1 /* 2 * ARM GIC support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation, either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #ifndef HW_ARM_GIC_COMMON_H 22 #define HW_ARM_GIC_COMMON_H 23 24 #include "hw/sysbus.h" 25 26 /* Maximum number of possible interrupts, determined by the GIC architecture */ 27 #define GIC_MAXIRQ 1020 28 /* First 32 are private to each CPU (SGIs and PPIs). */ 29 #define GIC_INTERNAL 32 30 #define GIC_NR_SGIS 16 31 /* Maximum number of possible CPU interfaces, determined by GIC architecture */ 32 #define GIC_NCPU 8 33 /* Maximum number of possible CPU interfaces with their respective vCPU */ 34 #define GIC_NCPU_VCPU (GIC_NCPU * 2) 35 36 #define MAX_NR_GROUP_PRIO 128 37 #define GIC_NR_APRS (MAX_NR_GROUP_PRIO / 32) 38 39 #define GIC_MIN_BPR 0 40 #define GIC_MIN_ABPR (GIC_MIN_BPR + 1) 41 42 /* Architectural maximum number of list registers in the virtual interface */ 43 #define GIC_MAX_LR 64 44 45 /* Only 32 priority levels and 32 preemption levels in the vCPU interfaces */ 46 #define GIC_VIRT_MAX_GROUP_PRIO_BITS 5 47 #define GIC_VIRT_MAX_NR_GROUP_PRIO (1 << GIC_VIRT_MAX_GROUP_PRIO_BITS) 48 #define GIC_VIRT_NR_APRS (GIC_VIRT_MAX_NR_GROUP_PRIO / 32) 49 50 #define GIC_VIRT_MIN_BPR 2 51 #define GIC_VIRT_MIN_ABPR (GIC_VIRT_MIN_BPR + 1) 52 53 typedef struct gic_irq_state { 54 /* The enable bits are only banked for per-cpu interrupts. */ 55 uint8_t enabled; 56 uint8_t pending; 57 uint8_t active; 58 uint8_t level; 59 bool model; /* 0 = N:N, 1 = 1:N */ 60 bool edge_trigger; /* true: edge-triggered, false: level-triggered */ 61 uint8_t group; 62 } gic_irq_state; 63 64 typedef struct GICState { 65 /*< private >*/ 66 SysBusDevice parent_obj; 67 /*< public >*/ 68 69 qemu_irq parent_irq[GIC_NCPU]; 70 qemu_irq parent_fiq[GIC_NCPU]; 71 qemu_irq parent_virq[GIC_NCPU]; 72 qemu_irq parent_vfiq[GIC_NCPU]; 73 qemu_irq maintenance_irq[GIC_NCPU]; 74 75 /* GICD_CTLR; for a GIC with the security extensions the NS banked version 76 * of this register is just an alias of bit 1 of the S banked version. 77 */ 78 uint32_t ctlr; 79 /* GICC_CTLR; again, the NS banked version is just aliases of bits of 80 * the S banked register, so our state only needs to store the S version. 81 */ 82 uint32_t cpu_ctlr[GIC_NCPU_VCPU]; 83 84 gic_irq_state irq_state[GIC_MAXIRQ]; 85 uint8_t irq_target[GIC_MAXIRQ]; 86 uint8_t priority1[GIC_INTERNAL][GIC_NCPU]; 87 uint8_t priority2[GIC_MAXIRQ - GIC_INTERNAL]; 88 /* For each SGI on the target CPU, we store 8 bits 89 * indicating which source CPUs have made this SGI 90 * pending on the target CPU. These correspond to 91 * the bytes in the GIC_SPENDSGIR* registers as 92 * read by the target CPU. 93 */ 94 uint8_t sgi_pending[GIC_NR_SGIS][GIC_NCPU]; 95 96 uint16_t priority_mask[GIC_NCPU_VCPU]; 97 uint16_t running_priority[GIC_NCPU_VCPU]; 98 uint16_t current_pending[GIC_NCPU_VCPU]; 99 uint32_t n_prio_bits; 100 101 /* If we present the GICv2 without security extensions to a guest, 102 * the guest can configure the GICC_CTLR to configure group 1 binary point 103 * in the abpr. 104 * For a GIC with Security Extensions we use use bpr for the 105 * secure copy and abpr as storage for the non-secure copy of the register. 106 */ 107 uint8_t bpr[GIC_NCPU_VCPU]; 108 uint8_t abpr[GIC_NCPU_VCPU]; 109 110 /* The APR is implementation defined, so we choose a layout identical to 111 * the KVM ABI layout for QEMU's implementation of the gic: 112 * If an interrupt for preemption level X is active, then 113 * APRn[X mod 32] == 0b1, where n = X / 32 114 * otherwise the bit is clear. 115 */ 116 uint32_t apr[GIC_NR_APRS][GIC_NCPU]; 117 uint32_t nsapr[GIC_NR_APRS][GIC_NCPU]; 118 119 /* Virtual interface control registers */ 120 uint32_t h_hcr[GIC_NCPU]; 121 uint32_t h_misr[GIC_NCPU]; 122 uint32_t h_lr[GIC_MAX_LR][GIC_NCPU]; 123 uint32_t h_apr[GIC_NCPU]; 124 125 /* Number of LRs implemented in this GIC instance */ 126 uint32_t num_lrs; 127 128 uint32_t num_cpu; 129 130 MemoryRegion iomem; /* Distributor */ 131 /* This is just so we can have an opaque pointer which identifies 132 * both this GIC and which CPU interface we should be accessing. 133 */ 134 struct GICState *backref[GIC_NCPU]; 135 MemoryRegion cpuiomem[GIC_NCPU + 1]; /* CPU interfaces */ 136 MemoryRegion vifaceiomem[GIC_NCPU + 1]; /* Virtual interfaces */ 137 MemoryRegion vcpuiomem; /* vCPU interface */ 138 139 uint32_t num_irq; 140 uint32_t revision; 141 bool security_extn; 142 bool virt_extn; 143 bool irq_reset_nonsecure; /* configure IRQs as group 1 (NS) on reset? */ 144 int dev_fd; /* kvm device fd if backed by kvm vgic support */ 145 Error *migration_blocker; 146 } GICState; 147 148 #define TYPE_ARM_GIC_COMMON "arm_gic_common" 149 #define ARM_GIC_COMMON(obj) \ 150 OBJECT_CHECK(GICState, (obj), TYPE_ARM_GIC_COMMON) 151 #define ARM_GIC_COMMON_CLASS(klass) \ 152 OBJECT_CLASS_CHECK(ARMGICCommonClass, (klass), TYPE_ARM_GIC_COMMON) 153 #define ARM_GIC_COMMON_GET_CLASS(obj) \ 154 OBJECT_GET_CLASS(ARMGICCommonClass, (obj), TYPE_ARM_GIC_COMMON) 155 156 typedef struct ARMGICCommonClass { 157 /*< private >*/ 158 SysBusDeviceClass parent_class; 159 /*< public >*/ 160 161 void (*pre_save)(GICState *s); 162 void (*post_load)(GICState *s); 163 } ARMGICCommonClass; 164 165 void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler, 166 const MemoryRegionOps *ops, 167 const MemoryRegionOps *virt_ops); 168 169 #endif 170