xref: /openbmc/qemu/include/hw/elf_ops.h (revision 75ac231c)
1 static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr)
2 {
3     bswap16s(&ehdr->e_type);			/* Object file type */
4     bswap16s(&ehdr->e_machine);		/* Architecture */
5     bswap32s(&ehdr->e_version);		/* Object file version */
6     bswapSZs(&ehdr->e_entry);		/* Entry point virtual address */
7     bswapSZs(&ehdr->e_phoff);		/* Program header table file offset */
8     bswapSZs(&ehdr->e_shoff);		/* Section header table file offset */
9     bswap32s(&ehdr->e_flags);		/* Processor-specific flags */
10     bswap16s(&ehdr->e_ehsize);		/* ELF header size in bytes */
11     bswap16s(&ehdr->e_phentsize);		/* Program header table entry size */
12     bswap16s(&ehdr->e_phnum);		/* Program header table entry count */
13     bswap16s(&ehdr->e_shentsize);		/* Section header table entry size */
14     bswap16s(&ehdr->e_shnum);		/* Section header table entry count */
15     bswap16s(&ehdr->e_shstrndx);		/* Section header string table index */
16 }
17 
18 static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr)
19 {
20     bswap32s(&phdr->p_type);			/* Segment type */
21     bswapSZs(&phdr->p_offset);		/* Segment file offset */
22     bswapSZs(&phdr->p_vaddr);		/* Segment virtual address */
23     bswapSZs(&phdr->p_paddr);		/* Segment physical address */
24     bswapSZs(&phdr->p_filesz);		/* Segment size in file */
25     bswapSZs(&phdr->p_memsz);		/* Segment size in memory */
26     bswap32s(&phdr->p_flags);		/* Segment flags */
27     bswapSZs(&phdr->p_align);		/* Segment alignment */
28 }
29 
30 static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr)
31 {
32     bswap32s(&shdr->sh_name);
33     bswap32s(&shdr->sh_type);
34     bswapSZs(&shdr->sh_flags);
35     bswapSZs(&shdr->sh_addr);
36     bswapSZs(&shdr->sh_offset);
37     bswapSZs(&shdr->sh_size);
38     bswap32s(&shdr->sh_link);
39     bswap32s(&shdr->sh_info);
40     bswapSZs(&shdr->sh_addralign);
41     bswapSZs(&shdr->sh_entsize);
42 }
43 
44 static void glue(bswap_sym, SZ)(struct elf_sym *sym)
45 {
46     bswap32s(&sym->st_name);
47     bswapSZs(&sym->st_value);
48     bswapSZs(&sym->st_size);
49     bswap16s(&sym->st_shndx);
50 }
51 
52 static void glue(bswap_rela, SZ)(struct elf_rela *rela)
53 {
54     bswapSZs(&rela->r_offset);
55     bswapSZs(&rela->r_info);
56     bswapSZs((elf_word *)&rela->r_addend);
57 }
58 
59 static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table,
60                                                int n, int type)
61 {
62     int i;
63     for(i=0;i<n;i++) {
64         if (shdr_table[i].sh_type == type)
65             return shdr_table + i;
66     }
67     return NULL;
68 }
69 
70 static int glue(symfind, SZ)(const void *s0, const void *s1)
71 {
72     hwaddr addr = *(hwaddr *)s0;
73     struct elf_sym *sym = (struct elf_sym *)s1;
74     int result = 0;
75     if (addr < sym->st_value) {
76         result = -1;
77     } else if (addr >= sym->st_value + sym->st_size) {
78         result = 1;
79     }
80     return result;
81 }
82 
83 static const char *glue(lookup_symbol, SZ)(struct syminfo *s,
84                                            hwaddr orig_addr)
85 {
86     struct elf_sym *syms = glue(s->disas_symtab.elf, SZ);
87     struct elf_sym *sym;
88 
89     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms),
90                   glue(symfind, SZ));
91     if (sym != NULL) {
92         return s->disas_strtab + sym->st_name;
93     }
94 
95     return "";
96 }
97 
98 static int glue(symcmp, SZ)(const void *s0, const void *s1)
99 {
100     struct elf_sym *sym0 = (struct elf_sym *)s0;
101     struct elf_sym *sym1 = (struct elf_sym *)s1;
102     return (sym0->st_value < sym1->st_value)
103         ? -1
104         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
105 }
106 
107 static void glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
108                                    int clear_lsb, symbol_fn_t sym_cb)
109 {
110     struct elf_shdr *symtab, *strtab;
111     g_autofree struct elf_shdr *shdr_table = NULL;
112     g_autofree struct elf_sym *syms = NULL;
113     g_autofree char *str = NULL;
114     struct syminfo *s;
115     int nsyms, i;
116 
117     shdr_table = load_at(fd, ehdr->e_shoff,
118                          sizeof(struct elf_shdr) * ehdr->e_shnum);
119     if (!shdr_table) {
120         return;
121     }
122 
123     if (must_swab) {
124         for (i = 0; i < ehdr->e_shnum; i++) {
125             glue(bswap_shdr, SZ)(shdr_table + i);
126         }
127     }
128 
129     symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB);
130     if (!symtab) {
131         return;
