xref: /openbmc/qemu/include/hw/core/cpu.h (revision eabfeb0c)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 
34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
35                                      void *opaque);
36 
37 /**
38  * vaddr:
39  * Type wide enough to contain any #target_ulong virtual address.
40  */
41 typedef uint64_t vaddr;
42 #define VADDR_PRId PRId64
43 #define VADDR_PRIu PRIu64
44 #define VADDR_PRIo PRIo64
45 #define VADDR_PRIx PRIx64
46 #define VADDR_PRIX PRIX64
47 #define VADDR_MAX UINT64_MAX
48 
49 /**
50  * SECTION:cpu
51  * @section_id: QEMU-cpu
52  * @title: CPU Class
53  * @short_description: Base class for all CPUs
54  */
55 
56 #define TYPE_CPU "cpu"
57 
58 /* Since this macro is used a lot in hot code paths and in conjunction with
59  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
60  * an unchecked cast.
61  */
62 #define CPU(obj) ((CPUState *)(obj))
63 
64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
66 
67 typedef enum MMUAccessType {
68     MMU_DATA_LOAD  = 0,
69     MMU_DATA_STORE = 1,
70     MMU_INST_FETCH = 2
71 } MMUAccessType;
72 
73 typedef struct CPUWatchpoint CPUWatchpoint;
74 
75 struct TranslationBlock;
76 
77 /**
78  * CPUClass:
79  * @class_by_name: Callback to map -cpu command line model name to an
80  * instantiatable CPU type.
81  * @parse_features: Callback to parse command line arguments.
82  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
83  * @has_work: Callback for checking if there is work to do.
84  * @do_interrupt: Callback for interrupt handling.
85  * @do_unaligned_access: Callback for unaligned access handling, if
86  * the target defines #TARGET_ALIGNED_ONLY.
87  * @do_transaction_failed: Callback for handling failed memory transactions
88  * (ie bus faults or external aborts; not MMU faults)
89  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
90  * runtime configurable endianness is currently big-endian. Non-configurable
91  * CPUs can use the default implementation of this method. This method should
92  * not be used by any callers other than the pre-1.0 virtio devices.
93  * @memory_rw_debug: Callback for GDB memory access.
94  * @dump_state: Callback for dumping state.
95  * @dump_statistics: Callback for dumping statistics.
96  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
97  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
98  * @get_memory_mapping: Callback for obtaining the memory mappings.
99  * @set_pc: Callback for setting the Program Counter register. This
100  *       should have the semantics used by the target architecture when
101  *       setting the PC from a source such as an ELF file entry point;
102  *       for example on Arm it will also set the Thumb mode bit based
103  *       on the least significant bit of the new PC value.
104  *       If the target behaviour here is anything other than "set
105  *       the PC register to the value passed in" then the target must
106  *       also implement the synchronize_from_tb hook.
107  * @synchronize_from_tb: Callback for synchronizing state from a TCG
108  *       #TranslationBlock. This is called when we abandon execution
109  *       of a TB before starting it, and must set all parts of the CPU
110  *       state which the previous TB in the chain may not have updated.
111  *       This always includes at least the program counter; some targets
112  *       will need to do more. If this hook is not implemented then the
113  *       default is to call @set_pc(tb->pc).
114  * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
115  *       address fault.  For system mode, if the access is valid, call
116  *       tlb_set_page and return true; if the access is invalid, and
117  *       probe is true, return false; otherwise raise an exception and
118  *       do not return.  For user-only mode, always raise an exception
119  *       and do not return.
120  * @get_phys_page_debug: Callback for obtaining a physical address.
121  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
122  *       associated memory transaction attributes to use for the access.
123  *       CPUs which use memory transaction attributes should implement this
124  *       instead of get_phys_page_debug.
125  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
126  *       a memory access with the specified memory transaction attributes.
127  * @gdb_read_register: Callback for letting GDB read a register.
128  * @gdb_write_register: Callback for letting GDB write a register.
129  * @debug_check_watchpoint: Callback: return true if the architectural
130  *       watchpoint whose address has matched should really fire.
131  * @debug_excp_handler: Callback for handling debug exceptions.
132  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
133  * 64-bit VM coredump.
134  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
135  * note to a 32-bit VM coredump.
136  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
137  * 32-bit VM coredump.
138  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
139  * note to a 32-bit VM coredump.
140  * @vmsd: State description for migration.
141  * @gdb_num_core_regs: Number of core registers accessible to GDB.
