1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 struct TranslationBlock; 78 79 /** 80 * struct TcgCpuOperations: TCG operations specific to a CPU class 81 */ 82 typedef struct TcgCpuOperations { 83 /** 84 * @initialize: Initalize TCG state 85 * 86 * Called when the first CPU is realized. 87 */ 88 void (*initialize)(void); 89 /** 90 * @synchronize_from_tb: Synchronize state from a TCG #TranslationBlock 91 * 92 * This is called when we abandon execution of a TB before starting it, 93 * and must set all parts of the CPU state which the previous TB in the 94 * chain may not have updated. 95 * By default, when this is NULL, a call is made to @set_pc(tb->pc). 96 * 97 * If more state needs to be restored, the target must implement a 98 * function to restore all the state, and register it here. 99 */ 100 void (*synchronize_from_tb)(CPUState *cpu, 101 const struct TranslationBlock *tb); 102 /** @cpu_exec_enter: Callback for cpu_exec preparation */ 103 void (*cpu_exec_enter)(CPUState *cpu); 104 /** @cpu_exec_exit: Callback for cpu_exec cleanup */ 105 void (*cpu_exec_exit)(CPUState *cpu); 106 /** @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec */ 107 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); 108 /** 109 * @tlb_fill: Handle a softmmu tlb miss or user-only address fault 110 * 111 * For system mode, if the access is valid, call tlb_set_page 112 * and return true; if the access is invalid, and probe is 113 * true, return false; otherwise raise an exception and do 114 * not return. For user-only mode, always raise an exception 115 * and do not return. 116 */ 117 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, 118 MMUAccessType access_type, int mmu_idx, 119 bool probe, uintptr_t retaddr); 120 /** @debug_excp_handler: Callback for handling debug exceptions */ 121 void (*debug_excp_handler)(CPUState *cpu); 122 123 } TcgCpuOperations; 124 125 /** 126 * CPUClass: 127 * @class_by_name: Callback to map -cpu command line model name to an 128 * instantiatable CPU type. 129 * @parse_features: Callback to parse command line arguments. 130 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 131 * @has_work: Callback for checking if there is work to do. 132 * @do_interrupt: Callback for interrupt handling. 133 * @do_unaligned_access: Callback for unaligned access handling, if 134 * the target defines #TARGET_ALIGNED_ONLY. 135 * @do_transaction_failed: Callback for handling failed memory transactions 136 * (ie bus faults or external aborts; not MMU faults) 137 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 138 * runtime configurable endianness is currently big-endian. Non-configurable 139 * CPUs can use the default implementation of this method. This method should 140 * not be used by any callers other than the pre-1.0 virtio devices. 141 * @memory_rw_debug: Callback for GDB memory access. 142 * @dump_state: Callback for dumping state. 143 * @dump_statistics: Callback for dumping statistics. 144 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 145 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 146 * @get_memory_mapping: Callback for obtaining the memory mappings. 147 * @set_pc: Callback for setting the Program Counter register. This 148 * should have the semantics used by the target architecture when 149 * setting the PC from a source such as an ELF file entry point; 150 * for example on Arm it will also set the Thumb mode bit based 151 * on the least significant bit of the new PC value. 152 * If the target behaviour here is anything other than "set 153 * the PC register to the value passed in" then the target must 154 * also implement the synchronize_from_tb hook. 155 * @get_phys_page_debug: Callback for obtaining a physical address. 156 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 157 * associated memory transaction attributes to use for the access. 158 * CPUs which use memory transaction attributes should implement this 159 * instead of get_phys_page_debug. 160 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 161 * a memory access with the specified memory transaction attributes. 162 * @gdb_read_register: Callback for letting GDB read a register. 163 * @gdb_write_register: Callback for letting GDB write a register. 164 * @debug_check_watchpoint: Callback: return true if the architectural 165 * watchpoint whose address has matched should really fire. 166 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 167 * 64-bit VM coredump. 