132     }
133     syms = load_at(fd, symtab->sh_offset, symtab->sh_size);
134     if (!syms) {
135         return;
136     }
137 
138     nsyms = symtab->sh_size / sizeof(struct elf_sym);
139 
140     /* String table */
141     if (symtab->sh_link >= ehdr->e_shnum) {
142         return;
143     }
144     strtab = &shdr_table[symtab->sh_link];
145 
146     str = load_at(fd, strtab->sh_offset, strtab->sh_size);
147     if (!str) {
148         return;
149     }
150 
151     i = 0;
152     while (i < nsyms) {
153         if (must_swab) {
154             glue(bswap_sym, SZ)(&syms[i]);
155         }
156         if (sym_cb) {
157             sym_cb(str + syms[i].st_name, syms[i].st_info,
158                    syms[i].st_value, syms[i].st_size);
159         }
160         /* We are only interested in function symbols.
161            Throw everything else away.  */
162         if (syms[i].st_shndx == SHN_UNDEF ||
163                 syms[i].st_shndx >= SHN_LORESERVE ||
164                 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
165             nsyms--;
166             if (i < nsyms) {
167                 syms[i] = syms[nsyms];
168             }
169             continue;
170         }
171         if (clear_lsb) {
172             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
173             syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1;
174         }
175         i++;
176     }
177 
178     /* check we have symbols left */
179     if (nsyms == 0) {
180         return;
181     }
182 
183     syms = g_realloc(syms, nsyms * sizeof(*syms));
184     qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ));
185     for (i = 0; i < nsyms - 1; i++) {
186         if (syms[i].st_size == 0) {
187             syms[i].st_size = syms[i + 1].st_value - syms[i].st_value;
188         }
189     }
190 
191     /* Commit */
192     s = g_malloc0(sizeof(*s));
193     s->lookup_symbol = glue(lookup_symbol, SZ);
194     glue(s->disas_symtab.elf, SZ) = g_steal_pointer(&syms);
195     s->disas_num_syms = nsyms;
196     s->disas_strtab = g_steal_pointer(&str);
197     s->next = syminfos;
198     syminfos = s;
199 }
200 
201 static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
202                                uint64_t (*translate_fn)(void *, uint64_t),
203                                void *translate_opaque, uint8_t *data,
204                                struct elf_phdr *ph, int elf_machine)
205 {
206     struct elf_shdr *reltab, *shdr_table = NULL;
207     struct elf_rela *rels = NULL;
208     int nrels, i, ret = -1;
209     elf_word wordval;
210     void *addr;
211 
212     shdr_table = load_at(fd, ehdr->e_shoff,
213                          sizeof(struct elf_shdr) * ehdr->e_shnum);
214     if (!shdr_table) {
215         return -1;
216     }
217     if (must_swab) {
218         for (i = 0; i < ehdr->e_shnum; i++) {
219             glue(bswap_shdr, SZ)(&shdr_table[i]);
220         }
221     }
222 
223     reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA);
224     if (!reltab) {
225         goto fail;
226     }
227     rels = load_at(fd, reltab->sh_offset, reltab->sh_size);
228     if (!rels) {
229         goto fail;
230     }
231     nrels = reltab->sh_size / sizeof(struct elf_rela);
232 
233     for (i = 0; i < nrels; i++) {
234         if (must_swab) {
235             glue(bswap_rela, SZ)(&rels[i]);
236         }
237         if (rels[i].r_offset < ph->p_vaddr ||
238             rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) {
239             continue;
240         }
241         addr = &data[rels[i].r_offset - ph->p_vaddr];
242         switch (elf_machine) {
243         case EM_S390:
244             switch (rels[i].r_info) {
245             case R_390_RELATIVE:
246                 wordval = *(elf_word *)addr;
247                 if (must_swab) {
248                     bswapSZs(&wordval);
249                 }
250                 wordval = translate_fn(translate_opaque, wordval);
251                 if (must_swab) {
252                     bswapSZs(&wordval);
253                 }
254                 *(elf_word *)addr = wordval;
255                 break;
256             default:
257                 fprintf(stderr, "Unsupported relocation type %i!\n",
258                         (int)rels[i].r_info);
259             }
260         }
261     }
262 
263     ret = 0;
264 fail:
265     g_free(rels);
266     g_free(shdr_table);
267     return ret;
268 }
269 
270 /*
271  * Given 'nhdr', a pointer to a range of ELF Notes, search through them
272  * for a note matching type 'elf_note_type' and return a pointer to
273  * the matching ELF note.
