xref: /openbmc/qemu/include/hw/ppc/xive_regs.h (revision c85cad81)
1 /*
2  * QEMU PowerPC XIVE internal structure definitions
3  *
4  *
5  * The XIVE structures are accessed by the HW and their format is
6  * architected to be big-endian. Some macros are provided to ease
7  * access to the different fields.
8  *
9  *
10  * Copyright (c) 2016-2018, IBM Corporation.
11  *
12  * This code is licensed under the GPL version 2 or later. See the
13  * COPYING file in the top-level directory.
14  */
15 
16 #ifndef PPC_XIVE_REGS_H
17 #define PPC_XIVE_REGS_H
18 
19 #include "qemu/bswap.h"
20 #include "qemu/host-utils.h"
21 
22 /*
23  * Interrupt source number encoding on PowerBUS
24  */
25 /*
26  * Trigger data definition
27  *
28  * The trigger definition is used for triggers both for HW source
29  * interrupts (PHB, PSI), as well as for rerouting interrupts between
30  * Interrupt Controller.
31  *
32  * HW source controllers set bit0 of word0 to ‘0’ as they provide EAS
33  * information (EAS block + EAS index) in the 8 byte data and not END
34  * information, which is use for rerouting interrupts.
35  *
36  * bit1 of word0 to ‘1’ signals that the state bit check has been
37  * performed.
38  */
39 #define XIVE_TRIGGER_END        PPC_BIT(0)
40 #define XIVE_TRIGGER_PQ         PPC_BIT(1)
41 
42 /*
43  * QEMU macros to manipulate the trigger payload in native endian
44  */
45 #define XIVE_EAS_BLOCK(n)       (((n) >> 28) & 0xf)
46 #define XIVE_EAS_INDEX(n)       ((n) & 0x0fffffff)
47 #define XIVE_EAS(blk, idx)      ((uint32_t)(blk) << 28 | (idx))
48 
49 #define TM_SHIFT                16
50 
51 /*
52  * TIMA addresses are 12-bits (4k page).
53  * The MSB indicates a special op with side effect, which can be
54  * refined with bit 10 (see below).
55  * The registers, logically grouped in 4 rings (a quad-word each), are
56  * defined on the 6 LSBs (offset below 0x40)
57  * In between, we can add a cache line index from 0...3 (ie, 0, 0x80,
58  * 0x100, 0x180) to select a specific snooper. Those 'snoop port
59  * address' bits should be dropped when processing the operations as
60  * they are all equivalent.
61  */
62 #define TM_ADDRESS_MASK         0xC3F
63 #define TM_SPECIAL_OP           0x800
64 #define TM_RING_OFFSET          0x30
65 #define TM_REG_OFFSET           0x3F
66 
67 /* TM register offsets */
68 #define TM_QW0_USER             0x000 /* All rings */
69 #define TM_QW1_OS               0x010 /* Ring 0..2 */
70 #define TM_QW2_HV_POOL          0x020 /* Ring 0..1 */
71 #define TM_QW3_HV_PHYS          0x030 /* Ring 0..1 */
72 
73 /* Byte offsets inside a QW             QW0 QW1 QW2 QW3 */
74 #define TM_NSR                  0x0  /*  +   +   -   +  */
75 #define TM_CPPR                 0x1  /*  -   +   -   +  */
76 #define TM_IPB                  0x2  /*  -   +   +   +  */
77 #define TM_LSMFB                0x3  /*  -   +   +   +  */
78 #define TM_ACK_CNT              0x4  /*  -   +   -   -  */
79 #define TM_INC                  0x5  /*  -   +   -   +  */
80 #define TM_AGE                  0x6  /*  -   +   -   +  */
81 #define TM_PIPR                 0x7  /*  -   +   -   +  */
82 
83 #define TM_WORD0                0x0
84 #define TM_WORD1                0x4
85 
86 /*
87  * QW word 2 contains the valid bit at the top and other fields
88  * depending on the QW.
