1 #ifndef LOADER_H 2 #define LOADER_H 3 #include "hw/nvram/fw_cfg.h" 4 5 /* loader.c */ 6 /** 7 * get_image_size: retrieve size of an image file 8 * @filename: Path to the image file 9 * 10 * Returns the size of the image file on success, -1 otherwise. 11 * On error, errno is also set as appropriate. 12 */ 13 int64_t get_image_size(const char *filename); 14 /** 15 * load_image_size: load an image file into specified buffer 16 * @filename: Path to the image file 17 * @addr: Buffer to load image into 18 * @size: Size of buffer in bytes 19 * 20 * Load an image file from disk into the specified buffer. 21 * If the image is larger than the specified buffer, only 22 * @size bytes are read (this is not considered an error). 23 * 24 * Prefer to use the GLib function g_file_get_contents() rather 25 * than a "get_image_size()/g_malloc()/load_image_size()" sequence. 26 * 27 * Returns the number of bytes read, or -1 on error. On error, 28 * errno is also set as appropriate. 29 */ 30 ssize_t load_image_size(const char *filename, void *addr, size_t size); 31 32 /**load_image_targphys_as: 33 * @filename: Path to the image file 34 * @addr: Address to load the image to 35 * @max_sz: The maximum size of the image to load 36 * @as: The AddressSpace to load the ELF to. The value of address_space_memory 37 * is used if nothing is supplied here. 38 * 39 * Load a fixed image into memory. 40 * 41 * Returns the size of the loaded image on success, -1 otherwise. 42 */ 43 ssize_t load_image_targphys_as(const char *filename, 44 hwaddr addr, uint64_t max_sz, AddressSpace *as); 45 46 /**load_targphys_hex_as: 47 * @filename: Path to the .hex file 48 * @entry: Store the entry point given by the .hex file 49 * @as: The AddressSpace to load the .hex file to. The value of 50 * address_space_memory is used if nothing is supplied here. 51 * 52 * Load a fixed .hex file into memory. 53 * 54 * Returns the size of the loaded .hex file on success, -1 otherwise. 55 */ 56 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 57 AddressSpace *as); 58 59 /** load_image_targphys: 60 * Same as load_image_targphys_as(), but doesn't allow the caller to specify 61 * an AddressSpace. 62 */ 63 ssize_t load_image_targphys(const char *filename, hwaddr, 64 uint64_t max_sz); 65 66 /** 67 * load_image_mr: load an image into a memory region 68 * @filename: Path to the image file 69 * @mr: Memory Region to load into 70 * 71 * Load the specified file into the memory region. 72 * The file loaded is registered as a ROM, so its contents will be 73 * reinstated whenever the system is reset. 74 * If the file is larger than the memory region's size the call will fail. 75 * Returns -1 on failure, or the size of the file. 76 */ 77 ssize_t load_image_mr(const char *filename, MemoryRegion *mr); 78 79 /* This is the limit on the maximum uncompressed image size that 80 * load_image_gzipped_buffer() will read. It prevents 81 * g_malloc() in those functions from allocating a huge amount of memory. 82 */ 83 #define LOAD_IMAGE_MAX_GUNZIP_BYTES (256 << 20) 84 85 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 86 uint8_t **buffer); 87 /** 88 * unpack_efi_zboot_image: 89 * @buffer: pointer to a variable holding the address of a buffer containing the 90 * image 91 * @size: pointer to a variable holding the size of the buffer 92 * 93 * Check whether the buffer contains a EFI zboot image, and if it does, extract 94 * the compressed payload and decompress it into a new buffer. If successful, 95 * the old buffer is freed, and the *buffer and size variables pointed to by the 96 * function arguments are updated to refer to the newly populated buffer. 97 * 98 * Returns 0 if the image could not be identified as a EFI zboot image. 99 * Returns -1 if the buffer contents were identified as a EFI zboot image, but 100 * unpacking failed for any reason. 