168 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 169 * note to a 32-bit VM coredump. 170 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 171 * 32-bit VM coredump. 172 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 173 * note to a 32-bit VM coredump. 174 * @vmsd: State description for migration. 175 * @gdb_num_core_regs: Number of core registers accessible to GDB. 176 * @gdb_core_xml_file: File name for core registers GDB XML description. 177 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 178 * before the insn which triggers a watchpoint rather than after it. 179 * @gdb_arch_name: Optional callback that returns the architecture name known 180 * to GDB. The caller must free the returned string with g_free. 181 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 182 * gdb stub. Returns a pointer to the XML contents for the specified XML file 183 * or NULL if the CPU doesn't have a dynamically generated content for it. 184 * @disas_set_info: Setup architecture specific components of disassembly info 185 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 186 * address before attempting to match it against watchpoints. 187 * @deprecation_note: If this CPUClass is deprecated, this field provides 188 * related information. 189 * 190 * Represents a CPU family or model. 191 */ 192 struct CPUClass { 193 /*< private >*/ 194 DeviceClass parent_class; 195 /*< public >*/ 196 197 ObjectClass *(*class_by_name)(const char *cpu_model); 198 void (*parse_features)(const char *typename, char *str, Error **errp); 199 200 int reset_dump_flags; 201 bool (*has_work)(CPUState *cpu); 202 void (*do_interrupt)(CPUState *cpu); 203 void (*do_unaligned_access)(CPUState *cpu, vaddr addr, 204 MMUAccessType access_type, 205 int mmu_idx, uintptr_t retaddr); 206 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, 207 unsigned size, MMUAccessType access_type, 208 int mmu_idx, MemTxAttrs attrs, 209 MemTxResult response, uintptr_t retaddr); 210 bool (*virtio_is_big_endian)(CPUState *cpu); 211 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 212 uint8_t *buf, int len, bool is_write); 213 void (*dump_state)(CPUState *cpu, FILE *, int flags); 214 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 215 void (*dump_statistics)(CPUState *cpu, int flags); 216 int64_t (*get_arch_id)(CPUState *cpu); 217 bool (*get_paging_enabled)(const CPUState *cpu); 218 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 219 Error **errp); 220 void (*set_pc)(CPUState *cpu, vaddr value); 221 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 222 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 223 MemTxAttrs *attrs); 224 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 225 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 226 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 227 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); 228 229 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 230 int cpuid, void *opaque); 231 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 232 void *opaque); 233 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 234 int cpuid, void *opaque); 235 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 236 void *opaque); 237 238 const VMStateDescription *vmsd; 239 const char *gdb_core_xml_file; 240 gchar * (*gdb_arch_name)(CPUState *cpu); 241 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 242 243 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 244 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); 245 246 const char *deprecation_note; 247 /* Keep non-pointer data at the end to minimize holes. */ 248 int gdb_num_core_regs; 249 bool gdb_stop_before_watchpoint; 250 251 TcgCpuOperations tcg_ops; 252 }; 253 254 /* 255 * Low 16 bits: number of cycles left, used only in icount mode. 256 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 257 * for this CPU and return to its top level loop (even in non-icount mode). 258 * This allows a single read-compare-cbranch-write sequence to test 259 * for both decrementer underflow and exceptions. 