1 /* 2 * ARM GIC support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Copyright (c) 2015 Huawei. 6 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 7 * Written by Peter Maydell 8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #ifndef HW_ARM_GICV3_COMMON_H 25 #define HW_ARM_GICV3_COMMON_H 26 27 #include "hw/sysbus.h" 28 #include "hw/intc/arm_gic_common.h" 29 #include "qom/object.h" 30 31 /* 32 * Maximum number of possible interrupts, determined by the GIC architecture. 33 * Note that this does not include LPIs. When implemented, these should be 34 * dealt with separately. 35 */ 36 #define GICV3_MAXIRQ 1020 37 #define GICV3_MAXSPI (GICV3_MAXIRQ - GIC_INTERNAL) 38 39 #define GICV3_LPI_INTID_START 8192 40 41 /* 42 * The redistributor in GICv3 has two 64KB frames per CPU; in 43 * GICv4 it has four 64KB frames per CPU. 44 */ 45 #define GICV3_REDIST_SIZE 0x20000 46 #define GICV4_REDIST_SIZE 0x40000 47 48 /* Number of SGI target-list bits */ 49 #define GICV3_TARGETLIST_BITS 16 50 51 /* Maximum number of list registers (architectural limit) */ 52 #define GICV3_LR_MAX 16 53 54 /* For some distributor fields we want to model the array of 32-bit 55 * register values which hold various bitmaps corresponding to enabled, 56 * pending, etc bits. These macros and functions facilitate that; the 57 * APIs are generally modelled on the generic bitmap.h functions 58 * (which are unsuitable here because they use 'unsigned long' as the 59 * underlying storage type, which is very awkward when you need to 60 * access the data as 32-bit values.) 61 * Each bitmap contains a bit for each interrupt. Although there is 62 * space for the PPIs and SGIs, those bits (the first 32) are never 63 * used as that state lives in the redistributor. The unused bits are 64 * provided purely so that interrupt X's state is always in bit X; this 65 * avoids bugs where we forget to subtract GIC_INTERNAL from an 66 * interrupt number. 67 */ 68 #define GICV3_BMP_SIZE DIV_ROUND_UP(GICV3_MAXIRQ, 32) 69 70 #define GIC_DECLARE_BITMAP(name) \ 71 uint32_t name[GICV3_BMP_SIZE] 72 73 #define GIC_BIT_MASK(nr) (1U << ((nr) % 32)) 74 #define GIC_BIT_WORD(nr) ((nr) / 32) 75 76 static inline void gic_bmp_set_bit(int nr, uint32_t *addr) 77 { 78 uint32_t mask = GIC_BIT_MASK(nr); 79 uint32_t *p = addr + GIC_BIT_WORD(nr); 80 81 *p |= mask; 82 } 83 84 static inline void gic_bmp_clear_bit(int nr, uint32_t *addr) 85 { 86 uint32_t mask = GIC_BIT_MASK(nr); 87 uint32_t *p = addr + GIC_BIT_WORD(nr); 88 89 *p &= ~mask; 90 } 91 92 static inline int gic_bmp_test_bit(int nr, const uint32_t *addr) 93 { 94 return 1U & (addr[GIC_BIT_WORD(nr)] >> (nr & 31)); 95 } 96 97 static inline void gic_bmp_replace_bit(int nr, uint32_t *addr, int val) 98 { 99 uint32_t mask = GIC_BIT_MASK(nr); 100 uint32_t *p = addr + GIC_BIT_WORD(nr); 101 102 *p &= ~mask; 103 *p |= (val & 1U) << (nr % 32); 104 } 105 106 /* Return a pointer to the 32-bit word containing the specified bit. */ 107 static inline uint32_t *gic_bmp_ptr32(uint32_t *addr, int nr) 108 { 109 return addr + GIC_BIT_WORD(nr); 110 } 111 112 typedef struct GICv3State GICv3State; 113 typedef struct GICv3CPUState GICv3CPUState; 114 115 /* Some CPU interface registers come in three flavours: 116 * Group0, Group1 (Secure) and Group1 (NonSecure) 117 * (where the latter two are exposed as a single banked system register). 118 * In the state struct they are implemented as a 3-element array which 119 * can be indexed into by the GICV3_G0, GICV3_G1 and GICV3_G1NS constants. 120 * If the CPU doesn't support EL3 then the G1 element is unused. 