274  */
275 static struct elf_note *glue(get_elf_note_type, SZ)(struct elf_note *nhdr,
276                                                     elf_word note_size,
277                                                     elf_word phdr_align,
278                                                     elf_word elf_note_type)
279 {
280     elf_word nhdr_size = sizeof(struct elf_note);
281     elf_word elf_note_entry_offset = 0;
282     elf_word note_type;
283     elf_word nhdr_namesz;
284     elf_word nhdr_descsz;
285 
286     if (nhdr == NULL) {
287         return NULL;
288     }
289 
290     note_type = nhdr->n_type;
291     while (note_type != elf_note_type) {
292         nhdr_namesz = nhdr->n_namesz;
293         nhdr_descsz = nhdr->n_descsz;
294 
295         elf_note_entry_offset = nhdr_size +
296             QEMU_ALIGN_UP(nhdr_namesz, phdr_align) +
297             QEMU_ALIGN_UP(nhdr_descsz, phdr_align);
298 
299         /*
300          * If the offset calculated in this iteration exceeds the
301          * supplied size, we are done and no matching note was found.
302          */
303         if (elf_note_entry_offset > note_size) {
304             return NULL;
305         }
306 
307         /* skip to the next ELF Note entry */
308         nhdr = (void *)nhdr + elf_note_entry_offset;
309         note_type = nhdr->n_type;
310     }
311 
312     return nhdr;
313 }
314 
315 static ssize_t glue(load_elf, SZ)(const char *name, int fd,
316                                   uint64_t (*elf_note_fn)(void *, void *, bool),
317                                   uint64_t (*translate_fn)(void *, uint64_t),
318                                   void *translate_opaque,
319                                   int must_swab, uint64_t *pentry,
320                                   uint64_t *lowaddr, uint64_t *highaddr,
321                                   uint32_t *pflags, int elf_machine,
322                                   int clear_lsb, int data_swab,
323                                   AddressSpace *as, bool load_rom,
324                                   symbol_fn_t sym_cb)
325 {
326     struct elfhdr ehdr;
327     struct elf_phdr *phdr = NULL, *ph;
328     int size, i;
329     ssize_t total_size;
330     elf_word mem_size, file_size, data_offset;
331     uint64_t addr, low = (uint64_t)-1, high = 0;
332     GMappedFile *mapped_file = NULL;
333     uint8_t *data = NULL;
334     ssize_t ret = ELF_LOAD_FAILED;
335 
336     if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr))
337         goto fail;
338     if (must_swab) {
339         glue(bswap_ehdr, SZ)(&ehdr);
340     }
341 
342     if (elf_machine <= EM_NONE) {
343         /* The caller didn't specify an ARCH, we can figure it out */
344         elf_machine = ehdr.e_machine;
345     }
346 
347     switch (elf_machine) {
348         case EM_PPC64:
349             if (ehdr.e_machine != EM_PPC64) {
350                 if (ehdr.e_machine != EM_PPC) {
351                     ret = ELF_LOAD_WRONG_ARCH;
352                     goto fail;
353                 }
354             }
355             break;
356         case EM_X86_64:
357             if (ehdr.e_machine != EM_X86_64) {
358                 if (ehdr.e_machine != EM_386) {
359                     ret = ELF_LOAD_WRONG_ARCH;
360                     goto fail;
361                 }
362             }
363             break;
364         case EM_MICROBLAZE:
365             if (ehdr.e_machine != EM_MICROBLAZE) {
366                 if (ehdr.e_machine != EM_MICROBLAZE_OLD) {
367                     ret = ELF_LOAD_WRONG_ARCH;
368                     goto fail;
369                 }
370             }
371             break;
372         case EM_MIPS:
373         case EM_NANOMIPS:
374             if ((ehdr.e_machine != EM_MIPS) &&
375                 (ehdr.e_machine != EM_NANOMIPS)) {
376                 ret = ELF_LOAD_WRONG_ARCH;
377                 goto fail;
378             }
379             break;
380         default:
381             if (elf_machine != ehdr.e_machine) {
382                 ret = ELF_LOAD_WRONG_ARCH;
383                 goto fail;
384             }
385     }
386 
387     if (pflags) {
388         *pflags = (elf_word)ehdr.e_flags;
389     }
390     if (pentry)
391         *pentry = (uint64_t)(elf_sword)ehdr.e_entry;
392 
393     glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb, sym_cb);
394 
395     size = ehdr.e_phnum * sizeof(phdr[0]);
396     if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) {
397         goto fail;
398     }
399     phdr = g_malloc0(size);
400     if (!phdr)
401         goto fail;
402     if (read(fd, phdr, size) != size)
403         goto fail;
404     if (must_swab) {
405         for(i = 0; i < ehdr.e_phnum; i++) {
406             ph = &phdr[i];
407             glue(bswap_phdr, SZ)(ph);
408         }
409     }
410 
411     /*
412      * Since we want to be able to modify the mapped buffer, we set the
413      * 'writable' parameter to 'true'. Modifications to the buffer are not
414      * written back to the file.
