_TLB_FLUSH_LOCAL   6
429 #define MMUEXT_INVLPG_LOCAL      7
430 #define MMUEXT_TLB_FLUSH_MULTI   8
431 #define MMUEXT_INVLPG_MULTI      9
432 #define MMUEXT_TLB_FLUSH_ALL    10
433 #define MMUEXT_INVLPG_ALL       11
434 #define MMUEXT_FLUSH_CACHE      12
435 #define MMUEXT_SET_LDT          13
436 #define MMUEXT_NEW_USER_BASEPTR 15
437 #define MMUEXT_CLEAR_PAGE       16
438 #define MMUEXT_COPY_PAGE        17
439 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
440 #define MMUEXT_MARK_SUPER       19
441 #define MMUEXT_UNMARK_SUPER     20
442 /* ` } */
443 
444 #ifndef __ASSEMBLY__
445 struct mmuext_op {
446     unsigned int cmd; /* => enum mmuext_cmd */
447     union {
448         /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
449          * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
450         xen_pfn_t     mfn;
451         /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
452         unsigned long linear_addr;
453     } arg1;
454     union {
455         /* SET_LDT */
456         unsigned int nr_ents;
457         /* TLB_FLUSH_MULTI, INVLPG_MULTI */
458 #if __XEN_INTERFACE_VERSION__ >= 0x00030205
459         XEN_GUEST_HANDLE(const_void) vcpumask;
460 #else
461         const void *vcpumask;
462 #endif
463         /* COPY_PAGE */
464         xen_pfn_t src_mfn;
465     } arg2;
466 };
467 typedef struct mmuext_op mmuext_op_t;
468 DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
469 #endif
470 
471 /*
472  * ` enum neg_errnoval
473  * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
474  * `                              enum uvm_flags flags)
475  * `
476  * ` enum neg_errnoval
477  * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
478  * `                                          enum uvm_flags flags,
479  * `                                          domid_t domid)
480  * `
481  * ` @va: The virtual address whose mapping we want to change
482  * ` @val: The new page table entry, must contain a machine address
483  * ` @flags: Control TLB flushes
484  */
485 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
486 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
487 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
488 /* ` enum uvm_flags { */
489 #define UVMF_NONE           (xen_mk_ulong(0)<<0) /* No flushing at all.   */
490 #define UVMF_TLB_FLUSH      (xen_mk_ulong(1)<<0) /* Flush entire TLB(s).  */
491 #define UVMF_INVLPG         (xen_mk_ulong(2)<<0) /* Flush only one entry. */
492 #define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
493 #define UVMF_MULTI          (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
494 #define UVMF_LOCAL          (xen_mk_ulong(0)<<2) /* Flush local TLB.      */
495 #define UVMF_ALL            (xen_mk_ulong(1)<<2) /* Flush all TLBs.       */
496 /* ` } */
497 
498 /*
499  * ` int
500  * ` HYPERVISOR_console_io(unsigned int cmd,
501  * `                       unsigned int count,
502  * `                       char buffer[]);
503  *
504  * @cmd: Command (see below)
505  * @count: Size of the buffer to read/write
506  * @buffer: Pointer in the guest memory
507  *
508  * List of commands:
509  *
510  *  * CONSOLEIO_write: Write the buffer to Xen console.
511  *      For the hardware domain, all the characters in the buffer will
512  *      be written. Characters will be printed directly to the console.
513  *      For all the other domains, only the printable characters will be
514  *      written. Characters may be buffered until a newline (i.e '\n') is
515  *      found.
516  *      @return 0 on success, otherwise return an error code.
517  *  * CONSOLEIO_read: Attempts to read up to @count characters from Xen
518  *      console. The maximum buffer size (i.e. @count) supported is 2GB.
519  *      @return the number of characters read on success, otherwise return
520  *      an error code.
521  */
522 #define CONSOLEIO_write         0
523 #define CONSOLEIO_read          1
524 
525 /*
526  * Commands to HYPERVISOR_vm_assist().