121 * 122 * These constants are also used to communicate the group to use for 123 * an interrupt or SGI when it is passed between the cpu interface and 124 * the redistributor or distributor. For those purposes the receiving end 125 * must be prepared to cope with a Group 1 Secure interrupt even if it does 126 * not have security support enabled, because security can be disabled 127 * independently in the CPU and in the GIC. In that case the receiver should 128 * treat an incoming Group 1 Secure interrupt as if it were Group 0. 129 * (This architectural requirement is why the _G1 element is the unused one 130 * in a no-EL3 CPU: we would otherwise have to translate back and forth 131 * between (G0, G1NS) from the distributor and (G0, G1) in the CPU i/f.) 132 */ 133 #define GICV3_G0 0 134 #define GICV3_G1 1 135 #define GICV3_G1NS 2 136 137 /* ICC_CTLR_EL1, GICD_STATUSR and GICR_STATUSR are banked but not 138 * group-related, so those indices are just 0 for S and 1 for NS. 139 * (If the CPU or the GIC, respectively, don't support the Security 140 * extensions then the S element is unused.) 141 */ 142 #define GICV3_S 0 143 #define GICV3_NS 1 144 145 typedef struct { 146 int irq; 147 uint8_t prio; 148 int grp; 149 bool nmi; 150 } PendingIrq; 151 152 struct GICv3CPUState { 153 GICv3State *gic; 154 CPUState *cpu; 155 qemu_irq parent_irq; 156 qemu_irq parent_fiq; 157 qemu_irq parent_virq; 158 qemu_irq parent_vfiq; 159 qemu_irq parent_nmi; 160 qemu_irq parent_vnmi; 161 162 /* Redistributor */ 163 uint32_t level; /* Current IRQ level */ 164 /* RD_base page registers */ 165 uint32_t gicr_ctlr; 166 uint64_t gicr_typer; 167 uint32_t gicr_statusr[2]; 168 uint32_t gicr_waker; 169 uint64_t gicr_propbaser; 170 uint64_t gicr_pendbaser; 171 /* SGI_base page registers */ 172 uint32_t gicr_igroupr0; 173 uint32_t gicr_ienabler0; 174 uint32_t gicr_ipendr0; 175 uint32_t gicr_iactiver0; 176 uint32_t gicr_inmir0; 177 uint32_t edge_trigger; /* ICFGR0 and ICFGR1 even bits */ 178 uint32_t gicr_igrpmodr0; 179 uint32_t gicr_nsacr; 180 uint8_t gicr_ipriorityr[GIC_INTERNAL]; 181 /* VLPI_base page registers */ 182 uint64_t gicr_vpropbaser; 183 uint64_t gicr_vpendbaser; 184 185 /* CPU interface */ 186 uint64_t icc_sre_el1; 187 uint64_t icc_ctlr_el1[2]; 188 uint64_t icc_pmr_el1; 189 uint64_t icc_bpr[3]; 190 uint64_t icc_apr[3][4]; 191 uint64_t icc_igrpen[3]; 192 uint64_t icc_ctlr_el3; 193 194 /* Virtualization control interface */ 195 uint64_t ich_apr[3][4]; /* ich_apr[GICV3_G1][x] never used */ 196 uint64_t ich_hcr_el2; 197 uint64_t ich_lr_el2[GICV3_LR_MAX]; 198 uint64_t ich_vmcr_el2; 199 200 /* Properties of the CPU interface. These are initialized from 201 * the settings in the CPU proper. 202 * If the number of implemented list registers is 0 then the 203 * virtualization support is not implemented. 204 */ 205 int num_list_regs; 206 int vpribits; /* number of virtual priority bits */ 207 int vprebits; /* number of virtual preemption bits */ 208 int pribits; /* number of physical priority bits */ 209 int prebits; /* number of physical preemption bits */ 210 211 /* Current highest priority pending interrupt for this CPU. 212 * This is cached information that can be recalculated from the 213 * real state above; it doesn't need to be migrated. 214 */ 215 PendingIrq hppi; 216 217 /* 218 * Cached information recalculated from LPI tables 219 * in guest memory 220 */ 221 PendingIrq hpplpi; 222 223 /* Cached information recalculated from vLPI tables in guest memory */ 224 PendingIrq hppvlpi; 225 226 /* This is temporary working state, to avoid a malloc in gicv3_update() */ 227 bool seenbetter; 228 229 /* 230 * Whether the CPU interface has NMI support (FEAT_GICv3_NMI). The 231 * CPU interface may support NMIs even when the GIC proper (what the 232 * spec calls the IRI; the redistributors and distributor) does not. 233 */ 234 bool nmi_support; 235 }; 236 237 /* 238 * The redistributor pages might be split into