142  * @gdb_core_xml_file: File name for core registers GDB XML description.
143  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
144  *           before the insn which triggers a watchpoint rather than after it.
145  * @gdb_arch_name: Optional callback that returns the architecture name known
146  * to GDB. The caller must free the returned string with g_free.
147  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
148  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
149  *   or NULL if the CPU doesn't have a dynamically generated content for it.
150  * @cpu_exec_enter: Callback for cpu_exec preparation.
151  * @cpu_exec_exit: Callback for cpu_exec cleanup.
152  * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
153  * @disas_set_info: Setup architecture specific components of disassembly info
154  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
155  * address before attempting to match it against watchpoints.
156  *
157  * Represents a CPU family or model.
158  */
159 typedef struct CPUClass {
160     /*< private >*/
161     DeviceClass parent_class;
162     /*< public >*/
163 
164     ObjectClass *(*class_by_name)(const char *cpu_model);
165     void (*parse_features)(const char *typename, char *str, Error **errp);
166 
167     int reset_dump_flags;
168     bool (*has_work)(CPUState *cpu);
169     void (*do_interrupt)(CPUState *cpu);
170     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
171                                 MMUAccessType access_type,
172                                 int mmu_idx, uintptr_t retaddr);
173     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
174                                   unsigned size, MMUAccessType access_type,
175                                   int mmu_idx, MemTxAttrs attrs,
176                                   MemTxResult response, uintptr_t retaddr);
177     bool (*virtio_is_big_endian)(CPUState *cpu);
178     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
179                            uint8_t *buf, int len, bool is_write);
180     void (*dump_state)(CPUState *cpu, FILE *, int flags);
181     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
182     void (*dump_statistics)(CPUState *cpu, int flags);
183     int64_t (*get_arch_id)(CPUState *cpu);
184     bool (*get_paging_enabled)(const CPUState *cpu);
185     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
186                                Error **errp);
187     void (*set_pc)(CPUState *cpu, vaddr value);
188     void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
189     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
190                      MMUAccessType access_type, int mmu_idx,
191                      bool probe, uintptr_t retaddr);
192     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
193     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
194                                         MemTxAttrs *attrs);
195     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
196     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
197     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
198     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
199     void (*debug_excp_handler)(CPUState *cpu);
200 
201     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
202                             int cpuid, void *opaque);
203     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
204                                 void *opaque);
205     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
206                             int cpuid, void *opaque);
207     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
208                                 void *opaque);
209 
210     const VMStateDescription *vmsd;
211     const char *gdb_core_xml_file;
212     gchar * (*gdb_arch_name)(CPUState *cpu);
213     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
214     void (*cpu_exec_enter)(CPUState *cpu);
215     void (*cpu_exec_exit)(CPUState *cpu);
216     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
217 
218     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
219     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
220     void (*tcg_initialize)(void);
221 
222     /* Keep non-pointer data at the end to minimize holes.  */
223     int gdb_num_core_regs;
224     bool gdb_stop_before_watchpoint;
225 } CPUClass;
226 
227 /*
228  * Low 16 bits: number of cycles left, used only in icount mode.
229  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
230  * for this CPU and return to its top level loop (even in non-icount mode).
231  * This allows a single read-compare-cbranch-write sequence to test
232  * for both decrementer underflow and exceptions.
233  */
234 typedef union IcountDecr {
235     uint32_t u32;
236     struct {
237 #ifdef HOST_WORDS_BIGENDIAN
238         uint16_t high;
239         uint16_t low;
240 #else
241         uint16_t low;
242         uint16_t high;
243 #endif
244     } u16;
245 } IcountDecr;
246 
247 typedef struct CPUBreakpoint {
248     vaddr pc;
249     int flags; /* BP_* */
250     QTAILQ_ENTRY(CPUBreakpoint) entry;
251 } CPUBreakpoint;
252 
253 struct CPUWatchpoint {
254     vaddr vaddr;
255     vaddr len;
256     vaddr hitaddr;
257     MemTxAttrs hitattrs;
258     int flags; /* BP_* */
259     QTAILQ_ENTRY(CPUWatchpoint) entry;
260 };
261 
262 #ifdef CONFIG_PLUGIN
263 /*
264  * For plugins we sometime need to save the resolved iotlb data before
265  * the memory regions get moved around  by io_writex.