89  */
90 #define   TM_WORD2              0x8
91 #define   TM_QW0W2_VU           PPC_BIT32(0)
92 #define   TM_QW0W2_LOGIC_SERV   PPC_BITMASK32(1, 31) /* XX 2,31 ? */
93 #define   TM_QW1W2_VO           PPC_BIT32(0)
94 #define   TM_QW1W2_OS_CAM       PPC_BITMASK32(8, 31)
95 #define   TM_QW2W2_VP           PPC_BIT32(0)
96 #define   TM_QW2W2_POOL_CAM     PPC_BITMASK32(8, 31)
97 #define   TM_QW3W2_VT           PPC_BIT32(0)
98 #define   TM_QW3W2_LP           PPC_BIT32(6)
99 #define   TM_QW3W2_LE           PPC_BIT32(7)
100 #define   TM_QW3W2_T            PPC_BIT32(31)
101 
102 /*
103  * In addition to normal loads to "peek" and writes (only when invalid)
104  * using 4 and 8 bytes accesses, the above registers support these
105  * "special" byte operations:
106  *
107  *   - Byte load from QW0[NSR] - User level NSR (EBB)
108  *   - Byte store to QW0[NSR] - User level NSR (EBB)
109  *   - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
110  *   - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
111  *                                    otherwise VT||0000000
112  *   - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
113  *
114  * Then we have all these "special" CI ops at these offset that trigger
115  * all sorts of side effects:
116  */
117 #define TM_SPC_ACK_EBB          0x800   /* Load8 ack EBB to reg*/
118 #define TM_SPC_ACK_OS_REG       0x810   /* Load16 ack OS irq to reg */
119 #define TM_SPC_PUSH_USR_CTX     0x808   /* Store32 Push/Validate user context */
120 #define TM_SPC_PULL_USR_CTX     0x808   /* Load32 Pull/Invalidate user
121                                          * context */
122 #define TM_SPC_SET_OS_PENDING   0x812   /* Store8 Set OS irq pending bit */
123 #define TM_SPC_PULL_OS_CTX      0x818   /* Load32/Load64 Pull/Invalidate OS
124                                          * context to reg */
125 #define TM_SPC_PULL_POOL_CTX    0x828   /* Load32/Load64 Pull/Invalidate Pool
126                                          * context to reg*/
127 #define TM_SPC_ACK_HV_REG       0x830   /* Load16 ack HV irq to reg */
128 #define TM_SPC_PULL_USR_CTX_OL  0xc08   /* Store8 Pull/Inval usr ctx to odd
129                                          * line */
130 #define TM_SPC_ACK_OS_EL        0xc10   /* Store8 ack OS irq to even line */
131 #define TM_SPC_ACK_HV_POOL_EL   0xc20   /* Store8 ack HV evt pool to even
132                                          * line */
133 #define TM_SPC_ACK_HV_EL        0xc30   /* Store8 ack HV irq to even line */
134 /* XXX more... */
135 
136 /* NSR fields for the various QW ack types */
137 #define TM_QW0_NSR_EB           PPC_BIT8(0)
138 #define TM_QW1_NSR_EO           PPC_BIT8(0)
139 #define TM_QW3_NSR_HE           PPC_BITMASK8(0, 1)
140 #define  TM_QW3_NSR_HE_NONE     0
141 #define  TM_QW3_NSR_HE_POOL     1
142 #define  TM_QW3_NSR_HE_PHYS     2
143 #define  TM_QW3_NSR_HE_LSI      3
144 #define TM_QW3_NSR_I            PPC_BIT8(2)
145 #define TM_QW3_NSR_GRP_LVL      PPC_BIT8(3, 7)
146 
147 /*
148  * EAS (Event Assignment Structure)
149  *
150  * One per interrupt source. Targets an interrupt to a given Event
151  * Notification Descriptor (END) and provides the corresponding
152  * logical interrupt number (END data)
153  */
154 typedef struct XiveEAS {
155         /*
156          * Use a single 64-bit definition to make it easier to perform
