1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/vaddr.h" 27 #include "exec/memattrs.h" 28 #include "exec/tlb-common.h" 29 #include "qapi/qapi-types-run-state.h" 30 #include "qemu/bitmap.h" 31 #include "qemu/rcu_queue.h" 32 #include "qemu/queue.h" 33 #include "qemu/thread.h" 34 #include "qemu/plugin-event.h" 35 #include "qom/object.h" 36 37 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 38 void *opaque); 39 40 /** 41 * SECTION:cpu 42 * @section_id: QEMU-cpu 43 * @title: CPU Class 44 * @short_description: Base class for all CPUs 45 */ 46 47 #define TYPE_CPU "cpu" 48 49 /* Since this macro is used a lot in hot code paths and in conjunction with 50 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 51 * an unchecked cast. 52 */ 53 #define CPU(obj) ((CPUState *)(obj)) 54 55 /* 56 * The class checkers bring in CPU_GET_CLASS() which is potentially 57 * expensive given the eventual call to 58 * object_class_dynamic_cast_assert(). Because of this the CPUState 59 * has a cached value for the class in cs->cc which is set up in 60 * cpu_exec_realizefn() for use in hot code paths. 61 */ 62 typedef struct CPUClass CPUClass; 63 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 64 TYPE_CPU) 65 66 /** 67 * OBJECT_DECLARE_CPU_TYPE: 68 * @CpuInstanceType: instance struct name 69 * @CpuClassType: class struct name 70 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 71 * 72 * This macro is typically used in "cpu-qom.h" header file, and will: 73 * 74 * - create the typedefs for the CPU object and class structs 75 * - register the type for use with g_autoptr 76 * - provide three standard type cast functions 77 * 78 * The object struct and class struct need to be declared manually. 79 */ 80 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 81 typedef struct ArchCPU CpuInstanceType; \ 82 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 83 84 typedef enum MMUAccessType { 85 MMU_DATA_LOAD = 0, 86 MMU_DATA_STORE = 1, 87 MMU_INST_FETCH = 2 88 #define MMU_ACCESS_COUNT 3 89 } MMUAccessType; 90 91 typedef struct CPUWatchpoint CPUWatchpoint; 92 93 /* see accel-cpu.h */ 94 struct AccelCPUClass; 95 96 /* see sysemu-cpu-ops.h */ 97 struct SysemuCPUOps; 98 99 /** 100 * CPUClass: 101 * @class_by_name: Callback to map -cpu command line model name to an 102 * instantiatable CPU type. 103 * @parse_features: Callback to parse command line arguments. 104 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 105 * @has_work: Callback for checking if there is work to do. 106 * @mmu_index: Callback for choosing softmmu mmu index; 107 * may be used internally by memory_rw_debug without TCG. 108 * @memory_rw_debug: Callback for GDB memory access. 109 * @dump_state: Callback for dumping state. 110 * @query_cpu_fast: 111 * Fill in target specific information for the "query-cpus-fast" 112 * QAPI call. 113 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 114 * @set_pc: Callback for setting the Program Counter register. This 115 * should have the semantics used by the target architecture when 116 * setting the PC from a source such as an ELF file entry point; 117 * for example on Arm it will also set the Thumb mode bit based 118 * on the least significant bit of the new PC value. 119 * If the target behaviour here is anything other than "set 120 * the PC register to the value passed in" then the target must 121 * also implement the synchronize_from_tb hook. 122 * @get_pc: Callback for getting the Program Counter register. 123 * As above, with the semantics of the target architecture. 124 * @gdb_read_register: Callback for letting GDB read a register. 125 * @gdb_write_register: Callback for letting GDB write a register. 126 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 127 * breakpoint. Used by AVR to handle a gdb mis-feature with 128 * its Harvard architecture split code and data. 129 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 130 * from @gdb_core_xml_file. 131 * @gdb_core_xml_file: File name for core registers GDB XML description. 132 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 133 * before the insn which triggers a watchpoint rather than after it. 134 * @gdb_arch_name: Optional callback that returns the architecture name known 135 * to GDB. The caller must free the returned string with g_free. 136 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 137 * gdb stub. Returns a pointer to the XML contents for the specified XML file 138 * or NULL if the CPU doesn't have a dynamically generated content for it. 139 * @disas_set_info: Setup architecture specific components of disassembly info 140 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 141 * address before attempting to match it against watchpoints. 