266  */
267 typedef struct SavedIOTLB {
268     hwaddr addr;
269     MemoryRegionSection *section;
270     hwaddr mr_offset;
271 } SavedIOTLB;
272 #endif
273 
274 struct KVMState;
275 struct kvm_run;
276 
277 struct hax_vcpu_state;
278 
279 #define TB_JMP_CACHE_BITS 12
280 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
281 
282 /* work queue */
283 
284 /* The union type allows passing of 64 bit target pointers on 32 bit
285  * hosts in a single parameter
286  */
287 typedef union {
288     int           host_int;
289     unsigned long host_ulong;
290     void         *host_ptr;
291     vaddr         target_ptr;
292 } run_on_cpu_data;
293 
294 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
295 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
296 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
297 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
298 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
299 
300 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
301 
302 struct qemu_work_item;
303 
304 #define CPU_UNSET_NUMA_NODE_ID -1
305 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
306 
307 /**
308  * CPUState:
309  * @cpu_index: CPU index (informative).
310  * @cluster_index: Identifies which cluster this CPU is in.
311  *   For boards which don't define clusters or for "loose" CPUs not assigned
312  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
313  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
314  *   QOM parent.
315  * @nr_cores: Number of cores within this CPU package.
316  * @nr_threads: Number of threads within this CPU.
317  * @running: #true if CPU is currently running (lockless).
318  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
319  * valid under cpu_list_lock.
320  * @created: Indicates whether the CPU thread has been successfully created.
321  * @interrupt_request: Indicates a pending interrupt request.
322  * @halted: Nonzero if the CPU is in suspended state.
323  * @stop: Indicates a pending stop request.
324  * @stopped: Indicates the CPU has been artificially stopped.
325  * @unplug: Indicates a pending CPU unplug request.
326  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
327  * @singlestep_enabled: Flags for single-stepping.
328  * @icount_extra: Instructions until next timer event.
329  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
330  * requires that IO only be performed on the last instruction of a TB
331  * so that interrupts take effect immediately.
332  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
333  *            AddressSpaces this CPU has)
334  * @num_ases: number of CPUAddressSpaces in @cpu_ases
335  * @as: Pointer to the first AddressSpace, for the convenience of targets which
336  *      only have a single AddressSpace
337  * @env_ptr: Pointer to subclass-specific CPUArchState field.
338  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
339  * @gdb_regs: Additional GDB registers.
340  * @gdb_num_regs: Number of total registers accessible to GDB.
341  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
342  * @next_cpu: Next CPU sharing TB cache.
343  * @opaque: User data.
344  * @mem_io_pc: Host Program Counter at which the memory was accessed.
345  * @kvm_fd: vCPU file descriptor for KVM.
346  * @work_mutex: Lock to prevent multiple access to @work_list.
347  * @work_list: List of pending asynchronous work.
348  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
349  *                        to @trace_dstate).
350  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
351  * @plugin_mask: Plugin event bitmap. Modified only via async work.
352  * @ignore_memory_transaction_failures: Cached copy of the MachineState
353  *    flag of the same name: allows the board to suppress calling of the
354  *    CPU do_transaction_failed hook function.
355  *
356  * State of one CPU core or thread.
357  */
358 struct CPUState {
359     /*< private >*/
360     DeviceState parent_obj;
361     /*< public >*/
362 
363     int nr_cores;
364     int nr_threads;
365 
366     struct QemuThread *thread;
367 #ifdef _WIN32
368     HANDLE hThread;
369 #endif
370     int thread_id;
371     bool running, has_waiter;
372     struct QemuCond *halt_cond;
373     bool thread_kicked;
374     bool created;
375     bool stop;
376     bool stopped;
377     bool unplug;
378     bool crash_occurred;
379     bool exit_request;
380     bool in_exclusive_context;
381     uint32_t cflags_next_tb;
382     /* updates protected by BQL */
383     uint32_t interrupt_request;
384     int singlestep_enabled;
385     int64_t icount_budget;
386     int64_t icount_extra;
387     uint64_t random_seed;
388     sigjmp_buf jmp_env;
389 
390     QemuMutex work_mutex;
391     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
392 
393     CPUAddressSpace *cpu_ases;
394     int num_ases;
395     AddressSpace *as;
396     MemoryRegion *memory;
397 
398     void *env_ptr; /* CPUArchState */
399     IcountDecr *icount_decr_ptr;
400 
401     /* Accessed in parallel; all accesses must be atomic */
402     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
403 
404     struct GDBRegisterState *gdb_regs;
405     int gdb_num_regs;
406     int gdb_num_g_regs;
407     QTAILQ_ENTRY(CPUState) node;
408 
409     /* ice debug support */
410     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
411 
412     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
413     CPUWatchpoint *watchpoint_hit;
414 
415     void *opaque;
416 
417     /* In order to avoid passing too many arguments to the MMIO helpers,
418      * we store some rarely used information in the CPU context.