260 */ 261 typedef union IcountDecr { 262 uint32_t u32; 263 struct { 264 #ifdef HOST_WORDS_BIGENDIAN 265 uint16_t high; 266 uint16_t low; 267 #else 268 uint16_t low; 269 uint16_t high; 270 #endif 271 } u16; 272 } IcountDecr; 273 274 typedef struct CPUBreakpoint { 275 vaddr pc; 276 int flags; /* BP_* */ 277 QTAILQ_ENTRY(CPUBreakpoint) entry; 278 } CPUBreakpoint; 279 280 struct CPUWatchpoint { 281 vaddr vaddr; 282 vaddr len; 283 vaddr hitaddr; 284 MemTxAttrs hitattrs; 285 int flags; /* BP_* */ 286 QTAILQ_ENTRY(CPUWatchpoint) entry; 287 }; 288 289 #ifdef CONFIG_PLUGIN 290 /* 291 * For plugins we sometime need to save the resolved iotlb data before 292 * the memory regions get moved around by io_writex. 293 */ 294 typedef struct SavedIOTLB { 295 hwaddr addr; 296 MemoryRegionSection *section; 297 hwaddr mr_offset; 298 } SavedIOTLB; 299 #endif 300 301 struct KVMState; 302 struct kvm_run; 303 304 struct hax_vcpu_state; 305 306 #define TB_JMP_CACHE_BITS 12 307 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 308 309 /* work queue */ 310 311 /* The union type allows passing of 64 bit target pointers on 32 bit 312 * hosts in a single parameter 313 */ 314 typedef union { 315 int host_int; 316 unsigned long host_ulong; 317 void *host_ptr; 318 vaddr target_ptr; 319 } run_on_cpu_data; 320 321 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 322 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 323 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 324 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 325 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 326 327 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 328 329 struct qemu_work_item; 330 331 #define CPU_UNSET_NUMA_NODE_ID -1 332 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 333 334 /** 335 * CPUState: 336 * @cpu_index: CPU index (informative). 337 * @cluster_index: Identifies which cluster this CPU is in. 338 * For boards which don't define clusters or for "loose" CPUs not assigned 339 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 340 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 341 * QOM parent. 342 * @nr_cores: Number of cores within this CPU package. 343 * @nr_threads: Number of threads within this CPU. 344 * @running: #true if CPU is currently running (lockless). 345 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 346 * valid under cpu_list_lock. 347 * @created: Indicates whether the CPU thread has been successfully created. 348 * @interrupt_request: Indicates a pending interrupt request. 349 * @halted: Nonzero if the CPU is in suspended state. 350 * @stop: Indicates a pending stop request. 351 * @stopped: Indicates the CPU has been artificially stopped. 352 * @unplug: Indicates a pending CPU unplug request. 353 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 354 * @singlestep_enabled: Flags for single-stepping. 355 * @icount_extra: Instructions until next timer event. 356 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 357 * requires that IO only be performed on the last instruction of a TB 358 * so that interrupts take effect immediately. 359 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 360 * AddressSpaces this CPU has) 361 * @num_ases: number of CPUAddressSpaces in @cpu_ases 362 * @as: Pointer to the first AddressSpace, for the convenience of targets which 363 * only have a single AddressSpace 364 * @env_ptr: Pointer to subclass-specific CPUArchState field. 365 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 366 * @gdb_regs: Additional GDB registers. 367 * @gdb_num_regs: Number of total registers accessible to GDB. 368 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 369 * @next_cpu: Next CPU sharing TB cache. 370 * @opaque: User data. 371 * @mem_io_pc: Host Program Counter at which the memory was accessed. 372 * @kvm_fd: vCPU file descriptor for KVM. 373 * @work_mutex: Lock to prevent multiple access to @work_list. 374 * @work_list: List of pending asynchronous work. 375 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 376 * to @trace_dstate). 377 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 378 * @plugin_mask: Plugin event bitmap. Modified only via async work. 379 * @ignore_memory_transaction_failures: Cached copy of the MachineState 380 * flag of the same name: allows the board to suppress calling of the 381 * CPU do_transaction_failed hook function. 382 * 383 * State of one CPU core or thread. 