1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * 5 * The POWER9 processor comes with a new interrupt controller, called 6 * XIVE as "eXternal Interrupt Virtualization Engine". 7 * 8 * = Overall architecture 9 * 10 * 11 * XIVE Interrupt Controller 12 * +------------------------------------+ IPIs 13 * | +---------+ +---------+ +--------+ | +-------+ 14 * | |VC | |CQ | |PC |----> | CORES | 15 * | | esb | | | | |----> | | 16 * | | eas | | Bridge | | tctx |----> | | 17 * | |SC end | | | | nvt | | | | 18 * +------+ | +---------+ +----+----+ +--------+ | +-+-+-+-+ 19 * | RAM | +------------------|-----------------+ | | | 20 * | | | | | | 21 * | | | | | | 22 * | | +--------------------v------------------------v-v-v--+ other 23 * | <--+ Power Bus +--> chips 24 * | esb | +---------+-----------------------+------------------+ 25 * | eas | | | 26 * | end | +--|------+ | 27 * | nvt | +----+----+ | +----+----+ 28 * +------+ |SC | | |SC | 29 * | | | | | 30 * | PQ-bits | | | PQ-bits | 31 * | local |-+ | in VC | 32 * +---------+ +---------+ 33 * PCIe NX,NPU,CAPI 34 * 35 * SC: Source Controller (aka. IVSE) 36 * VC: Virtualization Controller (aka. IVRE) 37 * PC: Presentation Controller (aka. IVPE) 38 * CQ: Common Queue (Bridge) 39 * 40 * PQ-bits: 2 bits source state machine (P:pending Q:queued) 41 * esb: Event State Buffer (Array of PQ bits in an IVSE) 42 * eas: Event Assignment Structure 43 * end: Event Notification Descriptor 44 * nvt: Notification Virtual Target 45 * tctx: Thread interrupt Context 46 * 47 * 48 * The XIVE IC is composed of three sub-engines : 49 * 50 * - Interrupt Virtualization Source Engine (IVSE), or Source 51 * Controller (SC). These are found in PCI PHBs, in the PSI host 52 * bridge controller, but also inside the main controller for the 53 * core IPIs and other sub-chips (NX, CAP, NPU) of the 54 * chip/processor. They are configured to feed the IVRE with events. 55 * 56 * - Interrupt Virtualization Routing Engine (IVRE) or Virtualization 57 * Controller (VC). Its job is to match an event source with an 58 * Event Notification Descriptor (END). 59 * 60 * - Interrupt Virtualization Presentation Engine (IVPE) or 61 * Presentation Controller (PC). It maintains the interrupt context 62 * state of each thread and handles the delivery of the external 63 * exception to the thread. 64 * 65 * In XIVE 1.0, the sub-engines used to be referred as: 66 * 67 * SC Source Controller 68 * VC Virtualization Controller 69 * PC Presentation Controller 70 * CQ Common Queue (PowerBUS Bridge) 71 * 72 * 73 * = XIVE internal tables 74 * 75 * Each of the sub-engines uses a set of tables to redirect exceptions 76 * from event sources to CPU threads. 77 * 78 * +-------+ 79 * User or OS | EQ | 80 * or +------>|entries| 81 * Hypervisor | | .. | 82 * Memory | +-------+ 83 * | ^ 84 * | | 85 * +-------------------------------------------------+ 86 * | | 87 * Hypervisor +------+ +---+--+ +---+--+ +------+ 88 * Memory | ESB | | EAT | | ENDT | | NVTT | 89 * (skiboot) +----+-+ +----+-+ +----+-+ +------+ 90 * ^ | ^ | ^ | ^ 91 * | | | | | | | 92 * +-------------------------------------------------+ 93 * | | | | | | | 94 * | | | | | | | 95 * +----|--|--------|--|--------|--|-+ +-|-----+ +------+ 96 * | | | | | | | | | | tctx| |Thread| 97 * IPI or --> | + v + v + v |---| + .. |-----> | 98 * HW events --> | | | | | | 99 * IVSE | IVRE | | IVPE | +------+ 100 * +---------------------------------+ +-------+ 101 * 102 * 103 * 104 * The IVSE have a 2-bits state machine, P for pending and Q for queued, 105 * for each source that allows events to be triggered. They are stored in 106 * an Event State Buffer (ESB) array and can be controlled by MMIOs. 