527  */
528 #define VMASST_CMD_enable                0
529 #define VMASST_CMD_disable               1
530 
531 /* x86/32 guests: simulate full 4GB segment limits. */
532 #define VMASST_TYPE_4gb_segments         0
533 
534 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
535 #define VMASST_TYPE_4gb_segments_notify  1
536 
537 /*
538  * x86 guests: support writes to bottom-level PTEs.
539  * NB1. Page-directory entries cannot be written.
540  * NB2. Guest must continue to remove all writable mappings of PTEs.
541  */
542 #define VMASST_TYPE_writable_pagetables  2
543 
544 /* x86/PAE guests: support PDPTs above 4GB. */
545 #define VMASST_TYPE_pae_extended_cr3     3
546 
547 /*
548  * x86 guests: Sane behaviour for virtual iopl
549  *  - virtual iopl updated from do_iret() hypercalls.
550  *  - virtual iopl reported in bounce frames.
551  *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
552  */
553 #define VMASST_TYPE_architectural_iopl   4
554 
555 /*
556  * All guests: activate update indicator in vcpu_runstate_info
557  * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
558  * vcpu_runstate_info during updates of the runstate information.
559  */
560 #define VMASST_TYPE_runstate_update_flag 5
561 
562 /*
563  * x86/64 guests: strictly hide M2P from user mode.
564  * This allows the guest to control respective hypervisor behavior:
565  * - when not set, L4 tables get created with the respective slot blank,
566  *   and whenever the L4 table gets used as a kernel one the missing
567  *   mapping gets inserted,
568  * - when set, L4 tables get created with the respective slot initialized
569  *   as before, and whenever the L4 table gets used as a user one the
570  *   mapping gets zapped.
571  */
572 #define VMASST_TYPE_m2p_strict           32
573 
574 #if __XEN_INTERFACE_VERSION__ < 0x00040600
575 #define MAX_VMASST_TYPE                  3
576 #endif
577 
578 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
579 #define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
580 
581 /* DOMID_SELF is used in certain contexts to refer to oneself. */
582 #define DOMID_SELF           xen_mk_uint(0x7FF0)
583 
584 /*
585  * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
586  * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
587  * is useful to ensure that no mappings to the OS's own heap are accidentally
588  * installed. (e.g., in Linux this could cause havoc as reference counts
589  * aren't adjusted on the I/O-mapping code path).
590  * This only makes sense as HYPERVISOR_mmu_update()'s and
591  * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
592  * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
593  * otherwise it's only permitted if the caller is privileged.
594  */
595 #define DOMID_IO             xen_mk_uint(0x7FF1)
596 
597 /*
598  * DOMID_XEN is used to allow privileged domains to map restricted parts of
599  * Xen's heap space (e.g., the machine_to_phys table).
600  * This only makes sense as
601  * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
602  *   HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
603  * - with XENMAPSPACE_gmfn_foreign,
604  * and is only permitted if the caller is privileged.
605  */
606 #define DOMID_XEN            xen_mk_uint(0x7FF2)
607 
608 /*
609  * DOMID_COW is used as the owner of sharable pages */
610 #define DOMID_COW            xen_mk_uint(0x7FF3)
611 
612 /* DOMID_INVALID is used to identify pages with unknown owner. */
613 #define DOMID_INVALID        xen_mk_uint(0x7FF4)
614 
615 /* Idle domain. */
616 #define DOMID_IDLE           xen_mk_uint(0x7FFF)
617 
618 /* Mask for valid domain id values */
619 #define DOMID_MASK           xen_mk_uint(0x7FFF)
620 
621 #ifndef __ASSEMBLY__
622 
623 typedef uint16_t domid_t;
624 
625 /*
626  * Send an array of these to HYPERVISOR_mmu_update().
627  * NB. The fields are natural pointer/address size for this architecture.