142 * @deprecation_note: If this CPUClass is deprecated, this field provides 143 * related information. 144 * 145 * Represents a CPU family or model. 146 */ 147 struct CPUClass { 148 /*< private >*/ 149 DeviceClass parent_class; 150 /*< public >*/ 151 152 ObjectClass *(*class_by_name)(const char *cpu_model); 153 void (*parse_features)(const char *typename, char *str, Error **errp); 154 155 bool (*has_work)(CPUState *cpu); 156 int (*mmu_index)(CPUState *cpu, bool ifetch); 157 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 158 uint8_t *buf, int len, bool is_write); 159 void (*dump_state)(CPUState *cpu, FILE *, int flags); 160 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 161 int64_t (*get_arch_id)(CPUState *cpu); 162 void (*set_pc)(CPUState *cpu, vaddr value); 163 vaddr (*get_pc)(CPUState *cpu); 164 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 165 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 166 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 167 168 const char *gdb_core_xml_file; 169 const gchar * (*gdb_arch_name)(CPUState *cpu); 170 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 171 172 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 173 174 const char *deprecation_note; 175 struct AccelCPUClass *accel_cpu; 176 177 /* when system emulation is not available, this pointer is NULL */ 178 const struct SysemuCPUOps *sysemu_ops; 179 180 /* when TCG is not available, this pointer is NULL */ 181 const TCGCPUOps *tcg_ops; 182 183 /* 184 * if not NULL, this is called in order for the CPUClass to initialize 185 * class data that depends on the accelerator, see accel/accel-common.c. 186 */ 187 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 188 189 /* 190 * Keep non-pointer data at the end to minimize holes. 191 */ 192 int reset_dump_flags; 193 int gdb_num_core_regs; 194 bool gdb_stop_before_watchpoint; 195 }; 196 197 /* 198 * Fix the number of mmu modes to 16, which is also the maximum 199 * supported by the softmmu tlb api. 200 */ 201 #define NB_MMU_MODES 16 202 203 /* Use a fully associative victim tlb of 8 entries. */ 204 #define CPU_VTLB_SIZE 8 205 206 /* 207 * The full TLB entry, which is not accessed by generated TCG code, 208 * so the layout is not as critical as that of CPUTLBEntry. This is 209 * also why we don't want to combine the two structs. 210 */ 211 typedef struct CPUTLBEntryFull { 212 /* 213 * @xlat_section contains: 214 * - in the lower TARGET_PAGE_BITS, a physical section number 215 * - with the lower TARGET_PAGE_BITS masked off, an offset which 216 * must be added to the virtual address to obtain: 217 * + the ram_addr_t of the target RAM (if the physical section 218 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 219 * + the offset within the target MemoryRegion (otherwise) 220 */ 221 hwaddr xlat_section; 222 223 /* 224 * @phys_addr contains the physical address in the address space 225 * given by cpu_asidx_from_attrs(cpu, @attrs). 226 */ 227 hwaddr phys_addr; 228 229 /* @attrs contains the memory transaction attributes for the page. */ 230 MemTxAttrs attrs; 231 232 /* @prot contains the complete protections for the page. */ 233 uint8_t prot; 234 235 /* @lg_page_size contains the log2 of the page size. */ 236 uint8_t lg_page_size; 237 238 /* 239 * Additional tlb flags for use by the slow path. If non-zero, 240 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 241 */ 242 uint8_t slow_flags[MMU_ACCESS_COUNT]; 243 244 /* 245 * Allow target-specific additions to this structure. 246 * This may be used to cache items from the guest cpu 247 * page tables for later use by the implementation. 248 */ 249 union { 250 /* 251 * Cache the attrs and shareability fields from the page table entry. 252 * 253 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 254 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 255 * For shareability and guarded, as in the SH and GP fields respectively 256 * of the VMSAv8-64 PTEs. 257 */ 258 struct { 259 uint8_t pte_attrs; 260 uint8_t shareability; 261 bool guarded; 262 } arm; 263 } extra; 264 } CPUTLBEntryFull; 265 266 /* 267 * Data elements that are per MMU mode, minus the bits accessed by 268 * the TCG fast path. 269 */ 270 typedef struct CPUTLBDesc { 271 /* 272 * Describe a region covering all of the large pages allocated 273 * into the tlb. When any page within this region is flushed, 274 * we must flush the entire tlb. The region is matched if 275 * (addr & large_page_mask) == large_page_addr. 276 */ 277 vaddr large_page_addr; 278 vaddr large_page_mask; 279 /* host time (in ns) at the beginning of the time window */ 280 int64_t window_begin_ns; 281 /* maximum number of entries observed in the window */ 282 size_t window_max_entries; 283 size_t n_used_entries; 284 /* The next index to use in the tlb victim table. */ 285 size_t vindex; 286 /* The tlb victim table, in two parts. */ 287 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 288 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 289 CPUTLBEntryFull *fulltlb; 290 } CPUTLBDesc; 291 292 /* 293 * Data elements that are shared between all MMU modes. 