more than one region 239 * on some machine types if there are many CPUs. 240 */ 241 typedef struct GICv3RedistRegion { 242 GICv3State *gic; 243 MemoryRegion iomem; 244 uint32_t cpuidx; /* index of first CPU this region covers */ 245 } GICv3RedistRegion; 246 247 struct GICv3State { 248 /*< private >*/ 249 SysBusDevice parent_obj; 250 /*< public >*/ 251 252 MemoryRegion iomem_dist; /* Distributor */ 253 GICv3RedistRegion *redist_regions; /* Redistributor Regions */ 254 uint32_t *redist_region_count; /* redistributor count within each region */ 255 uint32_t nb_redist_regions; /* number of redist regions */ 256 257 uint32_t num_cpu; 258 uint32_t num_irq; 259 uint32_t revision; 260 bool lpi_enable; 261 bool nmi_support; 262 bool security_extn; 263 bool force_8bit_prio; 264 bool irq_reset_nonsecure; 265 bool gicd_no_migration_shift_bug; 266 267 int dev_fd; /* kvm device fd if backed by kvm vgic support */ 268 Error *migration_blocker; 269 270 MemoryRegion *dma; 271 AddressSpace dma_as; 272 273 /* Distributor */ 274 275 /* for a GIC with the security extensions the NS banked version of this 276 * register is just an alias of bit 1 of the S banked version. 277 */ 278 uint32_t gicd_ctlr; 279 uint32_t gicd_statusr[2]; 280 GIC_DECLARE_BITMAP(group); /* GICD_IGROUPR */ 281 GIC_DECLARE_BITMAP(grpmod); /* GICD_IGRPMODR */ 282 GIC_DECLARE_BITMAP(enabled); /* GICD_ISENABLER */ 283 GIC_DECLARE_BITMAP(pending); /* GICD_ISPENDR */ 284 GIC_DECLARE_BITMAP(active); /* GICD_ISACTIVER */ 285 GIC_DECLARE_BITMAP(level); /* Current level */ 286 GIC_DECLARE_BITMAP(edge_trigger); /* GICD_ICFGR even bits */ 287 GIC_DECLARE_BITMAP(nmi); /* GICD_INMIR */ 288 uint8_t gicd_ipriority[GICV3_MAXIRQ]; 289 uint64_t gicd_irouter[GICV3_MAXIRQ]; 290 /* Cached information: pointer to the cpu i/f for the CPUs specified 291 * in the IROUTER registers 292 */ 293 GICv3CPUState *gicd_irouter_target[GICV3_MAXIRQ]; 294 uint32_t gicd_nsacr[DIV_ROUND_UP(GICV3_MAXIRQ, 16)]; 295 296 GICv3CPUState *cpu; 297 /* List of all ITSes connected to this GIC */ 298 GPtrArray *itslist; 299 }; 300 301 #define GICV3_BITMAP_ACCESSORS(BMP) \ 302 static inline void gicv3_gicd_##BMP##_set(GICv3State *s, int irq) \ 303 { \ 304 gic_bmp_set_bit(irq, s->BMP); \ 305 } \ 306 static inline int gicv3_gicd_##BMP##_test(GICv3State *s, int irq) \ 307 { \ 308 return gic_bmp_test_bit(irq, s->BMP); \ 309 } \ 310 static inline void gicv3_gicd_##BMP##_clear(GICv3State *s, int irq) \ 311 { \ 312 gic_bmp_clear_bit(irq, s->BMP); \ 313 } \ 314 static inline void gicv3_gicd_##BMP##_replace(GICv3State *s, \ 315 int irq, int value) \ 316 { \ 317 gic_bmp_replace_bit(irq, s->BMP, value); \ 318 } 319 320 GICV3_BITMAP_ACCESSORS(group) 321 GICV3_BITMAP_ACCESSORS(grpmod) 322 GICV3_BITMAP_ACCESSORS(enabled) 323 GICV3_BITMAP_ACCESSORS(pending) 324 GICV3_BITMAP_ACCESSORS(active) 325 GICV3_BITMAP_ACCESSORS(level) 326 GICV3_BITMAP_ACCESSORS(edge_trigger) 327 GICV3_BITMAP_ACCESSORS(nmi) 328 329 #define TYPE_ARM_GICV3_COMMON "arm-gicv3-common" 330 typedef struct ARMGICv3CommonClass ARMGICv3CommonClass; 331 DECLARE_OBJ_CHECKERS(GICv3State, ARMGICv3CommonClass, 332 ARM_GICV3_COMMON, TYPE_ARM_GICV3_COMMON) 333 334 struct ARMGICv3CommonClass { 335 /*< private >*/ 336 SysBusDeviceClass parent_class; 337 /*< public >*/ 338 339 void (*pre_save)(GICv3State *s); 340 void (*post_load)(GICv3State *s); 341 }; 342 343 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, 344 const MemoryRegionOps *ops); 345 346 /** 347 * gicv3_class_name 348 * 349 * Return name of GICv3 class to use depending on whether KVM acceleration is 350 * in use. May throw an error if the chosen implementation is not available. 351 * 352 * Returns: class name to use 353 */ 354 const char *gicv3_class_name(void); 355 356 #endif 357