384 */ 385 struct CPUState { 386 /*< private >*/ 387 DeviceState parent_obj; 388 /*< public >*/ 389 390 int nr_cores; 391 int nr_threads; 392 393 struct QemuThread *thread; 394 #ifdef _WIN32 395 HANDLE hThread; 396 #endif 397 int thread_id; 398 bool running, has_waiter; 399 struct QemuCond *halt_cond; 400 bool thread_kicked; 401 bool created; 402 bool stop; 403 bool stopped; 404 405 /* Should CPU start in powered-off state? */ 406 bool start_powered_off; 407 408 bool unplug; 409 bool crash_occurred; 410 bool exit_request; 411 bool in_exclusive_context; 412 uint32_t cflags_next_tb; 413 /* updates protected by BQL */ 414 uint32_t interrupt_request; 415 int singlestep_enabled; 416 int64_t icount_budget; 417 int64_t icount_extra; 418 uint64_t random_seed; 419 sigjmp_buf jmp_env; 420 421 QemuMutex work_mutex; 422 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 423 424 CPUAddressSpace *cpu_ases; 425 int num_ases; 426 AddressSpace *as; 427 MemoryRegion *memory; 428 429 void *env_ptr; /* CPUArchState */ 430 IcountDecr *icount_decr_ptr; 431 432 /* Accessed in parallel; all accesses must be atomic */ 433 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 434 435 struct GDBRegisterState *gdb_regs; 436 int gdb_num_regs; 437 int gdb_num_g_regs; 438 QTAILQ_ENTRY(CPUState) node; 439 440 /* ice debug support */ 441 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 442 443 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 444 CPUWatchpoint *watchpoint_hit; 445 446 void *opaque; 447 448 /* In order to avoid passing too many arguments to the MMIO helpers, 449 * we store some rarely used information in the CPU context. 450 */ 451 uintptr_t mem_io_pc; 452 453 int kvm_fd; 454 struct KVMState *kvm_state; 455 struct kvm_run *kvm_run; 456 457 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 458 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 459 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 460 461 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 462 463 #ifdef CONFIG_PLUGIN 464 GArray *plugin_mem_cbs; 465 /* saved iotlb data from io_writex */ 466 SavedIOTLB saved_iotlb; 467 #endif 468 469 /* TODO Move common fields from CPUArchState here. */ 470 int cpu_index; 471 int cluster_index; 472 uint32_t halted; 473 uint32_t can_do_io; 474 int32_t exception_index; 475 476 /* shared by kvm, hax and hvf */ 477 bool vcpu_dirty; 478 479 /* Used to keep track of an outstanding cpu throttle thread for migration 480 * autoconverge 481 */ 482 bool throttle_thread_scheduled; 483 484 bool ignore_memory_transaction_failures; 485 486 struct hax_vcpu_state *hax_vcpu; 487 488 int hvf_fd; 489 490 /* track IOMMUs whose translations we've cached in the TCG TLB */ 491 GArray *iommu_notifiers; 492 }; 493 494 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 495 extern CPUTailQ cpus; 496 497 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 498 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 499 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 500 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 501 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 502 503 extern __thread CPUState *current_cpu; 504 505 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 506 { 507 unsigned int i; 508 509 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 510 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 511 } 512 } 513 514 /** 515 * qemu_tcg_mttcg_enabled: 516 * Check whether we are running MultiThread TCG or not. 517 * 518 * Returns: %true if we are in MTTCG mode %false otherwise. 519 */ 520 extern bool mttcg_enabled; 521 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 522 523 /** 524 * cpu_paging_enabled: 525 * @cpu: The CPU whose state is to be inspected. 526 * 527 * Returns: %true if paging is enabled, %false otherwise. 528 */ 529 bool cpu_paging_enabled(const CPUState *cpu); 530 531 /** 532 * cpu_get_memory_mapping: 533 * @cpu: The CPU whose memory mappings are to be obtained. 534 * @list: Where to write the memory mappings to. 535 * @errp: Pointer for reporting an #Error. 