294 */ 295 typedef struct CPUTLBCommon { 296 /* Serialize updates to f.table and d.vtable, and others as noted. */ 297 QemuSpin lock; 298 /* 299 * Within dirty, for each bit N, modifications have been made to 300 * mmu_idx N since the last time that mmu_idx was flushed. 301 * Protected by tlb_c.lock. 302 */ 303 uint16_t dirty; 304 /* 305 * Statistics. These are not lock protected, but are read and 306 * written atomically. This allows the monitor to print a snapshot 307 * of the stats without interfering with the cpu. 308 */ 309 size_t full_flush_count; 310 size_t part_flush_count; 311 size_t elide_flush_count; 312 } CPUTLBCommon; 313 314 /* 315 * The entire softmmu tlb, for all MMU modes. 316 * The meaning of each of the MMU modes is defined in the target code. 317 * Since this is placed within CPUNegativeOffsetState, the smallest 318 * negative offsets are at the end of the struct. 319 */ 320 typedef struct CPUTLB { 321 #ifdef CONFIG_TCG 322 CPUTLBCommon c; 323 CPUTLBDesc d[NB_MMU_MODES]; 324 CPUTLBDescFast f[NB_MMU_MODES]; 325 #endif 326 } CPUTLB; 327 328 /* 329 * Low 16 bits: number of cycles left, used only in icount mode. 330 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 331 * for this CPU and return to its top level loop (even in non-icount mode). 332 * This allows a single read-compare-cbranch-write sequence to test 333 * for both decrementer underflow and exceptions. 334 */ 335 typedef union IcountDecr { 336 uint32_t u32; 337 struct { 338 #if HOST_BIG_ENDIAN 339 uint16_t high; 340 uint16_t low; 341 #else 342 uint16_t low; 343 uint16_t high; 344 #endif 345 } u16; 346 } IcountDecr; 347 348 /* 349 * Elements of CPUState most efficiently accessed from CPUArchState, 350 * via small negative offsets. 351 */ 352 typedef struct CPUNegativeOffsetState { 353 CPUTLB tlb; 354 IcountDecr icount_decr; 355 bool can_do_io; 356 } CPUNegativeOffsetState; 357 358 typedef struct CPUBreakpoint { 359 vaddr pc; 360 int flags; /* BP_* */ 361 QTAILQ_ENTRY(CPUBreakpoint) entry; 362 } CPUBreakpoint; 363 364 struct CPUWatchpoint { 365 vaddr vaddr; 366 vaddr len; 367 vaddr hitaddr; 368 MemTxAttrs hitattrs; 369 int flags; /* BP_* */ 370 QTAILQ_ENTRY(CPUWatchpoint) entry; 371 }; 372 373 struct KVMState; 374 struct kvm_run; 375 376 /* work queue */ 377 378 /* The union type allows passing of 64 bit target pointers on 32 bit 379 * hosts in a single parameter 380 */ 381 typedef union { 382 int host_int; 383 unsigned long host_ulong; 384 void *host_ptr; 385 vaddr target_ptr; 386 } run_on_cpu_data; 387 388 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 389 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 390 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 391 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 392 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 393 394 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 395 396 struct qemu_work_item; 397 398 #define CPU_UNSET_NUMA_NODE_ID -1 399 400 /** 401 * CPUState: 402 * @cpu_index: CPU index (informative). 403 * @cluster_index: Identifies which cluster this CPU is in. 404 * For boards which don't define clusters or for "loose" CPUs not assigned 405 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 406 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 407 * QOM parent. 408 * Under TCG this value is propagated to @tcg_cflags. 409 * See TranslationBlock::TCG CF_CLUSTER_MASK. 410 * @tcg_cflags: Pre-computed cflags for this cpu. 411 * @nr_cores: Number of cores within this CPU package. 412 * @nr_threads: Number of threads within this CPU core. 413 * @running: #true if CPU is currently running (lockless). 414 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 415 * valid under cpu_list_lock. 416 * @created: Indicates whether the CPU thread has been successfully created. 417 * @interrupt_request: Indicates a pending interrupt request. 418 * @halted: Nonzero if the CPU is in suspended state. 419 * @stop: Indicates a pending stop request. 