419      */
420     uintptr_t mem_io_pc;
421 
422     int kvm_fd;
423     struct KVMState *kvm_state;
424     struct kvm_run *kvm_run;
425 
426     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
427     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
428     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
429 
430     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
431 
432 #ifdef CONFIG_PLUGIN
433     GArray *plugin_mem_cbs;
434     /* saved iotlb data from io_writex */
435     SavedIOTLB saved_iotlb;
436 #endif
437 
438     /* TODO Move common fields from CPUArchState here. */
439     int cpu_index;
440     int cluster_index;
441     uint32_t halted;
442     uint32_t can_do_io;
443     int32_t exception_index;
444 
445     /* shared by kvm, hax and hvf */
446     bool vcpu_dirty;
447 
448     /* Used to keep track of an outstanding cpu throttle thread for migration
449      * autoconverge
450      */
451     bool throttle_thread_scheduled;
452 
453     bool ignore_memory_transaction_failures;
454 
455     struct hax_vcpu_state *hax_vcpu;
456 
457     int hvf_fd;
458 
459     /* track IOMMUs whose translations we've cached in the TCG TLB */
460     GArray *iommu_notifiers;
461 };
462 
463 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
464 extern CPUTailQ cpus;
465 
466 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
467 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
468 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
469 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
470     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
471 
472 extern __thread CPUState *current_cpu;
473 
474 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
475 {
476     unsigned int i;
477 
478     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
479         atomic_set(&cpu->tb_jmp_cache[i], NULL);
480     }
481 }
482 
483 /**
484  * qemu_tcg_mttcg_enabled:
485  * Check whether we are running MultiThread TCG or not.
486  *
487  * Returns: %true if we are in MTTCG mode %false otherwise.
488  */
489 extern bool mttcg_enabled;
490 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
491 
492 /**
493  * cpu_paging_enabled:
494  * @cpu: The CPU whose state is to be inspected.
495  *
496  * Returns: %true if paging is enabled, %false otherwise.
497  */
498 bool cpu_paging_enabled(const CPUState *cpu);
499 
500 /**
501  * cpu_get_memory_mapping:
502  * @cpu: The CPU whose memory mappings are to be obtained.
503  * @list: Where to write the memory mappings to.
504  * @errp: Pointer for reporting an #Error.
505  */
506 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
507                             Error **errp);
508 
509 #if !defined(CONFIG_USER_ONLY)
510 
511 /**
512  * cpu_write_elf64_note:
513  * @f: pointer to a function that writes memory to a file
514  * @cpu: The CPU whose memory is to be dumped
515  * @cpuid: ID number of the CPU
516  * @opaque: pointer to the CPUState struct
517  */
518 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
519                          int cpuid, void *opaque);
520 
521 /**
522  * cpu_write_elf64_qemunote:
523  * @f: pointer to a function that writes memory to a file
524  * @cpu: The CPU whose memory is to be dumped
525  * @cpuid: ID number of the CPU
526  * @opaque: pointer to the CPUState struct
527  */
528 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
529                              void *opaque);
530 
531 /**
532  * cpu_write_elf32_note:
533  * @f: pointer to a function that writes memory to a file
534  * @cpu: The CPU whose memory is to be dumped
535  * @cpuid: ID number of the CPU
536  * @opaque: pointer to the CPUState struct
537  */
538 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
539                          int cpuid, void *opaque);
540 
541 /**
542  * cpu_write_elf32_qemunote:
543  * @f: pointer to a function that writes memory to a file
544  * @cpu: The CPU whose memory is to be dumped
545  * @cpuid: ID number of the CPU
546  * @opaque: pointer to the CPUState struct
547  */
548 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
549                              void *opaque);
550 
551 /**
552  * cpu_get_crash_info:
553  * @cpu: The CPU to get crash information for
554  *
555  * Gets the previously saved crash information.
556  * Caller is responsible for freeing the data.