536 */ 537 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 538 Error **errp); 539 540 #if !defined(CONFIG_USER_ONLY) 541 542 /** 543 * cpu_write_elf64_note: 544 * @f: pointer to a function that writes memory to a file 545 * @cpu: The CPU whose memory is to be dumped 546 * @cpuid: ID number of the CPU 547 * @opaque: pointer to the CPUState struct 548 */ 549 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 550 int cpuid, void *opaque); 551 552 /** 553 * cpu_write_elf64_qemunote: 554 * @f: pointer to a function that writes memory to a file 555 * @cpu: The CPU whose memory is to be dumped 556 * @cpuid: ID number of the CPU 557 * @opaque: pointer to the CPUState struct 558 */ 559 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 560 void *opaque); 561 562 /** 563 * cpu_write_elf32_note: 564 * @f: pointer to a function that writes memory to a file 565 * @cpu: The CPU whose memory is to be dumped 566 * @cpuid: ID number of the CPU 567 * @opaque: pointer to the CPUState struct 568 */ 569 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 570 int cpuid, void *opaque); 571 572 /** 573 * cpu_write_elf32_qemunote: 574 * @f: pointer to a function that writes memory to a file 575 * @cpu: The CPU whose memory is to be dumped 576 * @cpuid: ID number of the CPU 577 * @opaque: pointer to the CPUState struct 578 */ 579 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 580 void *opaque); 581 582 /** 583 * cpu_get_crash_info: 584 * @cpu: The CPU to get crash information for 585 * 586 * Gets the previously saved crash information. 587 * Caller is responsible for freeing the data. 588 */ 589 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 590 591 #endif /* !CONFIG_USER_ONLY */ 592 593 /** 594 * CPUDumpFlags: 595 * @CPU_DUMP_CODE: 596 * @CPU_DUMP_FPU: dump FPU register state, not just integer 597 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 598 */ 599 enum CPUDumpFlags { 600 CPU_DUMP_CODE = 0x00010000, 601 CPU_DUMP_FPU = 0x00020000, 602 CPU_DUMP_CCOP = 0x00040000, 603 }; 604 605 /** 606 * cpu_dump_state: 607 * @cpu: The CPU whose state is to be dumped. 608 * @f: If non-null, dump to this stream, else to current print sink. 609 * 610 * Dumps CPU state. 611 */ 612 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 613 614 /** 615 * cpu_dump_statistics: 616 * @cpu: The CPU whose state is to be dumped. 617 * @flags: Flags what to dump. 618 * 619 * Dump CPU statistics to the current monitor if we have one, else to 620 * stdout. 621 */ 622 void cpu_dump_statistics(CPUState *cpu, int flags); 623 624 #ifndef CONFIG_USER_ONLY 625 /** 626 * cpu_get_phys_page_attrs_debug: 627 * @cpu: The CPU to obtain the physical page address for. 628 * @addr: The virtual address. 629 * @attrs: Updated on return with the memory transaction attributes to use 630 * for this access. 631 * 632 * Obtains the physical page corresponding to a virtual one, together 633 * with the corresponding memory transaction attributes to use for the access. 634 * Use it only for debugging because no protection checks are done. 635 * 636 * Returns: Corresponding physical page address or -1 if no page found. 637 */ 638 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 639 MemTxAttrs *attrs) 640 { 641 CPUClass *cc = CPU_GET_CLASS(cpu); 642 643 if (cc->get_phys_page_attrs_debug) { 644 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 645 } 646 /* Fallback for CPUs which don't implement the _attrs_ hook */ 647 *attrs = MEMTXATTRS_UNSPECIFIED; 648 return cc->get_phys_page_debug(cpu, addr); 649 } 650 651 /** 652 * cpu_get_phys_page_debug: 653 * @cpu: The CPU to obtain the physical page address for. 654 * @addr: The virtual address. 655 * 656 * Obtains the physical page corresponding to a virtual one. 657 * Use it only for debugging because no protection checks are done. 658 * 659 * Returns: Corresponding physical page address or -1 if no page found. 660 */ 661 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 662 { 663 MemTxAttrs attrs = {}; 664 665 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 666 } 667 668 /** cpu_asidx_from_attrs: 669 * @cpu: CPU 670 * @attrs: memory transaction attributes 671 * 672 * Returns the address space index specifying the CPU AddressSpace 673 * to use for a memory access with the given transaction attributes. 674 */ 675 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 676 { 677 CPUClass *cc = CPU_GET_CLASS(cpu); 678 int ret = 0; 679 680 if (cc->asidx_from_attrs) { 681 ret = cc->asidx_from_attrs(cpu, attrs); 682 assert(ret < cpu->num_ases && ret >= 0); 683 } 684 return ret; 685 } 686 687 #endif /* CONFIG_USER_ONLY */ 688 689 /** 690 * cpu_list_add: 691 * @cpu: The CPU to be added to the list of CPUs. 692 */ 693 void cpu_list_add(CPUState *cpu); 694 695 /** 696 * cpu_list_remove: 697 * @cpu: The CPU to be removed from the list of CPUs. 698 */ 699 void cpu_list_remove(CPUState *cpu); 700 701 /** 702 * cpu_reset: 703 * @cpu: The CPU whose state is to be reset. 