420 * @stopped: Indicates the CPU has been artificially stopped. 421 * @unplug: Indicates a pending CPU unplug request. 422 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 423 * @singlestep_enabled: Flags for single-stepping. 424 * @icount_extra: Instructions until next timer event. 425 * @neg.can_do_io: True if memory-mapped IO is allowed. 426 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 427 * AddressSpaces this CPU has) 428 * @num_ases: number of CPUAddressSpaces in @cpu_ases 429 * @as: Pointer to the first AddressSpace, for the convenience of targets which 430 * only have a single AddressSpace 431 * @gdb_regs: Additional GDB registers. 432 * @gdb_num_regs: Number of total registers accessible to GDB. 433 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 434 * @node: QTAILQ of CPUs sharing TB cache. 435 * @opaque: User data. 436 * @mem_io_pc: Host Program Counter at which the memory was accessed. 437 * @accel: Pointer to accelerator specific state. 438 * @kvm_fd: vCPU file descriptor for KVM. 439 * @work_mutex: Lock to prevent multiple access to @work_list. 440 * @work_list: List of pending asynchronous work. 441 * @plugin_mask: Plugin event bitmap. Modified only via async work. 442 * @ignore_memory_transaction_failures: Cached copy of the MachineState 443 * flag of the same name: allows the board to suppress calling of the 444 * CPU do_transaction_failed hook function. 445 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 446 * ring is enabled. 447 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 448 * dirty ring structure. 449 * 450 * State of one CPU core or thread. 451 * 452 * Align, in order to match possible alignment required by CPUArchState, 453 * and eliminate a hole between CPUState and CPUArchState within ArchCPU. 454 */ 455 struct CPUState { 456 /*< private >*/ 457 DeviceState parent_obj; 458 /* cache to avoid expensive CPU_GET_CLASS */ 459 CPUClass *cc; 460 /*< public >*/ 461 462 int nr_cores; 463 int nr_threads; 464 465 struct QemuThread *thread; 466 #ifdef _WIN32 467 QemuSemaphore sem; 468 #endif 469 int thread_id; 470 bool running, has_waiter; 471 struct QemuCond *halt_cond; 472 bool thread_kicked; 473 bool created; 474 bool stop; 475 bool stopped; 476 477 /* Should CPU start in powered-off state? */ 478 bool start_powered_off; 479 480 bool unplug; 481 bool crash_occurred; 482 bool exit_request; 483 int exclusive_context_count; 484 uint32_t cflags_next_tb; 485 /* updates protected by BQL */ 486 uint32_t interrupt_request; 487 int singlestep_enabled; 488 int64_t icount_budget; 489 int64_t icount_extra; 490 uint64_t random_seed; 491 sigjmp_buf jmp_env; 492 493 QemuMutex work_mutex; 494 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 495 496 CPUAddressSpace *cpu_ases; 497 int num_ases; 498 AddressSpace *as; 499 MemoryRegion *memory; 500 501 CPUJumpCache *tb_jmp_cache; 502 503 GArray *gdb_regs; 504 int gdb_num_regs; 505 int gdb_num_g_regs; 506 QTAILQ_ENTRY(CPUState) node; 507 508 /* ice debug support */ 509 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 510 511 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 512 CPUWatchpoint *watchpoint_hit; 513 514 void *opaque; 515 516 /* In order to avoid passing too many arguments to the MMIO helpers, 517 * we store some rarely used information in the CPU context. 518 */ 519 uintptr_t mem_io_pc; 520 521 /* Only used in KVM */ 522 int kvm_fd; 523 struct KVMState *kvm_state; 524 struct kvm_run *kvm_run; 525 struct kvm_dirty_gfn *kvm_dirty_gfns; 526 uint32_t kvm_fetch_index; 527 uint64_t dirty_pages; 528 int kvm_vcpu_stats_fd; 529 530 /* Use by accel-block: CPU is executing an ioctl() */ 531 QemuLockCnt in_ioctl_lock; 532 533 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 534 535 #ifdef CONFIG_PLUGIN 536 GArray *plugin_mem_cbs; 537 #endif 538 539 /* TODO Move common fields from CPUArchState here. */ 540 int cpu_index; 541 int cluster_index; 542 uint32_t tcg_cflags; 543 uint32_t halted; 544 int32_t exception_index; 545 546 AccelCPUState *accel; 547 /* shared by kvm and hvf */ 548 bool vcpu_dirty; 549 550 /* Used to keep track of an outstanding cpu throttle thread for migration 551 * autoconverge 552 */ 553 bool throttle_thread_scheduled; 554 555 /* 556 * Sleep throttle_us_per_full microseconds once dirty ring is full 557 * if dirty page rate limit is enabled. 558 */ 559 int64_t throttle_us_per_full; 560 561 bool ignore_memory_transaction_failures; 562 563 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 564 bool prctl_unalign_sigbus; 565 566 /* track IOMMUs whose translations we've cached in the TCG TLB */ 567 GArray *iommu_notifiers; 568 569 /* 570 * MUST BE LAST in order to minimize the displacement to CPUArchState. 