101 * Returns the size of the decompressed payload if decompression was performed 102 * successfully. 103 */ 104 ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size); 105 106 #define ELF_LOAD_FAILED -1 107 #define ELF_LOAD_NOT_ELF -2 108 #define ELF_LOAD_WRONG_ARCH -3 109 #define ELF_LOAD_WRONG_ENDIAN -4 110 #define ELF_LOAD_TOO_BIG -5 111 const char *load_elf_strerror(ssize_t error); 112 113 /** load_elf_ram_sym: 114 * @filename: Path of ELF file 115 * @elf_note_fn: optional function to parse ELF Note type 116 * passed via @translate_opaque 117 * @translate_fn: optional function to translate load addresses 118 * @translate_opaque: opaque data passed to @translate_fn 119 * @pentry: Populated with program entry point. Ignored if NULL. 120 * @lowaddr: Populated with lowest loaded address. Ignored if NULL. 121 * @highaddr: Populated with highest loaded address. Ignored if NULL. 122 * @pflags: Populated with ELF processor-specific flags. Ignore if NULL. 123 * @bigendian: Expected ELF endianness. 0 for LE otherwise BE 124 * @elf_machine: Expected ELF machine type 125 * @clear_lsb: Set to mask off LSB of addresses (Some architectures use 126 * this for non-address data) 127 * @data_swab: Set to order of byte swapping for data. 0 for no swap, 1 128 * for swapping bytes within halfwords, 2 for bytes within 129 * words and 3 for within doublewords. 130 * @as: The AddressSpace to load the ELF to. The value of address_space_memory 131 * is used if nothing is supplied here. 132 * @load_rom : Load ELF binary as ROM 133 * @sym_cb: Callback function for symbol table entries 134 * 135 * Load an ELF file's contents to the emulated system's address space. 136 * Clients may optionally specify a callback to perform address 137 * translations. @pentry, @lowaddr and @highaddr are optional pointers 138 * which will be populated with various load information. @bigendian and 139 * @elf_machine give the expected endianness and machine for the ELF the 140 * load will fail if the target ELF does not match. Some architectures 141 * have some architecture-specific behaviours that come into effect when 142 * their particular values for @elf_machine are set. 143 * If @elf_machine is EM_NONE then the machine type will be read from the 144 * ELF header and no checks will be carried out against the machine type. 145 */ 146 typedef void (*symbol_fn_t)(const char *st_name, int st_info, 147 uint64_t st_value, uint64_t st_size); 148 149 ssize_t load_elf_ram_sym(const char *filename, 150 uint64_t (*elf_note_fn)(void *, void *, bool), 151 uint64_t (*translate_fn)(void *, uint64_t), 152 void *translate_opaque, uint64_t *pentry, 153 uint64_t *lowaddr, uint64_t *highaddr, 154 uint32_t *pflags, int big_endian, int elf_machine, 155 int clear_lsb, int data_swab, 156 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb); 157 158 /** load_elf_ram: 159 * Same as load_elf_ram_sym(), but doesn't allow the caller to specify a 160 * symbol callback function 161 */ 162 ssize_t load_elf_ram(const char *filename, 163 uint64_t (*elf_note_fn)(void *, void *, bool), 164 uint64_t (*translate_fn)(void *, uint64_t), 165 void *translate_opaque, uint64_t *pentry, 166 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 167 int big_endian, int elf_machine, int clear_lsb, 168 int data_swab, AddressSpace *as, bool load_rom); 169 170 /** load_elf_as: 171 * Same as load_elf_ram(), but always loads the elf as ROM 172 */ 173 ssize_t load_elf_as(const char *filename, 174 uint64_t (*elf_note_fn)(void *, void *, bool), 175 uint64_t (*translate_fn)(void *, uint64_t), 176 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 177 uint64_t *highaddr, uint32_t *pflags, int big_endian, 178 int elf_machine, int clear_lsb, int data_swab, 179 AddressSpace *as); 180 181 /** load_elf: 182 * Same as load_elf_as(), but doesn't allow the caller to specify an 183 * AddressSpace. 