704 */ 705 void cpu_reset(CPUState *cpu); 706 707 /** 708 * cpu_class_by_name: 709 * @typename: The CPU base type. 710 * @cpu_model: The model string without any parameters. 711 * 712 * Looks up a CPU #ObjectClass matching name @cpu_model. 713 * 714 * Returns: A #CPUClass or %NULL if not matching class is found. 715 */ 716 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 717 718 /** 719 * cpu_create: 720 * @typename: The CPU type. 721 * 722 * Instantiates a CPU and realizes the CPU. 723 * 724 * Returns: A #CPUState or %NULL if an error occurred. 725 */ 726 CPUState *cpu_create(const char *typename); 727 728 /** 729 * parse_cpu_option: 730 * @cpu_option: The -cpu option including optional parameters. 731 * 732 * processes optional parameters and registers them as global properties 733 * 734 * Returns: type of CPU to create or prints error and terminates process 735 * if an error occurred. 736 */ 737 const char *parse_cpu_option(const char *cpu_option); 738 739 /** 740 * cpu_has_work: 741 * @cpu: The vCPU to check. 742 * 743 * Checks whether the CPU has work to do. 744 * 745 * Returns: %true if the CPU has work, %false otherwise. 746 */ 747 static inline bool cpu_has_work(CPUState *cpu) 748 { 749 CPUClass *cc = CPU_GET_CLASS(cpu); 750 751 g_assert(cc->has_work); 752 return cc->has_work(cpu); 753 } 754 755 /** 756 * qemu_cpu_is_self: 757 * @cpu: The vCPU to check against. 758 * 759 * Checks whether the caller is executing on the vCPU thread. 760 * 761 * Returns: %true if called from @cpu's thread, %false otherwise. 762 */ 763 bool qemu_cpu_is_self(CPUState *cpu); 764 765 /** 766 * qemu_cpu_kick: 767 * @cpu: The vCPU to kick. 768 * 769 * Kicks @cpu's thread. 770 */ 771 void qemu_cpu_kick(CPUState *cpu); 772 773 /** 774 * cpu_is_stopped: 775 * @cpu: The CPU to check. 776 * 777 * Checks whether the CPU is stopped. 778 * 779 * Returns: %true if run state is not running or if artificially stopped; 780 * %false otherwise. 781 */ 782 bool cpu_is_stopped(CPUState *cpu); 783 784 /** 785 * do_run_on_cpu: 786 * @cpu: The vCPU to run on. 787 * @func: The function to be executed. 788 * @data: Data to pass to the function. 789 * @mutex: Mutex to release while waiting for @func to run. 790 * 791 * Used internally in the implementation of run_on_cpu. 792 */ 793 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 794 QemuMutex *mutex); 795 796 /** 797 * run_on_cpu: 798 * @cpu: The vCPU to run on. 799 * @func: The function to be executed. 800 * @data: Data to pass to the function. 801 * 802 * Schedules the function @func for execution on the vCPU @cpu. 803 */ 804 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 805 806 /** 807 * async_run_on_cpu: 808 * @cpu: The vCPU to run on. 809 * @func: The function to be executed. 810 * @data: Data to pass to the function. 811 * 812 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 813 */ 814 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 815 816 /** 817 * async_safe_run_on_cpu: 818 * @cpu: The vCPU to run on. 819 * @func: The function to be executed. 820 * @data: Data to pass to the function. 821 * 822 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 823 * while all other vCPUs are sleeping. 824 * 825 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 826 * BQL. 827 */ 828 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 829 830 /** 831 * cpu_in_exclusive_context() 832 * @cpu: The vCPU to check 833 * 834 * Returns true if @cpu is an exclusive context, for example running 835 * something which has previously been queued via async_safe_run_on_cpu(). 836 */ 837 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 838 { 839 return cpu->in_exclusive_context; 840 } 841 842 /** 843 * qemu_get_cpu: 844 * @index: The CPUState@cpu_index value of the CPU to obtain. 845 * 846 * Gets a CPU matching @index. 847 * 848 * Returns: The CPU or %NULL if there is no matching CPU. 849 */ 850 CPUState *qemu_get_cpu(int index); 851 852 /** 853 * cpu_exists: 854 * @id: Guest-exposed CPU ID to lookup. 855 * 856 * Search for CPU with specified ID. 857 * 858 * Returns: %true - CPU is found, %false - CPU isn't found. 