628  */
629 struct mmu_update {
630     uint64_t ptr;       /* Machine address of PTE. */
631     uint64_t val;       /* New contents of PTE.    */
632 };
633 typedef struct mmu_update mmu_update_t;
634 DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
635 
636 /*
637  * ` enum neg_errnoval
638  * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
639  * `                      uint32_t nr_calls);
640  *
641  * NB. The fields are logically the natural register size for this
642  * architecture. In cases where xen_ulong_t is larger than this then
643  * any unused bits in the upper portion must be zero.
644  */
645 struct multicall_entry {
646     xen_ulong_t op, result;
647     xen_ulong_t args[6];
648 };
649 typedef struct multicall_entry multicall_entry_t;
650 DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
651 
652 #if __XEN_INTERFACE_VERSION__ < 0x00040400
653 /*
654  * Event channel endpoints per domain (when using the 2-level ABI):
655  *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
656  */
657 #define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
658 #endif
659 
660 struct vcpu_time_info {
661     /*
662      * Updates to the following values are preceded and followed by an
663      * increment of 'version'. The guest can therefore detect updates by
664      * looking for changes to 'version'. If the least-significant bit of
665      * the version number is set then an update is in progress and the guest
666      * must wait to read a consistent set of values.
667      * The correct way to interact with the version number is similar to
668      * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
669      */
670     uint32_t version;
671     uint32_t pad0;
672     uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
673     uint64_t system_time;     /* Time, in nanosecs, since boot.    */
674     /*
675      * Current system time:
676      *   system_time +
677      *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
678      * CPU frequency (Hz):
679      *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
680      */
681     uint32_t tsc_to_system_mul;
682     int8_t   tsc_shift;
683 #if __XEN_INTERFACE_VERSION__ > 0x040600
684     uint8_t  flags;
685     uint8_t  pad1[2];
686 #else
687     int8_t   pad1[3];
688 #endif
689 }; /* 32 bytes */
690 typedef struct vcpu_time_info vcpu_time_info_t;
691 
692 #define XEN_PVCLOCK_TSC_STABLE_BIT     (1 << 0)
693 #define XEN_PVCLOCK_GUEST_STOPPED      (1 << 1)
694 
695 struct vcpu_info {
696     /*
697      * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
698      * a pending notification for a particular VCPU. It is then cleared
699      * by the guest OS /before/ checking for pending work, thus avoiding
700      * a set-and-check race. Note that the mask is only accessed by Xen
701      * on the CPU that is currently hosting the VCPU. This means that the
702      * pending and mask flags can be updated by the guest without special
703      * synchronisation (i.e., no need for the x86 LOCK prefix).
704      * This may seem suboptimal because if the pending flag is set by
705      * a different CPU then an IPI may be scheduled even when the mask
706      * is set. However, note:
707      *  1. The task of 'interrupt holdoff' is covered by the per-event-
708      *     channel mask bits. A 'noisy' event that is continually being
709      *     triggered can be masked at source at this very precise
710      *     granularity.
711      *  2. The main purpose of the per-VCPU mask is therefore to restrict
712      *     reentrant execution: whether for concurrency control, or to
713      *     prevent unbounded stack usage. Whatever the purpose, we expect
714      *     that the mask will be asserted only for short periods at a time,
715      *     and so the likelihood of a 'spurious' IPI is suitably small.
716      * The mask is read before making an event upcall to the guest: a
717      * non-zero mask therefore guarantees that the VCPU will not receive
718      * an upcall activation. The mask is cleared when the VCPU requests
719      * to block: this avoids wakeup-waiting races.
720      */
721     uint8_t evtchn_upcall_pending;
722 #ifdef XEN_HAVE_PV_UPCALL_MASK
723     uint8_t evtchn_upcall_mask;
724 #else /* XEN_HAVE_PV_UPCALL_MASK */
725     uint8_t pad0;
726 #endif /* XEN_HAVE_PV_UPCALL_MASK */
727     xen_ulong_t evtchn_pending_sel;
728     struct arch_vcpu_info arch;
729     vcpu_time_info_t time;
730 }; /* 64 bytes (x86) */
731 #ifndef __XEN__
732 typedef struct vcpu_info vcpu_info_t;
733 #endif
734 
735 /*
736  * `incontents 200 startofday_shared Start-of-day shared data structure
737  * Xen/kernel shared data -- pointer provided in start_info.