571 */ 572 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 573 CPUNegativeOffsetState neg; 574 }; 575 576 /* Validate placement of CPUNegativeOffsetState. */ 577 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 578 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 579 580 static inline CPUArchState *cpu_env(CPUState *cpu) 581 { 582 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 583 return (CPUArchState *)(cpu + 1); 584 } 585 586 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 587 extern CPUTailQ cpus_queue; 588 589 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 590 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 591 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 592 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 593 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 594 595 extern __thread CPUState *current_cpu; 596 597 /** 598 * qemu_tcg_mttcg_enabled: 599 * Check whether we are running MultiThread TCG or not. 600 * 601 * Returns: %true if we are in MTTCG mode %false otherwise. 602 */ 603 extern bool mttcg_enabled; 604 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 605 606 /** 607 * cpu_paging_enabled: 608 * @cpu: The CPU whose state is to be inspected. 609 * 610 * Returns: %true if paging is enabled, %false otherwise. 611 */ 612 bool cpu_paging_enabled(const CPUState *cpu); 613 614 /** 615 * cpu_get_memory_mapping: 616 * @cpu: The CPU whose memory mappings are to be obtained. 617 * @list: Where to write the memory mappings to. 618 * @errp: Pointer for reporting an #Error. 619 * 620 * Returns: %true on success, %false otherwise. 621 */ 622 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 623 Error **errp); 624 625 #if !defined(CONFIG_USER_ONLY) 626 627 /** 628 * cpu_write_elf64_note: 629 * @f: pointer to a function that writes memory to a file 630 * @cpu: The CPU whose memory is to be dumped 631 * @cpuid: ID number of the CPU 632 * @opaque: pointer to the CPUState struct 633 */ 634 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 635 int cpuid, void *opaque); 636 637 /** 638 * cpu_write_elf64_qemunote: 639 * @f: pointer to a function that writes memory to a file 640 * @cpu: The CPU whose memory is to be dumped 641 * @cpuid: ID number of the CPU 642 * @opaque: pointer to the CPUState struct 643 */ 644 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 645 void *opaque); 646 647 /** 648 * cpu_write_elf32_note: 649 * @f: pointer to a function that writes memory to a file 650 * @cpu: The CPU whose memory is to be dumped 651 * @cpuid: ID number of the CPU 652 * @opaque: pointer to the CPUState struct 653 */ 654 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 655 int cpuid, void *opaque); 656 657 /** 658 * cpu_write_elf32_qemunote: 659 * @f: pointer to a function that writes memory to a file 660 * @cpu: The CPU whose memory is to be dumped 661 * @cpuid: ID number of the CPU 662 * @opaque: pointer to the CPUState struct 663 */ 664 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 665 void *opaque); 666 667 /** 668 * cpu_get_crash_info: 669 * @cpu: The CPU to get crash information for 670 * 671 * Gets the previously saved crash information. 672 * Caller is responsible for freeing the data. 673 */ 674 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 675 676 #endif /* !CONFIG_USER_ONLY */ 677 678 /** 679 * CPUDumpFlags: 680 * @CPU_DUMP_CODE: 681 * @CPU_DUMP_FPU: dump FPU register state, not just integer 682 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 683 * @CPU_DUMP_VPU: dump VPU registers 684 */ 685 enum CPUDumpFlags { 686 CPU_DUMP_CODE = 0x00010000, 687 CPU_DUMP_FPU = 0x00020000, 688 CPU_DUMP_CCOP = 0x00040000, 689 CPU_DUMP_VPU = 0x00080000, 690 }; 691 692 /** 693 * cpu_dump_state: 694 * @cpu: The CPU whose state is to be dumped. 695 * @f: If non-null, dump to this stream, else to current print sink. 696 * 697 * Dumps CPU state. 698 */ 699 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 700 701 #ifndef CONFIG_USER_ONLY 702 /** 703 * cpu_get_phys_page_attrs_debug: 704 * @cpu: The CPU to obtain the physical page address for. 705 * @addr: The virtual address. 706 * @attrs: Updated on return with the memory transaction attributes to use 707 * for this access. 708 * 709 * Obtains the physical page corresponding to a virtual one, together 710 * with the corresponding memory transaction attributes to use for the access. 