1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * 5 * The POWER9 processor comes with a new interrupt controller, called 6 * XIVE as "eXternal Interrupt Virtualization Engine". 7 * 8 * = Overall architecture 9 * 10 * 11 * XIVE Interrupt Controller 12 * +------------------------------------+ IPIs 13 * | +---------+ +---------+ +--------+ | +-------+ 14 * | |VC | |CQ | |PC |----> | CORES | 15 * | | esb | | | | |----> | | 16 * | | eas | | Bridge | | tctx |----> | | 17 * | |SC end | | | | nvt | | | | 18 * +------+ | +---------+ +----+----+ +--------+ | +-+-+-+-+ 19 * | RAM | +------------------|-----------------+ | | | 20 * | | | | | | 21 * | | | | | | 22 * | | +--------------------v------------------------v-v-v--+ other 23 * | <--+ Power Bus +--> chips 24 * | esb | +---------+-----------------------+------------------+ 25 * | eas | | | 26 * | end | +--|------+ | 27 * | nvt | +----+----+ | +----+----+ 28 * +------+ |SC | | |SC | 29 * | | | | | 30 * | PQ-bits | | | PQ-bits | 31 * | local |-+ | in VC | 32 * +---------+ +---------+ 33 * PCIe NX,NPU,CAPI 34 * 35 * SC: Source Controller (aka. IVSE) 36 * VC: Virtualization Controller (aka. IVRE) 37 * PC: Presentation Controller (aka. IVPE) 38 * CQ: Common Queue (Bridge) 39 * 40 * PQ-bits: 2 bits source state machine (P:pending Q:queued) 41 * esb: Event State Buffer (Array of PQ bits in an IVSE) 42 * eas: Event Assignment Structure 43 * end: Event Notification Descriptor 44 * nvt: Notification Virtual Target 45 * tctx: Thread interrupt Context 46 * 47 * 48 * The XIVE IC is composed of three sub-engines : 49 * 50 * - Interrupt Virtualization Source Engine (IVSE), or Source 51 * Controller (SC). These are found in PCI PHBs, in the PSI host 52 * bridge controller, but also inside the main controller for the 53 * core IPIs and other sub-chips (NX, CAP, NPU) of the 54 * chip/processor. They are configured to feed the IVRE with events. 55 * 56 * - Interrupt Virtualization Routing Engine (IVRE) or Virtualization 57 * Controller (VC). Its job is to match an event source with an 58 * Event Notification Descriptor (END). 59 * 60 * - Interrupt Virtualization Presentation Engine (IVPE) or 61 * Presentation Controller (PC). It maintains the interrupt context 62 * state of each thread and handles the delivery of the external 63 * exception to the thread. 64 * 65 * In XIVE 1.0, the sub-engines used to be referred as: 66 * 67 * SC Source Controller 68 * VC Virtualization Controller 69 * PC Presentation Controller 70 * CQ Common Queue (PowerBUS Bridge) 71 * 72 * 73 * = XIVE internal tables 74 * 75 * Each of the sub-engines uses a set of tables to redirect exceptions 76 * from event sources to CPU threads. 77 * 78 * +-------+ 79 * User or OS | EQ | 80 * or +------>|entries| 81 * Hypervisor | | .. | 82 * Memory | +-------+ 83 * | ^ 84 * | | 85 * +-------------------------------------------------+ 86 * | | 87 * Hypervisor +------+ +---+--+ +---+--+ +------+ 88 * Memory | ESB | | EAT | | ENDT | | NVTT | 89 * (skiboot) +----+-+ +----+-+ +----+-+ +------+ 90 * ^ | ^ | ^ | ^ 91 * | | | | | | | 92 * +-------------------------------------------------+ 93 * | | | | | | | 94 * | | | | | | | 95 * +----|--|--------|--|--------|--|-+ +-|-----+ +------+ 96 * | | | | | | | | | | tctx| |Thread| 97 * IPI or --> | + v + v + v |---| + .. |-----> | 98 * HW events --> | | | | | | 99 * IVSE | IVRE | | IVPE | +------+ 100 * +---------------------------------+ +-------+ 101 * 102 * 103 * 104 * The IVSE have a 2-bits state machine, P for pending and Q for queued, 105 * for each source that allows events to be triggered. They are stored in 106 * an Event State Buffer (ESB) array and can be controlled by MMIOs. 