859 */ 860 bool cpu_exists(int64_t id); 861 862 /** 863 * cpu_by_arch_id: 864 * @id: Guest-exposed CPU ID of the CPU to obtain. 865 * 866 * Get a CPU with matching @id. 867 * 868 * Returns: The CPU or %NULL if there is no matching CPU. 869 */ 870 CPUState *cpu_by_arch_id(int64_t id); 871 872 /** 873 * cpu_interrupt: 874 * @cpu: The CPU to set an interrupt on. 875 * @mask: The interrupts to set. 876 * 877 * Invokes the interrupt handler. 878 */ 879 880 void cpu_interrupt(CPUState *cpu, int mask); 881 882 #ifdef NEED_CPU_H 883 884 #ifdef CONFIG_SOFTMMU 885 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 886 MMUAccessType access_type, 887 int mmu_idx, uintptr_t retaddr) 888 { 889 CPUClass *cc = CPU_GET_CLASS(cpu); 890 891 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 892 } 893 894 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 895 vaddr addr, unsigned size, 896 MMUAccessType access_type, 897 int mmu_idx, MemTxAttrs attrs, 898 MemTxResult response, 899 uintptr_t retaddr) 900 { 901 CPUClass *cc = CPU_GET_CLASS(cpu); 902 903 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) { 904 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type, 905 mmu_idx, attrs, response, retaddr); 906 } 907 } 908 #endif 909 910 #endif /* NEED_CPU_H */ 911 912 /** 913 * cpu_set_pc: 914 * @cpu: The CPU to set the program counter for. 915 * @addr: Program counter value. 916 * 917 * Sets the program counter for a CPU. 918 */ 919 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 920 { 921 CPUClass *cc = CPU_GET_CLASS(cpu); 922 923 cc->set_pc(cpu, addr); 924 } 925 926 /** 927 * cpu_reset_interrupt: 928 * @cpu: The CPU to clear the interrupt on. 929 * @mask: The interrupt mask to clear. 930 * 931 * Resets interrupts on the vCPU @cpu. 932 */ 933 void cpu_reset_interrupt(CPUState *cpu, int mask); 934 935 /** 936 * cpu_exit: 937 * @cpu: The CPU to exit. 938 * 939 * Requests the CPU @cpu to exit execution. 940 */ 941 void cpu_exit(CPUState *cpu); 942 943 /** 944 * cpu_resume: 945 * @cpu: The CPU to resume. 946 * 947 * Resumes CPU, i.e. puts CPU into runnable state. 948 */ 949 void cpu_resume(CPUState *cpu); 950 951 /** 952 * cpu_remove_sync: 953 * @cpu: The CPU to remove. 954 * 955 * Requests the CPU to be removed and waits till it is removed. 956 */ 957 void cpu_remove_sync(CPUState *cpu); 958 959 /** 960 * process_queued_cpu_work() - process all items on CPU work queue 961 * @cpu: The CPU which work queue to process. 962 */ 963 void process_queued_cpu_work(CPUState *cpu); 964 965 /** 966 * cpu_exec_start: 967 * @cpu: The CPU for the current thread. 968 * 969 * Record that a CPU has started execution and can be interrupted with 970 * cpu_exit. 971 */ 972 void cpu_exec_start(CPUState *cpu); 973 974 /** 975 * cpu_exec_end: 976 * @cpu: The CPU for the current thread. 977 * 978 * Record that a CPU has stopped execution and exclusive sections 979 * can be executed without interrupting it. 980 */ 981 void cpu_exec_end(CPUState *cpu); 982 983 /** 984 * start_exclusive: 985 * 986 * Wait for a concurrent exclusive section to end, and then start 987 * a section of work that is run while other CPUs are not running 988 * between cpu_exec_start and cpu_exec_end. CPUs that are running 989 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 990 * during the exclusive section go to sleep until this CPU calls 991 * end_exclusive. 992 */ 993 void start_exclusive(void); 994 995 /** 996 * end_exclusive: 997 * 998 * Concludes an exclusive execution section started by start_exclusive. 999 */ 1000 void end_exclusive(void); 1001 1002 /** 1003 * qemu_init_vcpu: 1004 * @cpu: The vCPU to initialize. 1005 * 1006 * Initializes a vCPU. 1007 */ 1008 void qemu_init_vcpu(CPUState *cpu); 1009 1010 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1011 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1012 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1013 1014 /** 1015 * cpu_single_step: 1016 * @cpu: CPU to the flags for. 1017 * @enabled: Flags to enable. 