738  *
739  * This structure is defined to be both smaller than a page, and the
740  * only data on the shared page, but may vary in actual size even within
741  * compatible Xen versions; guests should not rely on the size
742  * of this structure remaining constant.
743  */
744 struct shared_info {
745     struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
746 
747     /*
748      * A domain can create "event channels" on which it can send and receive
749      * asynchronous event notifications. There are three classes of event that
750      * are delivered by this mechanism:
751      *  1. Bi-directional inter- and intra-domain connections. Domains must
752      *     arrange out-of-band to set up a connection (usually by allocating
753      *     an unbound 'listener' port and avertising that via a storage service
754      *     such as xenstore).
755      *  2. Physical interrupts. A domain with suitable hardware-access
756      *     privileges can bind an event-channel port to a physical interrupt
757      *     source.
758      *  3. Virtual interrupts ('events'). A domain can bind an event-channel
759      *     port to a virtual interrupt source, such as the virtual-timer
760      *     device or the emergency console.
761      *
762      * Event channels are addressed by a "port index". Each channel is
763      * associated with two bits of information:
764      *  1. PENDING -- notifies the domain that there is a pending notification
765      *     to be processed. This bit is cleared by the guest.
766      *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
767      *     will cause an asynchronous upcall to be scheduled. This bit is only
768      *     updated by the guest. It is read-only within Xen. If a channel
769      *     becomes pending while the channel is masked then the 'edge' is lost
770      *     (i.e., when the channel is unmasked, the guest must manually handle
771      *     pending notifications as no upcall will be scheduled by Xen).
772      *
773      * To expedite scanning of pending notifications, any 0->1 pending
774      * transition on an unmasked channel causes a corresponding bit in a
775      * per-vcpu selector word to be set. Each bit in the selector covers a
776      * 'C long' in the PENDING bitfield array.
777      */
778     xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
779     xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
780 
781     /*
782      * Wallclock time: updated by control software or RTC emulation.
783      * Guests should base their gettimeofday() syscall on this
784      * wallclock-base value.
785      * The values of wc_sec and wc_nsec are offsets from the Unix epoch
786      * adjusted by the domain's 'time offset' (in seconds) as set either
787      * by XEN_DOMCTL_settimeoffset, or adjusted via a guest write to the
788      * emulated RTC.
789      */
790     uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
791     uint32_t wc_sec;
792     uint32_t wc_nsec;
793 #if !defined(__i386__)
794     uint32_t wc_sec_hi;
795 # define xen_wc_sec_hi wc_sec_hi
796 #elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
797 # define xen_wc_sec_hi arch.wc_sec_hi
798 #endif
799 
800     struct arch_shared_info arch;
801 
802 };
803 #ifndef __XEN__
804 typedef struct shared_info shared_info_t;
805 #endif
806 
807 /*
808  * `incontents 200 startofday Start-of-day memory layout
809  *
810  *  1. The domain is started within contiguous virtual-memory region.
811  *  2. The contiguous region ends on an aligned 4MB boundary.
812  *  3. This the order of bootstrap elements in the initial virtual region:
813  *      a. relocated kernel image
814  *      b. initial ram disk              [mod_start, mod_len]
815  *         (may be omitted)
816  *      c. list of allocated page frames [mfn_list, nr_pages]
817  *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
818  *      d. start_info_t structure        [register rSI (x86)]
819  *         in case of dom0 this page contains the console info, too
820  *      e. unless dom0: xenstore ring page
821  *      f. unless dom0: console ring page
822  *      g. bootstrap page tables         [pt_base and CR3 (x86)]
823  *      h. bootstrap stack               [register ESP (x86)]
824  *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
825  *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
826  *     layout for the domain. In particular, the bootstrap virtual-memory
827  *     region is a 1:1 mapping to the first section of the pseudo-physical map.
828  *  6. All bootstrap elements are mapped read-writable for the guest OS. The
829  *     only exception is the bootstrap page table, which is mapped read-only.