711 * Use it only for debugging because no protection checks are done. 712 * 713 * Returns: Corresponding physical page address or -1 if no page found. 714 */ 715 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 716 MemTxAttrs *attrs); 717 718 /** 719 * cpu_get_phys_page_debug: 720 * @cpu: The CPU to obtain the physical page address for. 721 * @addr: The virtual address. 722 * 723 * Obtains the physical page corresponding to a virtual one. 724 * Use it only for debugging because no protection checks are done. 725 * 726 * Returns: Corresponding physical page address or -1 if no page found. 727 */ 728 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 729 730 /** cpu_asidx_from_attrs: 731 * @cpu: CPU 732 * @attrs: memory transaction attributes 733 * 734 * Returns the address space index specifying the CPU AddressSpace 735 * to use for a memory access with the given transaction attributes. 736 */ 737 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 738 739 /** 740 * cpu_virtio_is_big_endian: 741 * @cpu: CPU 742 743 * Returns %true if a CPU which supports runtime configurable endianness 744 * is currently big-endian. 745 */ 746 bool cpu_virtio_is_big_endian(CPUState *cpu); 747 748 #endif /* CONFIG_USER_ONLY */ 749 750 /** 751 * cpu_list_add: 752 * @cpu: The CPU to be added to the list of CPUs. 753 */ 754 void cpu_list_add(CPUState *cpu); 755 756 /** 757 * cpu_list_remove: 758 * @cpu: The CPU to be removed from the list of CPUs. 759 */ 760 void cpu_list_remove(CPUState *cpu); 761 762 /** 763 * cpu_reset: 764 * @cpu: The CPU whose state is to be reset. 765 */ 766 void cpu_reset(CPUState *cpu); 767 768 /** 769 * cpu_class_by_name: 770 * @typename: The CPU base type. 771 * @cpu_model: The model string without any parameters. 772 * 773 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 774 * 775 * Returns: A concrete #CPUClass or %NULL if no matching class is found 776 * or if the matching class is abstract. 777 */ 778 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 779 780 /** 781 * cpu_model_from_type: 782 * @typename: The CPU type name 783 * 784 * Extract the CPU model name from the CPU type name. The 785 * CPU type name is either the combination of the CPU model 786 * name and suffix, or same to the CPU model name. 787 * 788 * Returns: CPU model name or NULL if the CPU class doesn't exist 789 * The user should g_free() the string once no longer needed. 790 */ 791 char *cpu_model_from_type(const char *typename); 792 793 /** 794 * cpu_create: 795 * @typename: The CPU type. 796 * 797 * Instantiates a CPU and realizes the CPU. 798 * 799 * Returns: A #CPUState or %NULL if an error occurred. 800 */ 801 CPUState *cpu_create(const char *typename); 802 803 /** 804 * parse_cpu_option: 805 * @cpu_option: The -cpu option including optional parameters. 806 * 807 * processes optional parameters and registers them as global properties 808 * 809 * Returns: type of CPU to create or prints error and terminates process 810 * if an error occurred. 811 */ 812 const char *parse_cpu_option(const char *cpu_option); 813 814 /** 815 * cpu_has_work: 816 * @cpu: The vCPU to check. 817 * 818 * Checks whether the CPU has work to do. 819 * 820 * Returns: %true if the CPU has work, %false otherwise. 821 */ 822 static inline bool cpu_has_work(CPUState *cpu) 823 { 824 CPUClass *cc = CPU_GET_CLASS(cpu); 825 826 g_assert(cc->has_work); 827 return cc->has_work(cpu); 828 } 829 830 /** 831 * qemu_cpu_is_self: 832 * @cpu: The vCPU to check against. 833 * 834 * Checks whether the caller is executing on the vCPU thread. 835 * 836 * Returns: %true if called from @cpu's thread, %false otherwise. 837 */ 838 bool qemu_cpu_is_self(CPUState *cpu); 839 840 /** 841 * qemu_cpu_kick: 842 * @cpu: The vCPU to kick. 843 * 844 * Kicks @cpu's thread. 845 */ 846 void qemu_cpu_kick(CPUState *cpu); 847 848 /** 849 * cpu_is_stopped: 850 * @cpu: The CPU to check. 851 * 852 * Checks whether the CPU is stopped. 853 * 854 * Returns: %true if run state is not running or if artificially stopped; 855 * %false otherwise. 856 */ 857 bool cpu_is_stopped(CPUState *cpu); 858 859 /** 860 * do_run_on_cpu: 861 * @cpu: The vCPU to run on. 862 * @func: The function to be executed. 863 * @data: Data to pass to the function. 864 * @mutex: Mutex to release while waiting for @func to run. 865 * 866 * Used internally in the implementation of run_on_cpu. 867 */ 868 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 869 QemuMutex *mutex); 870 871 /** 872 * run_on_cpu: 873 * @cpu: The vCPU to run on. 874 * @func: The function to be executed. 875 * @data: Data to pass to the function. 