184 */ 185 ssize_t load_elf(const char *filename, 186 uint64_t (*elf_note_fn)(void *, void *, bool), 187 uint64_t (*translate_fn)(void *, uint64_t), 188 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 189 uint64_t *highaddr, uint32_t *pflags, int big_endian, 190 int elf_machine, int clear_lsb, int data_swab); 191 192 /** load_elf_hdr: 193 * @filename: Path of ELF file 194 * @hdr: Buffer to populate with header data. Header data will not be 195 * filled if set to NULL. 196 * @is64: Set to true if the ELF is 64bit. Ignored if set to NULL 197 * @errp: Populated with an error in failure cases 198 * 199 * Inspect an ELF file's header. Read its full header contents into a 200 * buffer and/or determine if the ELF is 64bit. 201 */ 202 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp); 203 204 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 205 int bswap_needed, hwaddr target_page_size); 206 207 #define LOAD_UIMAGE_LOADADDR_INVALID (-1) 208 209 /** load_uimage_as: 210 * @filename: Path of uimage file 211 * @ep: Populated with program entry point. Ignored if NULL. 212 * @loadaddr: load address if none specified in the image or when loading a 213 * ramdisk. Populated with the load address. Ignored if NULL or 214 * LOAD_UIMAGE_LOADADDR_INVALID (images which do not specify a load 215 * address will not be loadable). 216 * @is_linux: Is set to true if the image loaded is Linux. Ignored if NULL. 217 * @translate_fn: optional function to translate load addresses 218 * @translate_opaque: opaque data passed to @translate_fn 219 * @as: The AddressSpace to load the ELF to. The value of address_space_memory 220 * is used if nothing is supplied here. 221 * 222 * Loads a u-boot image into memory. 223 * 224 * Returns the size of the loaded image on success, -1 otherwise. 225 */ 226 ssize_t load_uimage_as(const char *filename, hwaddr *ep, 227 hwaddr *loadaddr, int *is_linux, 228 uint64_t (*translate_fn)(void *, uint64_t), 229 void *translate_opaque, AddressSpace *as); 230 231 /** load_uimage: 232 * Same as load_uimage_as(), but doesn't allow the caller to specify an 233 * AddressSpace. 234 */ 235 ssize_t load_uimage(const char *filename, hwaddr *ep, 236 hwaddr *loadaddr, int *is_linux, 237 uint64_t (*translate_fn)(void *, uint64_t), 238 void *translate_opaque); 239 240 /** 241 * load_ramdisk_as: 242 * @filename: Path to the ramdisk image 243 * @addr: Memory address to load the ramdisk to 244 * @max_sz: Maximum allowed ramdisk size (for non-u-boot ramdisks) 245 * @as: The AddressSpace to load the ELF to. The value of address_space_memory 246 * is used if nothing is supplied here. 247 * 248 * Load a ramdisk image with U-Boot header to the specified memory 249 * address. 250 * 251 * Returns the size of the loaded image on success, -1 otherwise. 252 */ 253 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 254 AddressSpace *as); 255 256 /** 257 * load_ramdisk: 258 * Same as load_ramdisk_as(), but doesn't allow the caller to specify 259 * an AddressSpace. 260 */ 261 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz); 262 263 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen); 264 265 ssize_t read_targphys(const char *name, 266 int fd, hwaddr dst_addr, size_t nbytes); 267 void pstrcpy_targphys(const char *name, 268 hwaddr dest, int buf_size, 269 const char *source); 270 271 ssize_t rom_add_file(const char *file, const char *fw_dir, 272 hwaddr addr, int32_t bootindex, 273 bool has_option_rom, MemoryRegion *mr, AddressSpace *as); 274 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 275 size_t max_len, hwaddr addr, 276 const char *fw_file_name, 277 FWCfgCallback fw_callback, 278 void *callback_opaque, AddressSpace *as, 279 bool read_only); 280 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 281 size_t datasize, size_t romsize, hwaddr addr, 282 AddressSpace *as); 283 int rom_check_and_register_reset(void); 284 void rom_set_fw(FWCfgState *f); 285 void rom_set_order_override(int order); 286 void rom_reset_order_override(void); 287 288 /** 289 * rom_transaction_begin: 290 * 291 * Call this before of a series of rom_add_*() calls. Call 292 * rom_transaction_end() afterwards to commit or abort. These functions are 293 * useful for undoing a series of rom_add_*() calls if image file loading fails 294 * partway through. 