1 /*
2  * ARM GIC support
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Copyright (c) 2015 Huawei.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Written by Peter Maydell
8  * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #ifndef HW_ARM_GICV3_COMMON_H
25 #define HW_ARM_GICV3_COMMON_H
26 
27 #include "hw/sysbus.h"
28 #include "hw/intc/arm_gic_common.h"
29 
30 /*
31  * Maximum number of possible interrupts, determined by the GIC architecture.
32  * Note that this does not include LPIs. When implemented, these should be
33  * dealt with separately.
34  */
35 #define GICV3_MAXIRQ 1020
36 #define GICV3_MAXSPI (GICV3_MAXIRQ - GIC_INTERNAL)
37 
38 /* Number of SGI target-list bits */
39 #define GICV3_TARGETLIST_BITS 16
40 
41 /* Maximum number of list registers (architectural limit) */
42 #define GICV3_LR_MAX 16
43 
44 /* Minimum BPR for Secure, or when security not enabled */
45 #define GIC_MIN_BPR 0
46 /* Minimum BPR for Nonsecure when security is enabled */
47 #define GIC_MIN_BPR_NS (GIC_MIN_BPR + 1)
48 
49 /* For some distributor fields we want to model the array of 32-bit
50  * register values which hold various bitmaps corresponding to enabled,
51  * pending, etc bits. These macros and functions facilitate that; the
52  * APIs are generally modelled on the generic bitmap.h functions
53  * (which are unsuitable here because they use 'unsigned long' as the
54  * underlying storage type, which is very awkward when you need to
55  * access the data as 32-bit values.)
56  * Each bitmap contains a bit for each interrupt. Although there is
57  * space for the PPIs and SGIs, those bits (the first 32) are never
58  * used as that state lives in the redistributor. The unused bits are
59  * provided purely so that interrupt X's state is always in bit X; this
60  * avoids bugs where we forget to subtract GIC_INTERNAL from an
61  * interrupt number.
62  */
63 #define GICV3_BMP_SIZE (DIV_ROUND_UP(GICV3_MAXIRQ, 32))
64 
65 #define GIC_DECLARE_BITMAP(name) \
66     uint32_t name[GICV3_BMP_SIZE]
67 
68 #define GIC_BIT_MASK(nr) (1U << ((nr) % 32))
69 #define GIC_BIT_WORD(nr) ((nr) / 32)
70 
71 static inline void gic_bmp_set_bit(int nr, uint32_t *addr)
72 {
73     uint32_t mask = GIC_BIT_MASK(nr);
74     uint32_t *p = addr + GIC_BIT_WORD(nr);
75 
76     *p |= mask;
77 }
78 
79 static inline void gic_bmp_clear_bit(int nr, uint32_t *addr)
80 {
81     uint32_t mask = GIC_BIT_MASK(nr);
82     uint32_t *p = addr + GIC_BIT_WORD(nr);
83 
84     *p &= ~mask;
85 }
86 
87 static inline int gic_bmp_test_bit(int nr, const uint32_t *addr)
88 {
89     return 1U & (addr[GIC_BIT_WORD(nr)] >> (nr & 31));
90 }
91 
92 static inline void gic_bmp_replace_bit(int nr, uint32_t *addr, int val)
93 {
94     uint32_t mask = GIC_BIT_MASK(nr);
95     uint32_t *p = addr + GIC_BIT_WORD(nr);
96 
97     *p &= ~mask;
98     *p |= (val & 1U) << (nr % 32);
99 }
100 
101 /* Return a pointer to the 32-bit word containing the specified bit. */
102 static inline uint32_t *gic_bmp_ptr32(uint32_t *addr, int nr)
103 {
104     return addr + GIC_BIT_WORD(nr);
105 }
106 
107 typedef struct GICv3State GICv3State;
108 typedef struct GICv3CPUState GICv3CPUState;
109 
110 /* Some CPU interface registers come in three flavours:
111  * Group0, Group1 (Secure) and Group1 (NonSecure)
112  * (where the latter two are exposed as a single banked system register).
113  * In the state struct they are implemented as a 3-element array which
114  * can be indexed into by the GICV3_G0, GICV3_G1 and GICV3_G1NS constants.