876 * 877 * Schedules the function @func for execution on the vCPU @cpu. 878 */ 879 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 880 881 /** 882 * async_run_on_cpu: 883 * @cpu: The vCPU to run on. 884 * @func: The function to be executed. 885 * @data: Data to pass to the function. 886 * 887 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 888 */ 889 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 890 891 /** 892 * async_safe_run_on_cpu: 893 * @cpu: The vCPU to run on. 894 * @func: The function to be executed. 895 * @data: Data to pass to the function. 896 * 897 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 898 * while all other vCPUs are sleeping. 899 * 900 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 901 * BQL. 902 */ 903 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 904 905 /** 906 * cpu_in_exclusive_context() 907 * @cpu: The vCPU to check 908 * 909 * Returns true if @cpu is an exclusive context, for example running 910 * something which has previously been queued via async_safe_run_on_cpu(). 911 */ 912 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 913 { 914 return cpu->exclusive_context_count; 915 } 916 917 /** 918 * qemu_get_cpu: 919 * @index: The CPUState@cpu_index value of the CPU to obtain. 920 * 921 * Gets a CPU matching @index. 922 * 923 * Returns: The CPU or %NULL if there is no matching CPU. 924 */ 925 CPUState *qemu_get_cpu(int index); 926 927 /** 928 * cpu_exists: 929 * @id: Guest-exposed CPU ID to lookup. 930 * 931 * Search for CPU with specified ID. 932 * 933 * Returns: %true - CPU is found, %false - CPU isn't found. 934 */ 935 bool cpu_exists(int64_t id); 936 937 /** 938 * cpu_by_arch_id: 939 * @id: Guest-exposed CPU ID of the CPU to obtain. 940 * 941 * Get a CPU with matching @id. 942 * 943 * Returns: The CPU or %NULL if there is no matching CPU. 944 */ 945 CPUState *cpu_by_arch_id(int64_t id); 946 947 /** 948 * cpu_interrupt: 949 * @cpu: The CPU to set an interrupt on. 950 * @mask: The interrupts to set. 951 * 952 * Invokes the interrupt handler. 953 */ 954 955 void cpu_interrupt(CPUState *cpu, int mask); 956 957 /** 958 * cpu_set_pc: 959 * @cpu: The CPU to set the program counter for. 960 * @addr: Program counter value. 961 * 962 * Sets the program counter for a CPU. 963 */ 964 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 965 { 966 CPUClass *cc = CPU_GET_CLASS(cpu); 967 968 cc->set_pc(cpu, addr); 969 } 970 971 /** 972 * cpu_reset_interrupt: 973 * @cpu: The CPU to clear the interrupt on. 974 * @mask: The interrupt mask to clear. 975 * 976 * Resets interrupts on the vCPU @cpu. 977 */ 978 void cpu_reset_interrupt(CPUState *cpu, int mask); 979 980 /** 981 * cpu_exit: 982 * @cpu: The CPU to exit. 983 * 984 * Requests the CPU @cpu to exit execution. 985 */ 986 void cpu_exit(CPUState *cpu); 987 988 /** 989 * cpu_resume: 990 * @cpu: The CPU to resume. 991 * 992 * Resumes CPU, i.e. puts CPU into runnable state. 993 */ 994 void cpu_resume(CPUState *cpu); 995 996 /** 997 * cpu_remove_sync: 998 * @cpu: The CPU to remove. 999 * 1000 * Requests the CPU to be removed and waits till it is removed. 1001 */ 1002 void cpu_remove_sync(CPUState *cpu); 1003 1004 /** 1005 * process_queued_cpu_work() - process all items on CPU work queue 1006 * @cpu: The CPU which work queue to process. 1007 */ 1008 void process_queued_cpu_work(CPUState *cpu); 1009 1010 /** 1011 * cpu_exec_start: 1012 * @cpu: The CPU for the current thread. 1013 * 1014 * Record that a CPU has started execution and can be interrupted with 1015 * cpu_exit. 1016 */ 1017 void cpu_exec_start(CPUState *cpu); 1018 1019 /** 1020 * cpu_exec_end: 1021 * @cpu: The CPU for the current thread. 1022 * 1023 * Record that a CPU has stopped execution and exclusive sections 1024 * can be executed without interrupting it. 1025 */ 1026 void cpu_exec_end(CPUState *cpu); 1027 1028 /** 1029 * start_exclusive: 1030 * 1031 * Wait for a concurrent exclusive section to end, and then start 1032 * a section of work that is run while other CPUs are not running 1033 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1034 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1035 * during the exclusive section go to sleep until this CPU calls 1036 * end_exclusive. 1037 */ 1038 void start_exclusive(void); 1039 1040 /** 1041 * end_exclusive: 1042 * 1043 * Concludes an exclusive execution section started by start_exclusive. 1044 */ 1045 void end_exclusive(void); 1046 1047 /** 1048 * qemu_init_vcpu: 1049 * @cpu: The vCPU to initialize. 