295 */ 296 void rom_transaction_begin(void); 297 298 /** 299 * rom_transaction_end: 300 * @commit: true to commit added roms, false to drop added roms 301 * 302 * Call this after a series of rom_add_*() calls. See rom_transaction_begin(). 303 */ 304 void rom_transaction_end(bool commit); 305 306 int rom_copy(uint8_t *dest, hwaddr addr, size_t size); 307 void *rom_ptr(hwaddr addr, size_t size); 308 /** 309 * rom_ptr_for_as: Return a pointer to ROM blob data for the address 310 * @as: AddressSpace to look for the ROM blob in 311 * @addr: Address within @as 312 * @size: size of data required in bytes 313 * 314 * Returns: pointer into the data which backs the matching ROM blob, 315 * or NULL if no blob covers the address range. 316 * 317 * This function looks for a ROM blob which covers the specified range 318 * of bytes of length @size starting at @addr within the address space 319 * @as. This is useful for code which runs as part of board 320 * initialization or CPU reset which wants to read data that is part 321 * of a user-supplied guest image or other guest memory contents, but 322 * which runs before the ROM loader's reset function has copied the 323 * blobs into guest memory. 324 * 325 * rom_ptr_for_as() will look not just for blobs loaded directly to 326 * the specified address, but also for blobs which were loaded to an 327 * alias of the region at a different location in the AddressSpace. 328 * In other words, if a machine model has RAM at address 0x0000_0000 329 * which is aliased to also appear at 0x1000_0000, rom_ptr_for_as() 330 * will return the correct data whether the guest image was linked and 331 * loaded at 0x0000_0000 or 0x1000_0000. Contrast rom_ptr(), which 332 * will only return data if the image load address is an exact match 333 * with the queried address. 334 * 335 * New code should prefer to use rom_ptr_for_as() instead of 336 * rom_ptr(). 337 */ 338 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size); 339 340 #define rom_add_file_fixed(_f, _a, _i) \ 341 rom_add_file(_f, NULL, _a, _i, false, NULL, NULL) 342 #define rom_add_blob_fixed(_f, _b, _l, _a) \ 343 rom_add_blob(_f, _b, _l, _l, _a, NULL, NULL, NULL, NULL, true) 344 #define rom_add_file_mr(_f, _mr, _i) \ 345 rom_add_file(_f, NULL, 0, _i, false, _mr, NULL) 346 #define rom_add_file_as(_f, _as, _i) \ 347 rom_add_file(_f, NULL, 0, _i, false, NULL, _as) 348 #define rom_add_file_fixed_as(_f, _a, _i, _as) \ 349 rom_add_file(_f, NULL, _a, _i, false, NULL, _as) 350 #define rom_add_blob_fixed_as(_f, _b, _l, _a, _as) \ 351 rom_add_blob(_f, _b, _l, _l, _a, NULL, NULL, NULL, _as, true) 352 353 ssize_t rom_add_vga(const char *file); 354 ssize_t rom_add_option(const char *file, int32_t bootindex); 355 356 /* This is the usual maximum in uboot, so if a uImage overflows this, it would 357 * overflow on real hardware too. */ 358 #define UBOOT_MAX_GUNZIP_BYTES (64 << 20) 359 360 typedef struct RomGap { 361 hwaddr base; 362 size_t size; 363 } RomGap; 364 365 /** 366 * rom_find_largest_gap_between: return largest gap between ROMs in given range 367 * 368 * Given a range of addresses, this function finds the largest 369 * contiguous subrange which has no ROMs loaded to it. That is, 370 * it finds the biggest gap which is free for use for other things. 371 */ 372 RomGap rom_find_largest_gap_between(hwaddr base, size_t size); 373 374 #endif 375