1018 * 1019 * Enables or disables single-stepping for @cpu. 1020 */ 1021 void cpu_single_step(CPUState *cpu, int enabled); 1022 1023 /* Breakpoint/watchpoint flags */ 1024 #define BP_MEM_READ 0x01 1025 #define BP_MEM_WRITE 0x02 1026 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1027 #define BP_STOP_BEFORE_ACCESS 0x04 1028 /* 0x08 currently unused */ 1029 #define BP_GDB 0x10 1030 #define BP_CPU 0x20 1031 #define BP_ANY (BP_GDB | BP_CPU) 1032 #define BP_WATCHPOINT_HIT_READ 0x40 1033 #define BP_WATCHPOINT_HIT_WRITE 0x80 1034 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 1035 1036 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1037 CPUBreakpoint **breakpoint); 1038 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1039 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1040 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1041 1042 /* Return true if PC matches an installed breakpoint. */ 1043 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1044 { 1045 CPUBreakpoint *bp; 1046 1047 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1048 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1049 if (bp->pc == pc && (bp->flags & mask)) { 1050 return true; 1051 } 1052 } 1053 } 1054 return false; 1055 } 1056 1057 #ifdef CONFIG_USER_ONLY 1058 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1059 int flags, CPUWatchpoint **watchpoint) 1060 { 1061 return -ENOSYS; 1062 } 1063 1064 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1065 vaddr len, int flags) 1066 { 1067 return -ENOSYS; 1068 } 1069 1070 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1071 CPUWatchpoint *wp) 1072 { 1073 } 1074 1075 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1076 { 1077 } 1078 1079 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1080 MemTxAttrs atr, int fl, uintptr_t ra) 1081 { 1082 } 1083 1084 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 1085 vaddr addr, vaddr len) 1086 { 1087 return 0; 1088 } 1089 #else 1090 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1091 int flags, CPUWatchpoint **watchpoint); 1092 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1093 vaddr len, int flags); 1094 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1095 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1096 1097 /** 1098 * cpu_check_watchpoint: 1099 * @cpu: cpu context 1100 * @addr: guest virtual address 1101 * @len: access length 1102 * @attrs: memory access attributes 1103 * @flags: watchpoint access type 1104 * @ra: unwind return address 1105 * 1106 * Check for a watchpoint hit in [addr, addr+len) of the type 1107 * specified by @flags. Exit via exception with a hit. 1108 */ 1109 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1110 MemTxAttrs attrs, int flags, uintptr_t ra); 1111 1112 /** 1113 * cpu_watchpoint_address_matches: 1114 * @cpu: cpu context 1115 * @addr: guest virtual address 1116 * @len: access length 1117 * 1118 * Return the watchpoint flags that apply to [addr, addr+len). 1119 * If no watchpoint is registered for the range, the result is 0. 1120 */ 1121 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1122 #endif 1123 1124 /** 1125 * cpu_get_address_space: 1126 * @cpu: CPU to get address space from 1127 * @asidx: index identifying which address space to get 1128 * 1129 * Return the requested address space of this CPU. @asidx 1130 * specifies which address space to read. 1131 */ 1132 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1133 1134 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1135 GCC_FMT_ATTR(2, 3); 1136 1137 /* $(top_srcdir)/cpu.c */ 1138 void cpu_exec_initfn(CPUState *cpu); 1139 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1140 void cpu_exec_unrealizefn(CPUState *cpu); 1141 1142 /** 1143 * target_words_bigendian: 1144 * Returns true if the (default) endianness of the target is big endian, 1145 * false otherwise. Note that in target-specific code, you can use 1146 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1147 * code should normally never need to know about the endianness of the 1148 * target, so please do *not* use this function unless you know very well 1149 * what you are doing! 1150 */ 1151 bool target_words_bigendian(void); 1152 1153 #ifdef NEED_CPU_H 1154 1155 #ifdef CONFIG_SOFTMMU 1156 extern const VMStateDescription vmstate_cpu_common; 1157 #else 1158 #define vmstate_cpu_common vmstate_dummy 1159 #endif 1160 1161 #define VMSTATE_CPU() { \ 1162 .name = "parent_obj", \ 1163 .size = sizeof(CPUState), \ 1164 .vmsd = &vmstate_cpu_common, \ 1165 .flags = VMS_STRUCT, \ 1166 .offset = 0, \ 1167 } 1168 1169 #endif /* NEED_CPU_H */ 1170 1171 #define UNASSIGNED_CPU_INDEX -1 1172 #define UNASSIGNED_CLUSTER_INDEX -1 1173 1174 #endif 1175