557  */
558 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
559 
560 #endif /* !CONFIG_USER_ONLY */
561 
562 /**
563  * CPUDumpFlags:
564  * @CPU_DUMP_CODE:
565  * @CPU_DUMP_FPU: dump FPU register state, not just integer
566  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
567  */
568 enum CPUDumpFlags {
569     CPU_DUMP_CODE = 0x00010000,
570     CPU_DUMP_FPU  = 0x00020000,
571     CPU_DUMP_CCOP = 0x00040000,
572 };
573 
574 /**
575  * cpu_dump_state:
576  * @cpu: The CPU whose state is to be dumped.
577  * @f: If non-null, dump to this stream, else to current print sink.
578  *
579  * Dumps CPU state.
580  */
581 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
582 
583 /**
584  * cpu_dump_statistics:
585  * @cpu: The CPU whose state is to be dumped.
586  * @flags: Flags what to dump.
587  *
588  * Dump CPU statistics to the current monitor if we have one, else to
589  * stdout.
590  */
591 void cpu_dump_statistics(CPUState *cpu, int flags);
592 
593 #ifndef CONFIG_USER_ONLY
594 /**
595  * cpu_get_phys_page_attrs_debug:
596  * @cpu: The CPU to obtain the physical page address for.
597  * @addr: The virtual address.
598  * @attrs: Updated on return with the memory transaction attributes to use
599  *         for this access.
600  *
601  * Obtains the physical page corresponding to a virtual one, together
602  * with the corresponding memory transaction attributes to use for the access.
603  * Use it only for debugging because no protection checks are done.
604  *
605  * Returns: Corresponding physical page address or -1 if no page found.
606  */
607 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
608                                                    MemTxAttrs *attrs)
609 {
610     CPUClass *cc = CPU_GET_CLASS(cpu);
611 
612     if (cc->get_phys_page_attrs_debug) {
613         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
614     }
615     /* Fallback for CPUs which don't implement the _attrs_ hook */
616     *attrs = MEMTXATTRS_UNSPECIFIED;
617     return cc->get_phys_page_debug(cpu, addr);
618 }
619 
620 /**
621  * cpu_get_phys_page_debug:
622  * @cpu: The CPU to obtain the physical page address for.
623  * @addr: The virtual address.
624  *
625  * Obtains the physical page corresponding to a virtual one.
626  * Use it only for debugging because no protection checks are done.
627  *
628  * Returns: Corresponding physical page address or -1 if no page found.
629  */
630 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
631 {
632     MemTxAttrs attrs = {};
633 
634     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
635 }
636 
637 /** cpu_asidx_from_attrs:
638  * @cpu: CPU
639  * @attrs: memory transaction attributes
640  *
641  * Returns the address space index specifying the CPU AddressSpace
642  * to use for a memory access with the given transaction attributes.
643  */
644 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
645 {
646     CPUClass *cc = CPU_GET_CLASS(cpu);
647     int ret = 0;
648 
649     if (cc->asidx_from_attrs) {
650         ret = cc->asidx_from_attrs(cpu, attrs);
651         assert(ret < cpu->num_ases && ret >= 0);
652     }
653     return ret;
654 }
655 
656 #endif /* CONFIG_USER_ONLY */
657 
658 /**
659  * cpu_list_add:
660  * @cpu: The CPU to be added to the list of CPUs.
661  */
662 void cpu_list_add(CPUState *cpu);
663 
664 /**
665  * cpu_list_remove:
666  * @cpu: The CPU to be removed from the list of CPUs.
667  */
668 void cpu_list_remove(CPUState *cpu);
669 
670 /**
671  * cpu_reset:
672  * @cpu: The CPU whose state is to be reset.
673  */
674 void cpu_reset(CPUState *cpu);
675 
676 /**
677  * cpu_class_by_name:
678  * @typename: The CPU base type.
679  * @cpu_model: The model string without any parameters.
680  *
681  * Looks up a CPU #ObjectClass matching name @cpu_model.
682  *
683  * Returns: A #CPUClass or %NULL if not matching class is found.
684  */
685 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
686 
687 /**
688  * cpu_create:
689  * @typename: The CPU type.
690  *
691  * Instantiates a CPU and realizes the CPU.
692  *
693  * Returns: A #CPUState or %NULL if an error occurred.
694  */
695 CPUState *cpu_create(const char *typename);
696 
697 /**
698  * parse_cpu_option:
699  * @cpu_option: The -cpu option including optional parameters.
700  *
701  * processes optional parameters and registers them as global properties
702  *
703  * Returns: type of CPU to create or prints error and terminates process
704  *          if an error occurred.