157          * atomic updates
158          */
159         uint64_t        w;
160 #define EAS_VALID       PPC_BIT(0)
161 #define EAS_END_BLOCK   PPC_BITMASK(4, 7)        /* Destination END block# */
162 #define EAS_END_INDEX   PPC_BITMASK(8, 31)       /* Destination END index */
163 #define EAS_MASKED      PPC_BIT(32)              /* Masked */
164 #define EAS_END_DATA    PPC_BITMASK(33, 63)      /* Data written to the END */
165 } XiveEAS;
166 
167 #define xive_eas_is_valid(eas)   (be64_to_cpu((eas)->w) & EAS_VALID)
168 #define xive_eas_is_masked(eas)  (be64_to_cpu((eas)->w) & EAS_MASKED)
169 
170 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon);
171 
172 static inline uint64_t xive_get_field64(uint64_t mask, uint64_t word)
173 {
174     return (be64_to_cpu(word) & mask) >> ctz64(mask);
175 }
176 
177 static inline uint64_t xive_set_field64(uint64_t mask, uint64_t word,
178                                         uint64_t value)
179 {
180     uint64_t tmp =
181         (be64_to_cpu(word) & ~mask) | ((value << ctz64(mask)) & mask);
182     return cpu_to_be64(tmp);
183 }
184 
185 static inline uint32_t xive_get_field32(uint32_t mask, uint32_t word)
186 {
187     return (be32_to_cpu(word) & mask) >> ctz32(mask);
188 }
189 
190 static inline uint32_t xive_set_field32(uint32_t mask, uint32_t word,
191                                         uint32_t value)
192 {
193     uint32_t tmp =
194         (be32_to_cpu(word) & ~mask) | ((value << ctz32(mask)) & mask);
195     return cpu_to_be32(tmp);
196 }
197 
198 /* Event Notification Descriptor (END) */
199 typedef struct XiveEND {
200         uint32_t        w0;
201 #define END_W0_VALID             PPC_BIT32(0) /* "v" bit */
202 #define END_W0_ENQUEUE           PPC_BIT32(1) /* "q" bit */
203 #define END_W0_UCOND_NOTIFY      PPC_BIT32(2) /* "n" bit */
204 #define END_W0_BACKLOG           PPC_BIT32(3) /* "b" bit */
205 #define END_W0_PRECL_ESC_CTL     PPC_BIT32(4) /* "p" bit */
206 #define END_W0_ESCALATE_CTL      PPC_BIT32(5) /* "e" bit */
207 #define END_W0_UNCOND_ESCALATE   PPC_BIT32(6) /* "u" bit - DD2.0 */
208 #define END_W0_SILENT_ESCALATE   PPC_BIT32(7) /* "s" bit - DD2.0 */
209 #define END_W0_QSIZE             PPC_BITMASK32(12, 15)
210 #define END_W0_SW0               PPC_BIT32(16)
211 #define END_W0_FIRMWARE          END_W0_SW0 /* Owned by FW */
212 #define END_QSIZE_4K             0
213 #define END_QSIZE_64K            4
214 #define END_W0_HWDEP             PPC_BITMASK32(24, 31)
215         uint32_t        w1;
216 #define END_W1_ESn               PPC_BITMASK32(0, 1)
217 #define END_W1_ESn_P             PPC_BIT32(0)
218 #define END_W1_ESn_Q             PPC_BIT32(1)
219 #define END_W1_ESe               PPC_BITMASK32(2, 3)
220 #define END_W1_ESe_P             PPC_BIT32(2)
221 #define END_W1_ESe_Q             PPC_BIT32(3)
222 #define END_W1_GENERATION        PPC_BIT32(9)
223 #define END_W1_PAGE_OFF          PPC_BITMASK32(10, 31)
224         uint32_t        w2;
225 #define END_W2_MIGRATION_REG     PPC_BITMASK32(0, 3)
226 #define END_W2_OP_DESC_HI        PPC_BITMASK32(4, 31)
227         uint32_t        w3;
228 #define END_W3_OP_DESC_LO        PPC_BITMASK32(0, 31)
229         uint32_t        w4;
230 #define END_W4_ESC_END_BLOCK     PPC_BITMASK32(4, 7)
231 #define END_W4_ESC_END_INDEX     PPC_BITMASK32(8, 31)
232         uint32_t        w5;