107 * 108 * If the event is let through, the IVRE looks up in the Event Assignment 109 * Structure (EAS) table for an Event Notification Descriptor (END) 110 * configured for the source. Each Event Notification Descriptor defines 111 * a notification path to a CPU and an in-memory Event Queue, in which 112 * will be enqueued an EQ data for the OS to pull. 113 * 114 * The IVPE determines if a Notification Virtual Target (NVT) can 115 * handle the event by scanning the thread contexts of the VCPUs 116 * dispatched on the processor HW threads. It maintains the state of 117 * the thread interrupt context (TCTX) of each thread in a NVT table. 118 * 119 * = Acronyms 120 * 121 * Description In XIVE 1.0, used to be referred as 122 * 123 * EAS Event Assignment Structure IVE Interrupt Virt. Entry 124 * EAT Event Assignment Table IVT Interrupt Virt. Table 125 * ENDT Event Notif. Descriptor Table EQDT Event Queue Desc. Table 126 * EQ Event Queue same 127 * ESB Event State Buffer SBE State Bit Entry 128 * NVT Notif. Virtual Target VPD Virtual Processor Desc. 129 * NVTT Notif. Virtual Target Table VPDT Virtual Processor Desc. Table 130 * TCTX Thread interrupt Context 131 * 132 * 133 * Copyright (c) 2017-2018, IBM Corporation. 134 * 135 * This code is licensed under the GPL version 2 or later. See the 136 * COPYING file in the top-level directory. 137 * 138 */ 139 140 #ifndef PPC_XIVE_H 141 #define PPC_XIVE_H 142 143 #include "sysemu/kvm.h" 144 #include "hw/sysbus.h" 145 #include "hw/ppc/xive_regs.h" 146 #include "qom/object.h" 147 148 /* 149 * XIVE Notifier (Interface between Source and Router) 150 */ 151 152 typedef struct XiveNotifier XiveNotifier; 153 154 #define TYPE_XIVE_NOTIFIER "xive-notifier" 155 #define XIVE_NOTIFIER(obj) \ 156 INTERFACE_CHECK(XiveNotifier, (obj), TYPE_XIVE_NOTIFIER) 157 typedef struct XiveNotifierClass XiveNotifierClass; 158 DECLARE_CLASS_CHECKERS(XiveNotifierClass, XIVE_NOTIFIER, 159 TYPE_XIVE_NOTIFIER) 160 161 struct XiveNotifierClass { 162 InterfaceClass parent; 163 void (*notify)(XiveNotifier *xn, uint32_t lisn); 164 }; 165 166 /* 167 * XIVE Interrupt Source 168 */ 169 170 #define TYPE_XIVE_SOURCE "xive-source" 171 typedef struct XiveSource XiveSource; 172 DECLARE_INSTANCE_CHECKER(XiveSource, XIVE_SOURCE, 173 TYPE_XIVE_SOURCE) 174 175 /* 176 * XIVE Interrupt Source characteristics, which define how the ESB are 177 * controlled. 178 */ 179 #define XIVE_SRC_H_INT_ESB 0x1 /* ESB managed with hcall H_INT_ESB */ 180 #define XIVE_SRC_STORE_EOI 0x2 /* Store EOI supported */ 181 182 struct XiveSource { 183 DeviceState parent; 184 185 /* IRQs */ 186 uint32_t nr_irqs; 187 unsigned long *lsi_map; 188 189 /* PQ bits and LSI assertion bit */ 190 uint8_t *status; 191 192 /* ESB memory region */ 193 uint64_t esb_flags; 194 uint32_t esb_shift; 195 MemoryRegion esb_mmio; 196 MemoryRegion esb_mmio_emulated; 197 198 /* KVM support */ 199 void *esb_mmap; 200 MemoryRegion esb_mmio_kvm; 201 202 XiveNotifier *xive; 203 }; 204 205 /* 206 * ESB MMIO setting. Can be one page, for both source triggering and 207 * source management, or two different pages. See below for magic 208 * values. 209 */ 210 #define XIVE_ESB_4K 12 /* PSI HB only */ 211 #define XIVE_ESB_4K_2PAGE 13 212 #define XIVE_ESB_64K 16 213 #define XIVE_ESB_64K_2PAGE 17 214 215 static inline bool xive_source_esb_has_2page(XiveSource *xsrc) 216 { 217 return xsrc->esb_shift == XIVE_ESB_64K_2PAGE || 218 xsrc->esb_shift == XIVE_ESB_4K_2PAGE; 219 } 220 221 static inline size_t xive_source_esb_len(XiveSource *xsrc) 222 { 223 return (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 224 } 225 226 /* The trigger page is always the first/even page */ 227 static inline hwaddr xive_source_esb_page(XiveSource *xsrc, uint32_t srcno) 228 { 229 assert(srcno < xsrc->nr_irqs); 230 return (1ull << xsrc->esb_shift) * srcno; 231 } 232 233 /* In a two pages ESB MMIO setting, the odd page is for management */ 234 static inline hwaddr xive_source_esb_mgmt(XiveSource *xsrc, int srcno) 235 { 236 hwaddr addr = xive_source_esb_page(xsrc, srcno); 237 238 if (xive_source_esb_has_2page(xsrc)) { 239 addr += (1 << (xsrc->esb_shift - 1)); 240 } 241 242 return addr; 243 } 244 245 /* 246 * Each interrupt source has a 2-bit state machine which can be 247 * controlled by MMIO. P indicates that an interrupt is pending (has 248 * been sent to a queue and is waiting for an EOI). Q indicates that 249 * the interrupt has been triggered while pending. 