1050 * 1051 * Initializes a vCPU. 1052 */ 1053 void qemu_init_vcpu(CPUState *cpu); 1054 1055 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1056 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1057 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1058 1059 /** 1060 * cpu_single_step: 1061 * @cpu: CPU to the flags for. 1062 * @enabled: Flags to enable. 1063 * 1064 * Enables or disables single-stepping for @cpu. 1065 */ 1066 void cpu_single_step(CPUState *cpu, int enabled); 1067 1068 /* Breakpoint/watchpoint flags */ 1069 #define BP_MEM_READ 0x01 1070 #define BP_MEM_WRITE 0x02 1071 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1072 #define BP_STOP_BEFORE_ACCESS 0x04 1073 /* 0x08 currently unused */ 1074 #define BP_GDB 0x10 1075 #define BP_CPU 0x20 1076 #define BP_ANY (BP_GDB | BP_CPU) 1077 #define BP_HIT_SHIFT 6 1078 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1079 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1080 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1081 1082 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1083 CPUBreakpoint **breakpoint); 1084 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1085 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1086 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1087 1088 /* Return true if PC matches an installed breakpoint. */ 1089 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1090 { 1091 CPUBreakpoint *bp; 1092 1093 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1094 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1095 if (bp->pc == pc && (bp->flags & mask)) { 1096 return true; 1097 } 1098 } 1099 } 1100 return false; 1101 } 1102 1103 #if defined(CONFIG_USER_ONLY) 1104 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1105 int flags, CPUWatchpoint **watchpoint) 1106 { 1107 return -ENOSYS; 1108 } 1109 1110 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1111 vaddr len, int flags) 1112 { 1113 return -ENOSYS; 1114 } 1115 1116 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1117 CPUWatchpoint *wp) 1118 { 1119 } 1120 1121 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1122 { 1123 } 1124 #else 1125 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1126 int flags, CPUWatchpoint **watchpoint); 1127 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1128 vaddr len, int flags); 1129 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1130 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1131 #endif 1132 1133 /** 1134 * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled? 1135 * @cs: CPUState pointer 1136 * 1137 * The memory callbacks are installed if a plugin has instrumented an 1138 * instruction for memory. This can be useful to know if you want to 1139 * force a slow path for a series of memory accesses. 1140 */ 1141 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu) 1142 { 1143 #ifdef CONFIG_PLUGIN 1144 return !!cpu->plugin_mem_cbs; 1145 #else 1146 return false; 1147 #endif 1148 } 1149 1150 /** 1151 * cpu_get_address_space: 1152 * @cpu: CPU to get address space from 1153 * @asidx: index identifying which address space to get 1154 * 1155 * Return the requested address space of this CPU. @asidx 1156 * specifies which address space to read. 1157 */ 1158 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1159 1160 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1161 G_GNUC_PRINTF(2, 3); 1162 1163 /* $(top_srcdir)/cpu.c */ 1164 void cpu_class_init_props(DeviceClass *dc); 1165 void cpu_exec_initfn(CPUState *cpu); 1166 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1167 void cpu_exec_unrealizefn(CPUState *cpu); 1168 void cpu_exec_reset_hold(CPUState *cpu); 1169 1170 /** 1171 * target_words_bigendian: 1172 * Returns true if the (default) endianness of the target is big endian, 1173 * false otherwise. Note that in target-specific code, you can use 1174 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1175 * code should normally never need to know about the endianness of the 1176 * target, so please do *not* use this function unless you know very well 1177 * what you are doing! 1178 */ 1179 bool target_words_bigendian(void); 1180 1181 const char *target_name(void); 1182 1183 void page_size_init(void); 1184 1185 #ifdef NEED_CPU_H 1186 1187 #ifndef CONFIG_USER_ONLY 1188 1189 extern const VMStateDescription vmstate_cpu_common; 1190 1191 #define VMSTATE_CPU() { \ 1192 .name = "parent_obj", \ 1193 .size = sizeof(CPUState), \ 1194 .vmsd = &vmstate_cpu_common, \ 1195 .flags = VMS_STRUCT, \ 1196 .offset = 0, \ 1197 } 1198 #endif /* !CONFIG_USER_ONLY */ 1199 1200 #endif /* NEED_CPU_H */ 1201 1202 #define UNASSIGNED_CPU_INDEX -1 1203 #define UNASSIGNED_CLUSTER_INDEX -1 1204 1205 #endif 1206