107 * 108 * If the event is let through, the IVRE looks up in the Event Assignment 109 * Structure (EAS) table for an Event Notification Descriptor (END) 110 * configured for the source. Each Event Notification Descriptor defines 111 * a notification path to a CPU and an in-memory Event Queue, in which 112 * will be enqueued an EQ data for the OS to pull. 113 * 114 * The IVPE determines if a Notification Virtual Target (NVT) can 115 * handle the event by scanning the thread contexts of the VCPUs 116 * dispatched on the processor HW threads. It maintains the state of 117 * the thread interrupt context (TCTX) of each thread in a NVT table. 118 * 119 * = Acronyms 120 * 121 * Description In XIVE 1.0, used to be referred as 122 * 123 * EAS Event Assignment Structure IVE Interrupt Virt. Entry 124 * EAT Event Assignment Table IVT Interrupt Virt. Table 125 * ENDT Event Notif. Descriptor Table EQDT Event Queue Desc. Table 126 * EQ Event Queue same 127 * ESB Event State Buffer SBE State Bit Entry 128 * NVT Notif. Virtual Target VPD Virtual Processor Desc. 129 * NVTT Notif. Virtual Target Table VPDT Virtual Processor Desc. Table 130 * TCTX Thread interrupt Context 131 * 132 * 133 * Copyright (c) 2017-2018, IBM Corporation. 134 * 135 * This code is licensed under the GPL version 2 or later. See the 136 * COPYING file in the top-level directory. 137 * 138 */ 139 140 #ifndef PPC_XIVE_H 141 #define PPC_XIVE_H 142 143 #include "sysemu/kvm.h" 144 #include "hw/sysbus.h" 145 #include "hw/ppc/xive_regs.h" 146 #include "qom/object.h" 147 148 /* 149 * XIVE Notifier (Interface between Source and Router) 150 */ 151 152 typedef struct XiveNotifier XiveNotifier; 153 154 #define TYPE_XIVE_NOTIFIER "xive-notifier" 155 #define XIVE_NOTIFIER(obj) \ 156 INTERFACE_CHECK(XiveNotifier, (obj), TYPE_XIVE_NOTIFIER) 157 typedef struct XiveNotifierClass XiveNotifierClass; 158 DECLARE_CLASS_CHECKERS(XiveNotifierClass, XIVE_NOTIFIER, 159 TYPE_XIVE_NOTIFIER) 160 161 struct XiveNotifierClass { 162 InterfaceClass parent; 163 void (*notify)(XiveNotifier *xn, uint32_t lisn, bool pq_checked); 164 }; 165 166 /* 167 * XIVE Interrupt Source 168 */ 169 170 #define TYPE_XIVE_SOURCE "xive-source" 171 OBJECT_DECLARE_SIMPLE_TYPE(XiveSource, XIVE_SOURCE) 172 173 /* 174 * XIVE Interrupt Source characteristics, which define how the ESB are 175 * controlled. 176 */ 177 #define XIVE_SRC_H_INT_ESB 0x1 /* ESB managed with hcall H_INT_ESB */ 178 #define XIVE_SRC_STORE_EOI 0x2 /* Store EOI supported */ 179 #define XIVE_SRC_PQ_DISABLE 0x4 /* Disable check on the PQ state bits */ 180 181 struct XiveSource { 182 DeviceState parent; 183 184 /* IRQs */ 185 uint32_t nr_irqs; 186 unsigned long *lsi_map; 187 188 /* PQ bits and LSI assertion bit */ 189 uint8_t *status; 190 uint8_t reset_pq; /* PQ state on reset */ 191 192 /* ESB memory region */ 193 uint64_t esb_flags; 194 uint32_t esb_shift; 195 MemoryRegion esb_mmio; 196 MemoryRegion esb_mmio_emulated; 197 198 /* KVM support */ 199 void *esb_mmap; 200 MemoryRegion esb_mmio_kvm; 201 202 XiveNotifier *xive; 203 }; 204 205 /* 206 * ESB MMIO setting. Can be one page, for both source triggering and 207 * source management, or two different pages. See below for magic 208 * values. 