115  * If the CPU doesn't support EL3 then the G1 element is unused.
116  *
117  * These constants are also used to communicate the group to use for
118  * an interrupt or SGI when it is passed between the cpu interface and
119  * the redistributor or distributor. For those purposes the receiving end
120  * must be prepared to cope with a Group 1 Secure interrupt even if it does
121  * not have security support enabled, because security can be disabled
122  * independently in the CPU and in the GIC. In that case the receiver should
123  * treat an incoming Group 1 Secure interrupt as if it were Group 0.
124  * (This architectural requirement is why the _G1 element is the unused one
125  * in a no-EL3 CPU:  we would otherwise have to translate back and forth
126  * between (G0, G1NS) from the distributor and (G0, G1) in the CPU i/f.)
127  */
128 #define GICV3_G0 0
129 #define GICV3_G1 1
130 #define GICV3_G1NS 2
131 
132 /* ICC_CTLR_EL1, GICD_STATUSR and GICR_STATUSR are banked but not
133  * group-related, so those indices are just 0 for S and 1 for NS.
134  * (If the CPU or the GIC, respectively, don't support the Security
135  * extensions then the S element is unused.)
136  */
137 #define GICV3_S 0
138 #define GICV3_NS 1
139 
140 typedef struct {
141     int irq;
142     uint8_t prio;
143     int grp;
144 } PendingIrq;
145 
146 struct GICv3CPUState {
147     GICv3State *gic;
148     CPUState *cpu;
149     qemu_irq parent_irq;
150     qemu_irq parent_fiq;
151     qemu_irq parent_virq;
152     qemu_irq parent_vfiq;
153     qemu_irq maintenance_irq;
154 
155     /* Redistributor */
156     uint32_t level;                  /* Current IRQ level */
157     /* RD_base page registers */
158     uint32_t gicr_ctlr;
159     uint64_t gicr_typer;
160     uint32_t gicr_statusr[2];
161     uint32_t gicr_waker;
162     uint64_t gicr_propbaser;
163     uint64_t gicr_pendbaser;
164     /* SGI_base page registers */
165     uint32_t gicr_igroupr0;
166     uint32_t gicr_ienabler0;
167     uint32_t gicr_ipendr0;
168     uint32_t gicr_iactiver0;
169     uint32_t edge_trigger; /* ICFGR0 and ICFGR1 even bits */
170     uint32_t gicr_igrpmodr0;
171     uint32_t gicr_nsacr;
172     uint8_t gicr_ipriorityr[GIC_INTERNAL];
173 
174     /* CPU interface */
175     uint64_t icc_ctlr_el1[2];
176     uint64_t icc_pmr_el1;
177     uint64_t icc_bpr[3];
178     uint64_t icc_apr[3][4];
179     uint64_t icc_igrpen[3];
180     uint64_t icc_ctlr_el3;
181 
182     /* Virtualization control interface */
183     uint64_t ich_apr[3][4]; /* ich_apr[GICV3_G1][x] never used */
184     uint64_t ich_hcr_el2;
185     uint64_t ich_lr_el2[GICV3_LR_MAX];
186     uint64_t ich_vmcr_el2;
187 
188     /* Properties of the CPU interface. These are initialized from
189      * the settings in the CPU proper.
190      * If the number of implemented list registers is 0 then the
191      * virtualization support is not implemented.
192      */
193     int num_list_regs;
194     int vpribits; /* number of virtual priority bits */
195     int vprebits; /* number of virtual preemption bits */
196 
197     /* Current highest priority pending interrupt for this CPU.
198      * This is cached information that can be recalculated from the
199      * real state above; it doesn't need to be migrated.
200      */
201     PendingIrq hppi;
202     /* This is temporary working state, to avoid a malloc in gicv3_update() */
203     bool seenbetter;
204 };
205 
206 struct GICv3State {
207     /*< private >*/
208     SysBusDevice parent_obj;
209     /*< public >*/
210 
211     MemoryRegion iomem_dist; /* Distributor */
212     MemoryRegion iomem_redist; /* Redistributors */
213 
214     uint32_t num_cpu;
215     uint32_t num_irq;
216     uint32_t revision;
217     bool security_extn;
218     bool irq_reset_nonsecure;
219 
220     int dev_fd; /* kvm device fd if backed by kvm vgic support */
221     Error *migration_blocker;
222 
223     /* Distributor */
224 
225     /* for a GIC with the security extensions the NS banked version of this
226      * register is just an alias of bit 1 of the S banked version.