705  */
706 const char *parse_cpu_option(const char *cpu_option);
707 
708 /**
709  * cpu_has_work:
710  * @cpu: The vCPU to check.
711  *
712  * Checks whether the CPU has work to do.
713  *
714  * Returns: %true if the CPU has work, %false otherwise.
715  */
716 static inline bool cpu_has_work(CPUState *cpu)
717 {
718     CPUClass *cc = CPU_GET_CLASS(cpu);
719 
720     g_assert(cc->has_work);
721     return cc->has_work(cpu);
722 }
723 
724 /**
725  * qemu_cpu_is_self:
726  * @cpu: The vCPU to check against.
727  *
728  * Checks whether the caller is executing on the vCPU thread.
729  *
730  * Returns: %true if called from @cpu's thread, %false otherwise.
731  */
732 bool qemu_cpu_is_self(CPUState *cpu);
733 
734 /**
735  * qemu_cpu_kick:
736  * @cpu: The vCPU to kick.
737  *
738  * Kicks @cpu's thread.
739  */
740 void qemu_cpu_kick(CPUState *cpu);
741 
742 /**
743  * cpu_is_stopped:
744  * @cpu: The CPU to check.
745  *
746  * Checks whether the CPU is stopped.
747  *
748  * Returns: %true if run state is not running or if artificially stopped;
749  * %false otherwise.
750  */
751 bool cpu_is_stopped(CPUState *cpu);
752 
753 /**
754  * do_run_on_cpu:
755  * @cpu: The vCPU to run on.
756  * @func: The function to be executed.
757  * @data: Data to pass to the function.
758  * @mutex: Mutex to release while waiting for @func to run.
759  *
760  * Used internally in the implementation of run_on_cpu.
761  */
762 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
763                    QemuMutex *mutex);
764 
765 /**
766  * run_on_cpu:
767  * @cpu: The vCPU to run on.
768  * @func: The function to be executed.
769  * @data: Data to pass to the function.
770  *
771  * Schedules the function @func for execution on the vCPU @cpu.
772  */
773 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
774 
775 /**
776  * async_run_on_cpu:
777  * @cpu: The vCPU to run on.
778  * @func: The function to be executed.
779  * @data: Data to pass to the function.
780  *
781  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
782  */
783 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
784 
785 /**
786  * async_safe_run_on_cpu:
787  * @cpu: The vCPU to run on.
788  * @func: The function to be executed.
789  * @data: Data to pass to the function.
790  *
791  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
792  * while all other vCPUs are sleeping.
793  *
794  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
795  * BQL.
796  */
797 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
798 
799 /**
800  * cpu_in_exclusive_context()
801  * @cpu: The vCPU to check
802  *
803  * Returns true if @cpu is an exclusive context, for example running
804  * something which has previously been queued via async_safe_run_on_cpu().
805  */
806 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
807 {
808     return cpu->in_exclusive_context;
809 }
810 
811 /**
812  * qemu_get_cpu:
813  * @index: The CPUState@cpu_index value of the CPU to obtain.
814  *
815  * Gets a CPU matching @index.
816  *
817  * Returns: The CPU or %NULL if there is no matching CPU.
818  */
819 CPUState *qemu_get_cpu(int index);
820 
821 /**
822  * cpu_exists:
823  * @id: Guest-exposed CPU ID to lookup.
824  *
825  * Search for CPU with specified ID.
826  *
827  * Returns: %true - CPU is found, %false - CPU isn't found.
828  */
829 bool cpu_exists(int64_t id);
830 
831 /**
832  * cpu_by_arch_id:
833  * @id: Guest-exposed CPU ID of the CPU to obtain.
834  *
835  * Get a CPU with matching @id.
836  *
837  * Returns: The CPU or %NULL if there is no matching CPU.
838  */
839 CPUState *cpu_by_arch_id(int64_t id);
840 
841 #ifndef CONFIG_USER_ONLY
842 
843 typedef void (*CPUInterruptHandler)(CPUState *, int);
844 
845 extern CPUInterruptHandler cpu_interrupt_handler;
846 
847 /**
848  * cpu_interrupt:
849  * @cpu: The CPU to set an interrupt on.
850  * @mask: The interrupts to set.
851  *
852  * Invokes the interrupt handler.