209 */ 210 #define XIVE_ESB_4K 12 /* PSI HB only */ 211 #define XIVE_ESB_4K_2PAGE 13 212 #define XIVE_ESB_64K 16 213 #define XIVE_ESB_64K_2PAGE 17 214 215 static inline bool xive_source_esb_has_2page(XiveSource *xsrc) 216 { 217 return xsrc->esb_shift == XIVE_ESB_64K_2PAGE || 218 xsrc->esb_shift == XIVE_ESB_4K_2PAGE; 219 } 220 221 static inline size_t xive_source_esb_len(XiveSource *xsrc) 222 { 223 return (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 224 } 225 226 /* The trigger page is always the first/even page */ 227 static inline hwaddr xive_source_esb_page(XiveSource *xsrc, uint32_t srcno) 228 { 229 assert(srcno < xsrc->nr_irqs); 230 return (1ull << xsrc->esb_shift) * srcno; 231 } 232 233 /* In a two pages ESB MMIO setting, the odd page is for management */ 234 static inline hwaddr xive_source_esb_mgmt(XiveSource *xsrc, int srcno) 235 { 236 hwaddr addr = xive_source_esb_page(xsrc, srcno); 237 238 if (xive_source_esb_has_2page(xsrc)) { 239 addr += (1 << (xsrc->esb_shift - 1)); 240 } 241 242 return addr; 243 } 244 245 /* 246 * Each interrupt source has a 2-bit state machine which can be 247 * controlled by MMIO. P indicates that an interrupt is pending (has 248 * been sent to a queue and is waiting for an EOI). Q indicates that 249 * the interrupt has been triggered while pending. 250 * 251 * This acts as a coalescing mechanism in order to guarantee that a 252 * given interrupt only occurs at most once in a queue. 253 * 254 * When doing an EOI, the Q bit will indicate if the interrupt 255 * needs to be re-triggered. 256 */ 257 #define XIVE_STATUS_ASSERTED 0x4 /* Extra bit for LSI */ 258 #define XIVE_ESB_VAL_P 0x2 259 #define XIVE_ESB_VAL_Q 0x1 260 261 #define XIVE_ESB_RESET 0x0 262 #define XIVE_ESB_PENDING XIVE_ESB_VAL_P 263 #define XIVE_ESB_QUEUED (XIVE_ESB_VAL_P | XIVE_ESB_VAL_Q) 264 #define XIVE_ESB_OFF XIVE_ESB_VAL_Q 265 266 bool xive_esb_trigger(uint8_t *pq); 267 bool xive_esb_eoi(uint8_t *pq); 268 uint8_t xive_esb_set(uint8_t *pq, uint8_t value); 269 270 /* 271 * "magic" Event State Buffer (ESB) MMIO offsets. 272 * 273 * The following offsets into the ESB MMIO allow to read or manipulate 274 * the PQ bits. They must be used with an 8-byte load instruction. 275 * They all return the previous state of the interrupt (atomically). 276 * 277 * Additionally, some ESB pages support doing an EOI via a store and 278 * some ESBs support doing a trigger via a separate trigger page. 279 */ 280 #define XIVE_ESB_STORE_EOI 0x400 /* Store */ 281 #define XIVE_ESB_LOAD_EOI 0x000 /* Load */ 282 #define XIVE_ESB_GET 0x800 /* Load */ 283 #define XIVE_ESB_INJECT 0x800 /* Store */ 284 #define XIVE_ESB_SET_PQ_00 0xc00 /* Load */ 285 #define XIVE_ESB_SET_PQ_01 0xd00 /* Load */ 286 #define XIVE_ESB_SET_PQ_10 0xe00 /* Load */ 287 #define XIVE_ESB_SET_PQ_11 0xf00 /* Load */ 288 289 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno); 290 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq); 291 292 /* 293 * Source status helpers 294 */ 295 static inline void xive_source_set_status(XiveSource *xsrc, uint32_t srcno, 296 uint8_t status, bool enable) 297 { 298 if (enable) { 299 xsrc->status[srcno] |= status; 300 } else { 301 xsrc->status[srcno] &= ~status; 302 } 303 } 304 305 static inline void xive_source_set_asserted(XiveSource *xsrc, uint32_t srcno, 306 bool enable) 307 { 308 xive_source_set_status(xsrc, srcno, XIVE_STATUS_ASSERTED, enable); 309 } 310 311 static inline bool xive_source_is_asserted(XiveSource *xsrc, uint32_t srcno) 312 { 313 return xsrc->status[srcno] & XIVE_STATUS_ASSERTED; 314 } 315 316 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, 317 Monitor *mon); 318 319 static inline bool xive_source_irq_is_lsi(XiveSource *xsrc, uint32_t