233 #define END_W5_ESC_END_DATA      PPC_BITMASK32(1, 31)
234         uint32_t        w6;
235 #define END_W6_FORMAT_BIT        PPC_BIT32(8)
236 #define END_W6_NVT_BLOCK         PPC_BITMASK32(9, 12)
237 #define END_W6_NVT_INDEX         PPC_BITMASK32(13, 31)
238         uint32_t        w7;
239 #define END_W7_F0_IGNORE         PPC_BIT32(0)
240 #define END_W7_F0_BLK_GROUPING   PPC_BIT32(1)
241 #define END_W7_F0_PRIORITY       PPC_BITMASK32(8, 15)
242 #define END_W7_F1_WAKEZ          PPC_BIT32(0)
243 #define END_W7_F1_LOG_SERVER_ID  PPC_BITMASK32(1, 31)
244 } XiveEND;
245 
246 #define xive_end_is_valid(end)    (be32_to_cpu((end)->w0) & END_W0_VALID)
247 #define xive_end_is_enqueue(end)  (be32_to_cpu((end)->w0) & END_W0_ENQUEUE)
248 #define xive_end_is_notify(end)   (be32_to_cpu((end)->w0) & END_W0_UCOND_NOTIFY)
249 #define xive_end_is_backlog(end)  (be32_to_cpu((end)->w0) & END_W0_BACKLOG)
250 #define xive_end_is_escalate(end) (be32_to_cpu((end)->w0) & END_W0_ESCALATE_CTL)
251 #define xive_end_is_uncond_escalation(end)              \
252     (be32_to_cpu((end)->w0) & END_W0_UNCOND_ESCALATE)
253 #define xive_end_is_silent_escalation(end)              \
254     (be32_to_cpu((end)->w0) & END_W0_SILENT_ESCALATE)
255 #define xive_end_is_firmware(end)              \
256     (be32_to_cpu((end)->w0) & END_W0_FIRMWARE)
257 
258 static inline uint64_t xive_end_qaddr(XiveEND *end)
259 {
260     return ((uint64_t) be32_to_cpu(end->w2) & 0x0fffffff) << 32 |
261         be32_to_cpu(end->w3);
262 }
263 
264 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon);
265 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon);
266 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon);
267 
268 /* Notification Virtual Target (NVT) */
269 typedef struct XiveNVT {
270         uint32_t        w0;
271 #define NVT_W0_VALID             PPC_BIT32(0)
272         uint32_t        w1;
273 #define NVT_W1_EQ_BLOCK          PPC_BITMASK32(0, 3)
274 #define NVT_W1_EQ_INDEX          PPC_BITMASK32(4, 31)
275         uint32_t        w2;
276         uint32_t        w3;
277         uint32_t        w4;
278 #define NVT_W4_IPB               PPC_BITMASK32(16, 23)
279         uint32_t        w5;
280         uint32_t        w6;
281         uint32_t        w7;
282         uint32_t        w8;
283 #define NVT_W8_GRP_VALID         PPC_BIT32(0)
284         uint32_t        w9;
285         uint32_t        wa;
286         uint32_t        wb;
287         uint32_t        wc;
288         uint32_t        wd;
289         uint32_t        we;
290         uint32_t        wf;
291 } XiveNVT;
292 
293 #define xive_nvt_is_valid(nvt)    (be32_to_cpu((nvt)->w0) & NVT_W0_VALID)
294 
295 /*
296  * The VP number space in a block is defined by the END_W6_NVT_INDEX
297  * field of the XIVE END
298  */
299 #define XIVE_NVT_SHIFT                19
300 #define XIVE_NVT_COUNT                (1 << XIVE_NVT_SHIFT)
301 
302 static inline uint32_t xive_nvt_cam_line(uint8_t nvt_blk, uint32_t nvt_idx)
303 {
304     return (nvt_blk << XIVE_NVT_SHIFT) | nvt_idx;
305 }
306 
307 static inline uint32_t xive_nvt_idx(uint32_t cam_line)
308 {
309     return cam_line & ((1 << XIVE_NVT_SHIFT) - 1);
310 }
311 
312 static inline uint32_t xive_nvt_blk(uint32_t cam_line)
313 {
314     return (cam_line >> XIVE_NVT_SHIFT) & 0xf;
315 }
316 
317 #endif /* PPC_XIVE_REGS_H */
318