415      */
416     mapped_file = g_mapped_file_new_from_fd(fd, true, NULL);
417     if (!mapped_file) {
418         goto fail;
419     }
420 
421     total_size = 0;
422     for(i = 0; i < ehdr.e_phnum; i++) {
423         ph = &phdr[i];
424         if (ph->p_type == PT_LOAD) {
425             mem_size = ph->p_memsz; /* Size of the ROM */
426             file_size = ph->p_filesz; /* Size of the allocated data */
427             data_offset = ph->p_offset; /* Offset where the data is located */
428 
429             if (file_size > 0) {
430                 if (g_mapped_file_get_length(mapped_file) <
431                     file_size + data_offset) {
432                     goto fail;
433                 }
434 
435                 data = (uint8_t *)g_mapped_file_get_contents(mapped_file);
436                 data += data_offset;
437             }
438 
439             /* The ELF spec is somewhat vague about the purpose of the
440              * physical address field. One common use in the embedded world
441              * is that physical address field specifies the load address
442              * and the virtual address field specifies the execution address.
443              * Segments are packed into ROM or flash, and the relocation
444              * and zero-initialization of data is done at runtime. This
445              * means that the memsz header represents the runtime size of the
446              * segment, but the filesz represents the loadtime size. If
447              * we try to honour the memsz value for an ELF file like this
448              * we will end up with overlapping segments (which the
449              * loader.c code will later reject).
450              * We support ELF files using this scheme by by checking whether
451              * paddr + memsz for this segment would overlap with any other
452              * segment. If so, then we assume it's using this scheme and
453              * truncate the loaded segment to the filesz size.
454              * If the segment considered as being memsz size doesn't overlap
455              * then we use memsz for the segment length, to handle ELF files
456              * which assume that the loader will do the zero-initialization.
457              */
458             if (mem_size > file_size) {
459                 /* If this segment's zero-init portion overlaps another
460                  * segment's data or zero-init portion, then truncate this one.
461                  * Invalid ELF files where the segments overlap even when
462                  * only file_size bytes are loaded will be rejected by
463                  * the ROM overlap check in loader.c, so we don't try to
464                  * explicitly detect those here.