830  *  7. There is guaranteed to be at least 512kB padding after the final
831  *     bootstrap element. If necessary, the bootstrap virtual region is
832  *     extended by an extra 4MB to ensure this.
833  *
834  * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
835  * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
836  * to the start of the guest page tables (it was offset by two pages).
837  * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
838  * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
839  * allocated in the order: 'first L1','first L2', 'first L3', so the offset
840  * to the page table base is by two pages back. The initial domain if it is
841  * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
842  * pages preceding pt_base and mark them as reserved/unused.
843  */
844 #ifdef XEN_HAVE_PV_GUEST_ENTRY
845 struct start_info {
846     /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
847     char magic[32];             /* "xen-<version>-<platform>".            */
848     unsigned long nr_pages;     /* Total pages allocated to this domain.  */
849     unsigned long shared_info;  /* MACHINE address of shared info struct. */
850     uint32_t flags;             /* SIF_xxx flags.                         */
851     xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
852     uint32_t store_evtchn;      /* Event channel for store communication. */
853     union {
854         struct {
855             xen_pfn_t mfn;      /* MACHINE page number of console page.   */
856             uint32_t  evtchn;   /* Event channel for console page.        */
857         } domU;
858         struct {
859             uint32_t info_off;  /* Offset of console_info struct.         */
860             uint32_t info_size; /* Size of console_info struct from start.*/
861         } dom0;
862     } console;
863     /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
864     unsigned long pt_base;      /* VIRTUAL address of page directory.     */
865     unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
866     unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
867     unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
868                                 /* (PFN of pre-loaded module if           */
869                                 /*  SIF_MOD_START_PFN set in flags).      */
870     unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
871 #define MAX_GUEST_CMDLINE 1024
872     int8_t cmd_line[MAX_GUEST_CMDLINE];
873     /* The pfn range here covers both page table and p->m table frames.   */
874     unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
875     unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
876 };
877 typedef struct start_info start_info_t;
878 
879 /* New console union for dom0 introduced in 0x00030203. */
880 #if __XEN_INTERFACE_VERSION__ < 0x00030203
881 #define console_mfn    console.domU.mfn
882 #define console_evtchn console.domU.evtchn
883 #endif
884 #endif /* XEN_HAVE_PV_GUEST_ENTRY */
885 
886 /* These flags are passed in the 'flags' field of start_info_t. */
887 #define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
888 #define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
889 #define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
890 #define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
891 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
892                                    /* P->M making the 3 level tree obsolete? */
893 #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
894 
895 /*
896  * A multiboot module is a package containing modules very similar to a
897  * multiboot module array. The only differences are:
898  * - the array of module descriptors is by convention simply at the beginning
899  *   of the multiboot module,
900  * - addresses in the module descriptors are based on the beginning of the
901  *   multiboot module,
902  * - the number of modules is determined by a termination descriptor that has
903  *   mod_start == 0.
904  *
905  * This permits to both build it statically and reference it in a configuration
906  * file, and let the PV guest easily rebase the addresses to virtual addresses
907  * and at the same time count the number of modules.
908  */
909 struct xen_multiboot_mod_list
910 {
911     /* Address of first byte of the module */
912     uint32_t mod_start;
913     /* Address of last byte of the module (inclusive) */
914     uint32_t mod_end;
915     /* Address of zero-terminated command line */
916     uint32_t cmdline;
917     /* Unused, must be zero */
918     uint32_t pad;
919 };
920 /*
921  * `incontents 200 startofday_dom0_console Dom0_console
922  *
923  * The console structure in start_info.console.dom0
924  *
925  * This structure includes a variety of information required to
926  * have a working VGA/VESA console.