srcno) 320 { 321 assert(srcno < xsrc->nr_irqs); 322 return test_bit(srcno, xsrc->lsi_map); 323 } 324 325 static inline void xive_source_irq_set_lsi(XiveSource *xsrc, uint32_t srcno) 326 { 327 assert(srcno < xsrc->nr_irqs); 328 bitmap_set(xsrc->lsi_map, srcno, 1); 329 } 330 331 void xive_source_set_irq(void *opaque, int srcno, int val); 332 333 /* 334 * XIVE Thread interrupt Management (TM) context 335 */ 336 337 #define TYPE_XIVE_TCTX "xive-tctx" 338 OBJECT_DECLARE_SIMPLE_TYPE(XiveTCTX, XIVE_TCTX) 339 340 /* 341 * XIVE Thread interrupt Management register rings : 342 * 343 * QW-0 User event-based exception state 344 * QW-1 O/S OS context for priority management, interrupt acks 345 * QW-2 Pool hypervisor pool context for virtual processors dispatched 346 * QW-3 Physical physical thread context and security context 347 */ 348 #define XIVE_TM_RING_COUNT 4 349 #define XIVE_TM_RING_SIZE 0x10 350 351 typedef struct XivePresenter XivePresenter; 352 353 struct XiveTCTX { 354 DeviceState parent_obj; 355 356 CPUState *cs; 357 qemu_irq hv_output; 358 qemu_irq os_output; 359 360 uint8_t regs[XIVE_TM_RING_COUNT * XIVE_TM_RING_SIZE]; 361 362 XivePresenter *xptr; 363 }; 364 365 static inline uint32_t xive_tctx_word2(uint8_t *ring) 366 { 367 return *((uint32_t *) &ring[TM_WORD2]); 368 } 369 370 /* 371 * XIVE Router 372 */ 373 typedef struct XiveFabric XiveFabric; 374 375 struct XiveRouter { 376 SysBusDevice parent; 377 378 XiveFabric *xfb; 379 }; 380 381 #define TYPE_XIVE_ROUTER "xive-router" 382 OBJECT_DECLARE_TYPE(XiveRouter, XiveRouterClass, 383 XIVE_ROUTER) 384 385 struct XiveRouterClass { 386 SysBusDeviceClass parent; 387 388 /* XIVE table accessors */ 389 int (*get_eas)(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 390 XiveEAS *eas); 391 int (*get_pq)(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 392 uint8_t *pq); 393 int (*set_pq)(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 394 uint8_t *pq); 395 int (*get_end)(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 396 XiveEND *end); 397 int (*write_end)(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 398 XiveEND *end, uint8_t word_number); 399 int (*get_nvt)(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 400 XiveNVT *nvt); 401 int (*write_nvt)(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 402 XiveNVT *nvt, uint8_t word_number); 403 uint8_t (*get_block_id)(XiveRouter *xrtr); 404 }; 405 406 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 407 XiveEAS *eas); 408 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 409 XiveEND *end); 410 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 411 XiveEND *end, uint8_t word_number); 412 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 413 XiveNVT *nvt); 414 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 415 XiveNVT *nvt, uint8_t word_number); 416 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked); 417 418 /* 419 * XIVE Presenter 420 */ 421 422 typedef struct XiveTCTXMatch { 423 XiveTCTX *tctx; 424 uint8_t ring; 425 } XiveTCTXMatch; 426 427 #define TYPE_XIVE_PRESENTER "xive-presenter" 428 #define XIVE_PRESENTER(obj) \ 429 INTERFACE_CHECK(XivePresenter, (obj), TYPE_XIVE_PRESENTER) 430 typedef struct XivePresenterClass XivePresenterClass; 431 DECLARE_CLASS_CHECKERS(XivePresenterClass, XIVE_PRESENTER, 432 TYPE_XIVE_PRESENTER) 433 434 #define XIVE_PRESENTER_GEN1_TIMA_OS 0x1 435 436 struct XivePresenterClass { 437 InterfaceClass parent; 438 int (*match_nvt)(XivePresenter *xptr, uint8_t format, 439 uint8_t nvt_blk, uint32_t