250 * 251 * This acts as a coalescing mechanism in order to guarantee that a 252 * given interrupt only occurs at most once in a queue. 253 * 254 * When doing an EOI, the Q bit will indicate if the interrupt 255 * needs to be re-triggered. 256 */ 257 #define XIVE_STATUS_ASSERTED 0x4 /* Extra bit for LSI */ 258 #define XIVE_ESB_VAL_P 0x2 259 #define XIVE_ESB_VAL_Q 0x1 260 261 #define XIVE_ESB_RESET 0x0 262 #define XIVE_ESB_PENDING XIVE_ESB_VAL_P 263 #define XIVE_ESB_QUEUED (XIVE_ESB_VAL_P | XIVE_ESB_VAL_Q) 264 #define XIVE_ESB_OFF XIVE_ESB_VAL_Q 265 266 /* 267 * "magic" Event State Buffer (ESB) MMIO offsets. 268 * 269 * The following offsets into the ESB MMIO allow to read or manipulate 270 * the PQ bits. They must be used with an 8-byte load instruction. 271 * They all return the previous state of the interrupt (atomically). 272 * 273 * Additionally, some ESB pages support doing an EOI via a store and 274 * some ESBs support doing a trigger via a separate trigger page. 275 */ 276 #define XIVE_ESB_STORE_EOI 0x400 /* Store */ 277 #define XIVE_ESB_LOAD_EOI 0x000 /* Load */ 278 #define XIVE_ESB_GET 0x800 /* Load */ 279 #define XIVE_ESB_SET_PQ_00 0xc00 /* Load */ 280 #define XIVE_ESB_SET_PQ_01 0xd00 /* Load */ 281 #define XIVE_ESB_SET_PQ_10 0xe00 /* Load */ 282 #define XIVE_ESB_SET_PQ_11 0xf00 /* Load */ 283 284 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno); 285 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq); 286 287 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, 288 Monitor *mon); 289 290 static inline bool xive_source_irq_is_lsi(XiveSource *xsrc, uint32_t srcno) 291 { 292 assert(srcno < xsrc->nr_irqs); 293 return test_bit(srcno, xsrc->lsi_map); 294 } 295 296 static inline void xive_source_irq_set_lsi(XiveSource *xsrc, uint32_t srcno) 297 { 298 assert(srcno < xsrc->nr_irqs); 299 bitmap_set(xsrc->lsi_map, srcno, 1); 300 } 301 302 void xive_source_set_irq(void *opaque, int srcno, int val); 303 304 /* 305 * XIVE Thread interrupt Management (TM) context 306 */ 307 308 #define TYPE_XIVE_TCTX "xive-tctx" 309 typedef struct XiveTCTX XiveTCTX; 310 DECLARE_INSTANCE_CHECKER(XiveTCTX, XIVE_TCTX, 311 TYPE_XIVE_TCTX) 312 313 /* 314 * XIVE Thread interrupt Management register rings : 315 * 316 * QW-0 User event-based exception state 317 * QW-1 O/S OS context for priority management, interrupt acks 318 * QW-2 Pool hypervisor pool context for virtual processors dispatched 319 * QW-3 Physical physical thread context and security context 320 */ 321 #define XIVE_TM_RING_COUNT 4 322 #define XIVE_TM_RING_SIZE 0x10 323 324 typedef struct XivePresenter XivePresenter; 325 326 struct XiveTCTX { 327 DeviceState parent_obj; 328 329 CPUState *cs; 330 qemu_irq hv_output; 331 qemu_irq os_output; 332 333 uint8_t regs[XIVE_TM_RING_COUNT * XIVE_TM_RING_SIZE]; 334 335 XivePresenter *xptr; 336 }; 337 338 /* 339 * XIVE Router 340 */ 341 typedef struct XiveFabric XiveFabric; 342 343 struct XiveRouter { 344 SysBusDevice parent; 345 346 XiveFabric *xfb; 347 }; 348 349 #define TYPE_XIVE_ROUTER "xive-router" 350 OBJECT_DECLARE_TYPE(XiveRouter, XiveRouterClass, 351 xive_router, XIVE_ROUTER) 352 353 struct XiveRouterClass { 354 SysBusDeviceClass parent; 355 356 /* XIVE table accessors */ 357 int (*get_eas)(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 358 XiveEAS *eas); 359 int (*get_end)(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 360 XiveEND *end); 361 int (*write_end)(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 362 XiveEND *end, uint8_t word_number); 363 int (*get_nvt)(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 364 XiveNVT *nvt); 365 int (*write_nvt)(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 366 XiveNVT *nvt, uint8_t word_number); 367 uint8_t (*get_block_id)(XiveRouter *xrtr); 368 }; 369 370 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 