853  */
854 static inline void cpu_interrupt(CPUState *cpu, int mask)
855 {
856     cpu_interrupt_handler(cpu, mask);
857 }
858 
859 #else /* USER_ONLY */
860 
861 void cpu_interrupt(CPUState *cpu, int mask);
862 
863 #endif /* USER_ONLY */
864 
865 #ifdef NEED_CPU_H
866 
867 #ifdef CONFIG_SOFTMMU
868 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
869                                         MMUAccessType access_type,
870                                         int mmu_idx, uintptr_t retaddr)
871 {
872     CPUClass *cc = CPU_GET_CLASS(cpu);
873 
874     cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
875 }
876 
877 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
878                                           vaddr addr, unsigned size,
879                                           MMUAccessType access_type,
880                                           int mmu_idx, MemTxAttrs attrs,
881                                           MemTxResult response,
882                                           uintptr_t retaddr)
883 {
884     CPUClass *cc = CPU_GET_CLASS(cpu);
885 
886     if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
887         cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
888                                   mmu_idx, attrs, response, retaddr);
889     }
890 }
891 #endif
892 
893 #endif /* NEED_CPU_H */
894 
895 /**
896  * cpu_set_pc:
897  * @cpu: The CPU to set the program counter for.
898  * @addr: Program counter value.
899  *
900  * Sets the program counter for a CPU.
901  */
902 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
903 {
904     CPUClass *cc = CPU_GET_CLASS(cpu);
905 
906     cc->set_pc(cpu, addr);
907 }
908 
909 /**
910  * cpu_reset_interrupt:
911  * @cpu: The CPU to clear the interrupt on.
912  * @mask: The interrupt mask to clear.
913  *
914  * Resets interrupts on the vCPU @cpu.
915  */
916 void cpu_reset_interrupt(CPUState *cpu, int mask);
917 
918 /**
919  * cpu_exit:
920  * @cpu: The CPU to exit.
921  *
922  * Requests the CPU @cpu to exit execution.
923  */
924 void cpu_exit(CPUState *cpu);
925 
926 /**
927  * cpu_resume:
928  * @cpu: The CPU to resume.
929  *
930  * Resumes CPU, i.e. puts CPU into runnable state.
931  */
932 void cpu_resume(CPUState *cpu);
933 
934 /**
935  * cpu_remove:
936  * @cpu: The CPU to remove.
937  *
938  * Requests the CPU to be removed.
939  */
940 void cpu_remove(CPUState *cpu);
941 
942  /**
943  * cpu_remove_sync:
944  * @cpu: The CPU to remove.
945  *
946  * Requests the CPU to be removed and waits till it is removed.
947  */
948 void cpu_remove_sync(CPUState *cpu);
949 
950 /**
951  * process_queued_cpu_work() - process all items on CPU work queue
952  * @cpu: The CPU which work queue to process.
953  */
954 void process_queued_cpu_work(CPUState *cpu);
955 
956 /**
957  * cpu_exec_start:
958  * @cpu: The CPU for the current thread.
959  *
960  * Record that a CPU has started execution and can be interrupted with
961  * cpu_exit.
962  */
963 void cpu_exec_start(CPUState *cpu);
964 
965 /**
966  * cpu_exec_end:
967  * @cpu: The CPU for the current thread.
968  *
969  * Record that a CPU has stopped execution and exclusive sections
970  * can be executed without interrupting it.
971  */
972 void cpu_exec_end(CPUState *cpu);
973 
974 /**
975  * start_exclusive:
976  *
977  * Wait for a concurrent exclusive section to end, and then start
978  * a section of work that is run while other CPUs are not running
979  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
980  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
981  * during the exclusive section go to sleep until this CPU calls
982  * end_exclusive.
983  */
984 void start_exclusive(void);
985 
986 /**
987  * end_exclusive:
988  *
989  * Concludes an exclusive execution section started by start_exclusive.
990  */
991 void end_exclusive(void);
992 
993 /**
994  * qemu_init_vcpu:
995  * @cpu: The vCPU to initialize.
996  *
997  * Initializes a vCPU.
998  */
999 void qemu_init_vcpu(CPUState *cpu);
1000 
1001 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1002 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1003 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1004 
1005 /**
1006  * cpu_single_step:
1007  * @cpu: CPU to the flags for.
1008  * @enabled: Flags to enable.
1009  *
1010  * Enables or disables single-stepping for @cpu.