nvt_idx, 440 bool cam_ignore, uint8_t priority, 441 uint32_t logic_serv, XiveTCTXMatch *match); 442 bool (*in_kernel)(const XivePresenter *xptr); 443 uint32_t (*get_config)(XivePresenter *xptr); 444 }; 445 446 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 447 uint8_t format, 448 uint8_t nvt_blk, uint32_t nvt_idx, 449 bool cam_ignore, uint32_t logic_serv); 450 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format, 451 uint8_t nvt_blk, uint32_t nvt_idx, 452 bool cam_ignore, uint8_t priority, 453 uint32_t logic_serv); 454 455 /* 456 * XIVE Fabric (Interface between Interrupt Controller and Machine) 457 */ 458 459 #define TYPE_XIVE_FABRIC "xive-fabric" 460 #define XIVE_FABRIC(obj) \ 461 INTERFACE_CHECK(XiveFabric, (obj), TYPE_XIVE_FABRIC) 462 typedef struct XiveFabricClass XiveFabricClass; 463 DECLARE_CLASS_CHECKERS(XiveFabricClass, XIVE_FABRIC, 464 TYPE_XIVE_FABRIC) 465 466 struct XiveFabricClass { 467 InterfaceClass parent; 468 int (*match_nvt)(XiveFabric *xfb, uint8_t format, 469 uint8_t nvt_blk, uint32_t nvt_idx, 470 bool cam_ignore, uint8_t priority, 471 uint32_t logic_serv, XiveTCTXMatch *match); 472 }; 473 474 /* 475 * XIVE END ESBs 476 */ 477 478 #define TYPE_XIVE_END_SOURCE "xive-end-source" 479 OBJECT_DECLARE_SIMPLE_TYPE(XiveENDSource, XIVE_END_SOURCE) 480 481 struct XiveENDSource { 482 DeviceState parent; 483 484 uint32_t nr_ends; 485 486 /* ESB memory region */ 487 uint32_t esb_shift; 488 MemoryRegion esb_mmio; 489 490 XiveRouter *xrtr; 491 }; 492 493 /* 494 * For legacy compatibility, the exceptions define up to 256 different 495 * priorities. P9 implements only 9 levels : 8 active levels [0 - 7] 496 * and the least favored level 0xFF. 497 */ 498 #define XIVE_PRIORITY_MAX 7 499 500 /* 501 * Convert a priority number to an Interrupt Pending Buffer (IPB) 502 * register, which indicates a pending interrupt at the priority 503 * corresponding to the bit number 504 */ 505 static inline uint8_t xive_priority_to_ipb(uint8_t priority) 506 { 507 return priority > XIVE_PRIORITY_MAX ? 508 0 : 1 << (XIVE_PRIORITY_MAX - priority); 509 } 510 511 /* 512 * XIVE Thread Interrupt Management Aera (TIMA) 513 * 514 * This region gives access to the registers of the thread interrupt 515 * management context. It is four page wide, each page providing a 516 * different view of the registers. The page with the lower offset is 517 * the most privileged and gives access to the entire context. 518 */ 519 #define XIVE_TM_HW_PAGE 0x0 520 #define XIVE_TM_HV_PAGE 0x1 521 #define XIVE_TM_OS_PAGE 0x2 522 #define XIVE_TM_USER_PAGE 0x3 523 524 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 525 uint64_t value, unsigned size); 526 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 527 unsigned size); 528 529 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon); 530 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp); 531 void xive_tctx_reset(XiveTCTX *tctx); 532 void xive_tctx_destroy(XiveTCTX *tctx); 533 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb); 534 void xive_tctx_reset_os_signal(XiveTCTX *tctx); 535 536 /* 537 * KVM XIVE device helpers 538 */ 539 540 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp); 541 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val); 542 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp); 543 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp); 544 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp); 545 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp); 546 547 #endif /* PPC_XIVE_H */ 548