927  */
928 typedef struct dom0_vga_console_info {
929     uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
930 #define XEN_VGATYPE_TEXT_MODE_3 0x03
931 #define XEN_VGATYPE_VESA_LFB    0x23
932 #define XEN_VGATYPE_EFI_LFB     0x70
933 
934     union {
935         struct {
936             /* Font height, in pixels. */
937             uint16_t font_height;
938             /* Cursor location (column, row). */
939             uint16_t cursor_x, cursor_y;
940             /* Number of rows and columns (dimensions in characters). */
941             uint16_t rows, columns;
942         } text_mode_3;
943 
944         struct {
945             /* Width and height, in pixels. */
946             uint16_t width, height;
947             /* Bytes per scan line. */
948             uint16_t bytes_per_line;
949             /* Bits per pixel. */
950             uint16_t bits_per_pixel;
951             /* LFB physical address, and size (in units of 64kB). */
952             uint32_t lfb_base;
953             uint32_t lfb_size;
954             /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
955             uint8_t  red_pos, red_size;
956             uint8_t  green_pos, green_size;
957             uint8_t  blue_pos, blue_size;
958             uint8_t  rsvd_pos, rsvd_size;
959 #if __XEN_INTERFACE_VERSION__ >= 0x00030206
960             /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
961             uint32_t gbl_caps;
962             /* Mode attributes (offset 0x0, VESA command 0x4f01). */
963             uint16_t mode_attrs;
964             uint16_t pad;
965 #endif
966 #if __XEN_INTERFACE_VERSION__ >= 0x00040d00
967             /* high 32 bits of lfb_base */
968             uint32_t ext_lfb_base;
969 #endif
970         } vesa_lfb;
971     } u;
972 } dom0_vga_console_info_t;
973 #define xen_vga_console_info dom0_vga_console_info
974 #define xen_vga_console_info_t dom0_vga_console_info_t
975 
976 typedef uint8_t xen_domain_handle_t[16];
977 
978 __DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
979 __DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
980 __DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
981 __DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
982 
983 typedef struct {
984     uint8_t a[16];
985 } xen_uuid_t;
986 
987 /*
988  * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
989  *                 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
990  * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
991  * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
992  * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
993  *
994  * NB: This is compatible with Linux kernel and with libuuid, but it is not
995  * compatible with Microsoft, as they use mixed-endian encoding (some
996  * components are little-endian, some are big-endian).
997  */
998 #define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)            \
999     {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF,                           \
1000       ((a) >>  8) & 0xFF, ((a) >>  0) & 0xFF,                           \
1001       ((b) >>  8) & 0xFF, ((b) >>  0) & 0xFF,                           \
1002       ((c) >>  8) & 0xFF, ((c) >>  0) & 0xFF,                           \
1003       ((d) >>  8) & 0xFF, ((d) >>  0) & 0xFF,                           \
1004                 e1, e2, e3, e4, e5, e6}}
1005 
1006 #if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
1007 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
1008     ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
1009 #else
1010 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
1011     XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
1012 #endif /* __STDC_VERSION__ / __GNUC__ */
1013 
1014 #endif /* !__ASSEMBLY__ */
1015 
1016 /* Default definitions for macros used by domctl/sysctl. */
1017 #if defined(__XEN__) || defined(__XEN_TOOLS__)
1018 
1019 #ifndef int64_aligned_t
1020 #define int64_aligned_t int64_t
1021 #endif
1022 #ifndef uint64_aligned_t
1023 #define uint64_aligned_t uint64_t
1024 #endif
1025 #ifndef XEN_GUEST_HANDLE_64
1026 #define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
1027 #endif
1028 
1029 #ifndef __ASSEMBLY__
1030 struct xenctl_bitmap {
1031     XEN_GUEST_HANDLE_64(uint8) bitmap;
1032     uint32_t nr_bits;
1033 };
1034 typedef struct xenctl_bitmap xenctl_bitmap_t;
1035 #endif
1036 
1037 #endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
1038 
1039 #endif /* __XEN_PUBLIC_XEN_H__ */
1040 
1041 /*
1042  * Local variables:
1043  * mode: C
1044  * c-file-style: "BSD"
1045  * c-basic-offset: 4
1046  * tab-width: 4
1047  * indent-tabs-mode: nil
1048  * End:
1049  */
1050