1011  */
1012 void cpu_single_step(CPUState *cpu, int enabled);
1013 
1014 /* Breakpoint/watchpoint flags */
1015 #define BP_MEM_READ           0x01
1016 #define BP_MEM_WRITE          0x02
1017 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1018 #define BP_STOP_BEFORE_ACCESS 0x04
1019 /* 0x08 currently unused */
1020 #define BP_GDB                0x10
1021 #define BP_CPU                0x20
1022 #define BP_ANY                (BP_GDB | BP_CPU)
1023 #define BP_WATCHPOINT_HIT_READ 0x40
1024 #define BP_WATCHPOINT_HIT_WRITE 0x80
1025 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1026 
1027 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1028                           CPUBreakpoint **breakpoint);
1029 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1030 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1031 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1032 
1033 /* Return true if PC matches an installed breakpoint.  */
1034 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1035 {
1036     CPUBreakpoint *bp;
1037 
1038     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1039         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1040             if (bp->pc == pc && (bp->flags & mask)) {
1041                 return true;
1042             }
1043         }
1044     }
1045     return false;
1046 }
1047 
1048 #ifdef CONFIG_USER_ONLY
1049 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1050                                         int flags, CPUWatchpoint **watchpoint)
1051 {
1052     return -ENOSYS;
1053 }
1054 
1055 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1056                                         vaddr len, int flags)
1057 {
1058     return -ENOSYS;
1059 }
1060 
1061 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1062                                                 CPUWatchpoint *wp)
1063 {
1064 }
1065 
1066 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1067 {
1068 }
1069 
1070 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1071                                         MemTxAttrs atr, int fl, uintptr_t ra)
1072 {
1073 }
1074 
1075 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1076                                                  vaddr addr, vaddr len)
1077 {
1078     return 0;
1079 }
1080 #else
1081 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1082                           int flags, CPUWatchpoint **watchpoint);
1083 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1084                           vaddr len, int flags);
1085 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1086 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1087 
1088 /**
1089  * cpu_check_watchpoint:
1090  * @cpu: cpu context
1091  * @addr: guest virtual address
1092  * @len: access length
1093  * @attrs: memory access attributes
1094  * @flags: watchpoint access type
1095  * @ra: unwind return address
1096  *
1097  * Check for a watchpoint hit in [addr, addr+len) of the type
1098  * specified by @flags.  Exit via exception with a hit.
1099  */
1100 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1101                           MemTxAttrs attrs, int flags, uintptr_t ra);
1102 
1103 /**
1104  * cpu_watchpoint_address_matches:
1105  * @cpu: cpu context
1106  * @addr: guest virtual address
1107  * @len: access length
1108  *
1109  * Return the watchpoint flags that apply to [addr, addr+len).
1110  * If no watchpoint is registered for the range, the result is 0.
1111  */
1112 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1113 #endif
1114 
1115 /**
1116  * cpu_get_address_space:
1117  * @cpu: CPU to get address space from
1118  * @asidx: index identifying which address space to get
1119  *
1120  * Return the requested address space of this CPU. @asidx
1121  * specifies which address space to read.
1122  */
1123 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1124 
1125 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1126     GCC_FMT_ATTR(2, 3);
1127 extern Property cpu_common_props[];
1128 void cpu_exec_initfn(CPUState *cpu);
1129 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1130 void cpu_exec_unrealizefn(CPUState *cpu);
1131 
1132 /**
1133  * target_words_bigendian:
1134  * Returns true if the (default) endianness of the target is big endian,
1135  * false otherwise. Note that in target-specific code, you can use
1136  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1137  * code should normally never need to know about the endianness of the
1138  * target, so please do *not* use this function unless you know very well
1139  * what you are doing!
1140  */
1141 bool target_words_bigendian(void);
1142 
1143 #ifdef NEED_CPU_H
1144 
1145 #ifdef CONFIG_SOFTMMU
1146 extern const VMStateDescription vmstate_cpu_common;
1147 #else
1148 #define vmstate_cpu_common vmstate_dummy
1149 #endif
1150 
1151 #define VMSTATE_CPU() {                                                     \
1152     .name = "parent_obj",                                                   \
1153     .size = sizeof(CPUState),                                               \
1154     .vmsd = &vmstate_cpu_common,                                            \
1155     .flags = VMS_STRUCT,                                                    \
1156     .offset = 0,                                                            \
1157 }
1158 
1159 #endif /* NEED_CPU_H */
1160 
1161 #define UNASSIGNED_CPU_INDEX -1
1162 #define UNASSIGNED_CLUSTER_INDEX -1
1163 
1164 #endif
1165