465                  */
466                 int j;
467                 elf_word zero_start = ph->p_paddr + file_size;
468                 elf_word zero_end = ph->p_paddr + mem_size;
469 
470                 for (j = 0; j < ehdr.e_phnum; j++) {
471                     struct elf_phdr *jph = &phdr[j];
472 
473                     if (i != j && jph->p_type == PT_LOAD) {
474                         elf_word other_start = jph->p_paddr;
475                         elf_word other_end = jph->p_paddr + jph->p_memsz;
476 
477                         if (!(other_start >= zero_end ||
478                               zero_start >= other_end)) {
479                             mem_size = file_size;
480                             break;
481                         }
482                     }
483                 }
484             }
485 
486             if (mem_size > SSIZE_MAX - total_size) {
487                 ret = ELF_LOAD_TOO_BIG;
488                 goto fail;
489             }
490 
491             /* address_offset is hack for kernel images that are
492                linked at the wrong physical address.  */
493             if (translate_fn) {
494                 addr = translate_fn(translate_opaque, ph->p_paddr);
495                 glue(elf_reloc, SZ)(&ehdr, fd, must_swab,  translate_fn,
496                                     translate_opaque, data, ph, elf_machine);
497             } else {
498                 addr = ph->p_paddr;
499             }
500 
501             if (data_swab) {
502                 int j;
503                 for (j = 0; j < file_size; j += (1 << data_swab)) {
504                     uint8_t *dp = data + j;
505                     switch (data_swab) {
506                     case (1):
507                         *(uint16_t *)dp = bswap16(*(uint16_t *)dp);
508                         break;
509                     case (2):
510                         *(uint32_t *)dp = bswap32(*(uint32_t *)dp);
511                         break;
512                     case (3):
513                         *(uint64_t *)dp = bswap64(*(uint64_t *)dp);
514                         break;
515                     default:
516                         g_assert_not_reached();
517                     }
518                 }
519             }
520 
521             /* the entry pointer in the ELF header is a virtual
522              * address, if the text segments paddr and vaddr differ
523              * we need to adjust the entry */
524             if (pentry && !translate_fn &&
525                     ph->p_vaddr != ph->p_paddr &&
526                     ehdr.e_entry >= ph->p_vaddr &&
527                     ehdr.e_entry < ph->p_vaddr + ph->p_filesz &&
528                     ph->p_flags & PF_X) {
529                 *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr;
530             }
531 
532             /* Some ELF files really do have segments of zero size;
533              * just ignore them rather than trying to create empty
534              * ROM blobs, because the zero-length blob can falsely
535              * trigger the overlapping-ROM-blobs check.
536              */
537             if (mem_size != 0) {
538                 if (load_rom) {
539                     g_autofree char *label =
540                         g_strdup_printf("%s ELF program header segment %d",
541                                         name, i);
542 
543                     /*
544                      * rom_add_elf_program() takes its own reference to
545                      * 'mapped_file'.
546                      */
547                     rom_add_elf_program(label, mapped_file, data, file_size,
548                                         mem_size, addr, as);
549                 } else {
550                     MemTxResult res;
551 
552                     res = address_space_write(as ? as : &address_space_memory,
553                                               addr, MEMTXATTRS_UNSPECIFIED,
554                                               data, file_size);
555                     if (res != MEMTX_OK) {
556                         goto fail;
557                     }
558                     /*
559                      * We need to zero'ify the space that is not copied
560                      * from file
561                      */
562                     if (file_size < mem_size) {
563                         res = address_space_set(as ? as : &address_space_memory,
564                                                 addr + file_size, 0,
565                                                 mem_size - file_size,
566                                                 MEMTXATTRS_UNSPECIFIED);
567                         if (res != MEMTX_OK) {
568                             goto fail;
569                         }
570                     }
571                 }
572             }
573 
574             total_size += mem_size;
575             if (addr < low)
576                 low = addr;
577             if ((addr + mem_size) > high)
578                 high = addr + mem_size;
579 
580             data = NULL;
581 
582         } else if (ph->p_type == PT_NOTE && elf_note_fn) {
583             struct elf_note *nhdr = NULL;
584 
585             file_size = ph->p_filesz; /* Size of the range of ELF notes */
586             data_offset = ph->p_offset; /* Offset where the notes are located */
587 
588             if (file_size > 0) {
589                 if (g_mapped_file_get_length(mapped_file) <
590                     file_size + data_offset) {
591                     goto fail;
592                 }
593 
594                 data = (uint8_t *)g_mapped_file_get_contents(mapped_file);
595                 data += data_offset;
596             }
597 
598             /*
599              * Search the ELF notes to find one with a type matching the
600              * value passed in via 'translate_opaque'
601              */
602             nhdr = (struct elf_note *)data;
603             assert(translate_opaque != NULL);
604             nhdr = glue(get_elf_note_type, SZ)(nhdr, file_size, ph->p_align,
605                                                *(uint64_t *)translate_opaque);
606             if (nhdr != NULL) {
607                 elf_note_fn((void *)nhdr, (void *)&ph->p_align, SZ == 64);
608             }
609             data = NULL;
610         }
611     }
612 
613     if (lowaddr)
614         *lowaddr = (uint64_t)(elf_sword)low;
615     if (highaddr)
616         *highaddr = (uint64_t)(elf_sword)high;
617     ret = total_size;
618  fail:
619     if (mapped_file) {
620         g_mapped_file_unref(mapped_file);
621     }
622     g_free(phdr);
623     return ret;
624 }
625