371 XiveEAS *eas); 372 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 373 XiveEND *end); 374 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 375 XiveEND *end, uint8_t word_number); 376 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 377 XiveNVT *nvt); 378 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 379 XiveNVT *nvt, uint8_t word_number); 380 void xive_router_notify(XiveNotifier *xn, uint32_t lisn); 381 382 /* 383 * XIVE Presenter 384 */ 385 386 typedef struct XiveTCTXMatch { 387 XiveTCTX *tctx; 388 uint8_t ring; 389 } XiveTCTXMatch; 390 391 #define TYPE_XIVE_PRESENTER "xive-presenter" 392 #define XIVE_PRESENTER(obj) \ 393 INTERFACE_CHECK(XivePresenter, (obj), TYPE_XIVE_PRESENTER) 394 typedef struct XivePresenterClass XivePresenterClass; 395 DECLARE_CLASS_CHECKERS(XivePresenterClass, XIVE_PRESENTER, 396 TYPE_XIVE_PRESENTER) 397 398 struct XivePresenterClass { 399 InterfaceClass parent; 400 int (*match_nvt)(XivePresenter *xptr, uint8_t format, 401 uint8_t nvt_blk, uint32_t nvt_idx, 402 bool cam_ignore, uint8_t priority, 403 uint32_t logic_serv, XiveTCTXMatch *match); 404 bool (*in_kernel)(const XivePresenter *xptr); 405 }; 406 407 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 408 uint8_t format, 409 uint8_t nvt_blk, uint32_t nvt_idx, 410 bool cam_ignore, uint32_t logic_serv); 411 412 /* 413 * XIVE Fabric (Interface between Interrupt Controller and Machine) 414 */ 415 416 #define TYPE_XIVE_FABRIC "xive-fabric" 417 #define XIVE_FABRIC(obj) \ 418 INTERFACE_CHECK(XiveFabric, (obj), TYPE_XIVE_FABRIC) 419 typedef struct XiveFabricClass XiveFabricClass; 420 DECLARE_CLASS_CHECKERS(XiveFabricClass, XIVE_FABRIC, 421 TYPE_XIVE_FABRIC) 422 423 struct XiveFabricClass { 424 InterfaceClass parent; 425 int (*match_nvt)(XiveFabric *xfb, uint8_t format, 426 uint8_t nvt_blk, uint32_t nvt_idx, 427 bool cam_ignore, uint8_t priority, 428 uint32_t logic_serv, XiveTCTXMatch *match); 429 }; 430 431 /* 432 * XIVE END ESBs 433 */ 434 435 #define TYPE_XIVE_END_SOURCE "xive-end-source" 436 typedef struct XiveENDSource XiveENDSource; 437 DECLARE_INSTANCE_CHECKER(XiveENDSource, XIVE_END_SOURCE, 438 TYPE_XIVE_END_SOURCE) 439 440 struct XiveENDSource { 441 DeviceState parent; 442 443 uint32_t nr_ends; 444 445 /* ESB memory region */ 446 uint32_t esb_shift; 447 MemoryRegion esb_mmio; 448 449 XiveRouter *xrtr; 450 }; 451 452 /* 453 * For legacy compatibility, the exceptions define up to 256 different 454 * priorities. P9 implements only 9 levels : 8 active levels [0 - 7] 455 * and the least favored level 0xFF. 456 */ 457 #define XIVE_PRIORITY_MAX 7 458 459 /* 460 * XIVE Thread Interrupt Management Aera (TIMA) 461 * 462 * This region gives access to the registers of the thread interrupt 463 * management context. It is four page wide, each page providing a 464 * different view of the registers. The page with the lower offset is 465 * the most privileged and gives access to the entire context. 466 */ 467 #define XIVE_TM_HW_PAGE 0x0 468 #define XIVE_TM_HV_PAGE 0x1 469 #define XIVE_TM_OS_PAGE 0x2 470 #define XIVE_TM_USER_PAGE 0x3 471 472 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 473 uint64_t value, unsigned size); 474 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 475 unsigned size); 476 477 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon); 478 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp); 479 void xive_tctx_reset(XiveTCTX *tctx); 480 void xive_tctx_destroy(XiveTCTX *tctx); 481 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb); 482 483 /* 484 * KVM XIVE device helpers 485 */ 486 487 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp); 488 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val); 489 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp); 490 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp); 491 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp); 492 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp); 493 494 #endif /* PPC_XIVE_H */ 495