227      */
228     uint32_t gicd_ctlr;
229     uint32_t gicd_statusr[2];
230     GIC_DECLARE_BITMAP(group);        /* GICD_IGROUPR */
231     GIC_DECLARE_BITMAP(grpmod);       /* GICD_IGRPMODR */
232     GIC_DECLARE_BITMAP(enabled);      /* GICD_ISENABLER */
233     GIC_DECLARE_BITMAP(pending);      /* GICD_ISPENDR */
234     GIC_DECLARE_BITMAP(active);       /* GICD_ISACTIVER */
235     GIC_DECLARE_BITMAP(level);        /* Current level */
236     GIC_DECLARE_BITMAP(edge_trigger); /* GICD_ICFGR even bits */
237     uint8_t gicd_ipriority[GICV3_MAXIRQ];
238     uint64_t gicd_irouter[GICV3_MAXIRQ];
239     /* Cached information: pointer to the cpu i/f for the CPUs specified
240      * in the IROUTER registers
241      */
242     GICv3CPUState *gicd_irouter_target[GICV3_MAXIRQ];
243     uint32_t gicd_nsacr[DIV_ROUND_UP(GICV3_MAXIRQ, 16)];
244 
245     GICv3CPUState *cpu;
246 };
247 
248 #define GICV3_BITMAP_ACCESSORS(BMP)                                     \
249     static inline void gicv3_gicd_##BMP##_set(GICv3State *s, int irq)   \
250     {                                                                   \
251         gic_bmp_set_bit(irq, s->BMP);                                   \
252     }                                                                   \
253     static inline int gicv3_gicd_##BMP##_test(GICv3State *s, int irq)   \
254     {                                                                   \
255         return gic_bmp_test_bit(irq, s->BMP);                           \
256     }                                                                   \
257     static inline void gicv3_gicd_##BMP##_clear(GICv3State *s, int irq) \
258     {                                                                   \
259         gic_bmp_clear_bit(irq, s->BMP);                                 \
260     }                                                                   \
261     static inline void gicv3_gicd_##BMP##_replace(GICv3State *s,        \
262                                                   int irq, int value)   \
263     {                                                                   \
264         gic_bmp_replace_bit(irq, s->BMP, value);                        \
265     }
266 
267 GICV3_BITMAP_ACCESSORS(group)
268 GICV3_BITMAP_ACCESSORS(grpmod)
269 GICV3_BITMAP_ACCESSORS(enabled)
270 GICV3_BITMAP_ACCESSORS(pending)
271 GICV3_BITMAP_ACCESSORS(active)
272 GICV3_BITMAP_ACCESSORS(level)
273 GICV3_BITMAP_ACCESSORS(edge_trigger)
274 
275 #define TYPE_ARM_GICV3_COMMON "arm-gicv3-common"
276 #define ARM_GICV3_COMMON(obj) \
277      OBJECT_CHECK(GICv3State, (obj), TYPE_ARM_GICV3_COMMON)
278 #define ARM_GICV3_COMMON_CLASS(klass) \
279      OBJECT_CLASS_CHECK(ARMGICv3CommonClass, (klass), TYPE_ARM_GICV3_COMMON)
280 #define ARM_GICV3_COMMON_GET_CLASS(obj) \
281      OBJECT_GET_CLASS(ARMGICv3CommonClass, (obj), TYPE_ARM_GICV3_COMMON)
282 
283 typedef struct ARMGICv3CommonClass {
284     /*< private >*/
285     SysBusDeviceClass parent_class;
286     /*< public >*/
287 
288     void (*pre_save)(GICv3State *s);
289     void (*post_load)(GICv3State *s);
290 } ARMGICv3CommonClass;
291 
292 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
293                               const MemoryRegionOps *ops);
294 
295 #endif
296