1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-machine.h" 32 #include "qapi/qapi-types-run-state.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/rcu_queue.h" 35 #include "qemu/queue.h" 36 #include "qemu/thread.h" 37 #include "qom/object.h" 38 39 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 40 void *opaque); 41 42 /** 43 * SECTION:cpu 44 * @section_id: QEMU-cpu 45 * @title: CPU Class 46 * @short_description: Base class for all CPUs 47 */ 48 49 #define TYPE_CPU "cpu" 50 51 /* Since this macro is used a lot in hot code paths and in conjunction with 52 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 53 * an unchecked cast. 54 */ 55 #define CPU(obj) ((CPUState *)(obj)) 56 57 /* 58 * The class checkers bring in CPU_GET_CLASS() which is potentially 59 * expensive given the eventual call to 60 * object_class_dynamic_cast_assert(). Because of this the CPUState 61 * has a cached value for the class in cs->cc which is set up in 62 * cpu_exec_realizefn() for use in hot code paths. 63 */ 64 typedef struct CPUClass CPUClass; 65 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 66 TYPE_CPU) 67 68 /** 69 * OBJECT_DECLARE_CPU_TYPE: 70 * @CpuInstanceType: instance struct name 71 * @CpuClassType: class struct name 72 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 73 * 74 * This macro is typically used in "cpu-qom.h" header file, and will: 75 * 76 * - create the typedefs for the CPU object and class structs 77 * - register the type for use with g_autoptr 78 * - provide three standard type cast functions 79 * 80 * The object struct and class struct need to be declared manually. 81 */ 82 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 83 typedef struct ArchCPU CpuInstanceType; \ 84 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 85 86 typedef struct CPUWatchpoint CPUWatchpoint; 87 88 /* see accel-cpu.h */ 89 struct AccelCPUClass; 90 91 /* see sysemu-cpu-ops.h */ 92 struct SysemuCPUOps; 93 94 /** 95 * CPUClass: 96 * @class_by_name: Callback to map -cpu command line model name to an 97 * instantiatable CPU type. 98 * @parse_features: Callback to parse command line arguments. 99 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 100 * @has_work: Callback for checking if there is work to do. 101 * @mmu_index: Callback for choosing softmmu mmu index; 102 * may be used internally by memory_rw_debug without TCG. 103 * @memory_rw_debug: Callback for GDB memory access. 104 * @dump_state: Callback for dumping state. 105 * @query_cpu_fast: 106 * Fill in target specific information for the "query-cpus-fast" 107 * QAPI call. 108 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 109 * @set_pc: Callback for setting the Program Counter register. This 110 * should have the semantics used by the target architecture when 111 * setting the PC from a source such as an ELF file entry point; 112 * for example on Arm it will also set the Thumb mode bit based 113 * on the least significant bit of the new PC value. 114 * If the target behaviour here is anything other than "set 115 * the PC register to the value passed in" then the target must 116 * also implement the synchronize_from_tb hook. 117 * @get_pc: Callback for getting the Program Counter register. 118 * As above, with the semantics of the target architecture. 119 * @gdb_read_register: Callback for letting GDB read a register. 120 * @gdb_write_register: Callback for letting GDB write a register. 121 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 122 * breakpoint. Used by AVR to handle a gdb mis-feature with 123 * its Harvard architecture split code and data. 124 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 125 * from @gdb_core_xml_file. 126 * @gdb_core_xml_file: File name for core registers GDB XML description. 127 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 128 * before the insn which triggers a watchpoint rather than after it. 129 * @gdb_arch_name: Optional callback that returns the architecture name known 130 * to GDB. The caller must free the returned string with g_free. 131 * @disas_set_info: Setup architecture specific components of disassembly info 132 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 133 * address before attempting to match it against watchpoints. 134 * @deprecation_note: If this CPUClass is deprecated, this field provides 135 * related information. 136 * 137 * Represents a CPU family or model. 138 */ 139 struct CPUClass { 140 /*< private >*/ 141 DeviceClass parent_class; 142 /*< public >*/ 143 144 ObjectClass *(*class_by_name)(const char *cpu_model); 145 void (*parse_features)(const char *typename, char *str, Error **errp); 146 147 bool (*has_work)(CPUState *cpu); 148 int (*mmu_index)(CPUState *cpu, bool ifetch); 149 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 150 uint8_t *buf, int len, bool is_write); 151 void (*dump_state)(CPUState *cpu, FILE *, int flags); 152 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 153 int64_t (*get_arch_id)(CPUState *cpu); 154 void (*set_pc)(CPUState *cpu, vaddr value); 155 vaddr (*get_pc)(CPUState *cpu); 156 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 157 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 158 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 159 160 const char *gdb_core_xml_file; 161 const gchar * (*gdb_arch_name)(CPUState *cpu); 162 163 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 164 165 const char *deprecation_note; 166 struct AccelCPUClass *accel_cpu; 167 168 /* when system emulation is not available, this pointer is NULL */ 169 const struct SysemuCPUOps *sysemu_ops; 170 171 /* when TCG is not available, this pointer is NULL */ 172 const TCGCPUOps *tcg_ops; 173 174 /* 175 * if not NULL, this is called in order for the CPUClass to initialize 176 * class data that depends on the accelerator, see accel/accel-common.c. 177 */ 178 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 179 180 /* 181 * Keep non-pointer data at the end to minimize holes. 182 */ 183 int reset_dump_flags; 184 int gdb_num_core_regs; 185 bool gdb_stop_before_watchpoint; 186 }; 187 188 /* 189 * Fix the number of mmu modes to 16, which is also the maximum 190 * supported by the softmmu tlb api. 191 */ 192 #define NB_MMU_MODES 16 193 194 /* Use a fully associative victim tlb of 8 entries. */ 195 #define CPU_VTLB_SIZE 8 196 197 /* 198 * The full TLB entry, which is not accessed by generated TCG code, 199 * so the layout is not as critical as that of CPUTLBEntry. This is 200 * also why we don't want to combine the two structs. 201 */ 202 typedef struct CPUTLBEntryFull { 203 /* 204 * @xlat_section contains: 205 * - in the lower TARGET_PAGE_BITS, a physical section number 206 * - with the lower TARGET_PAGE_BITS masked off, an offset which 207 * must be added to the virtual address to obtain: 208 * + the ram_addr_t of the target RAM (if the physical section 209 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 210 * + the offset within the target MemoryRegion (otherwise) 211 */ 212 hwaddr xlat_section; 213 214 /* 215 * @phys_addr contains the physical address in the address space 216 * given by cpu_asidx_from_attrs(cpu, @attrs). 217 */ 218 hwaddr phys_addr; 219 220 /* @attrs contains the memory transaction attributes for the page. */ 221 MemTxAttrs attrs; 222 223 /* @prot contains the complete protections for the page. */ 224 uint8_t prot; 225 226 /* @lg_page_size contains the log2 of the page size. */ 227 uint8_t lg_page_size; 228 229 /* Additional tlb flags requested by tlb_fill. */ 230 uint8_t tlb_fill_flags; 231 232 /* 233 * Additional tlb flags for use by the slow path. If non-zero, 234 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 235 */ 236 uint8_t slow_flags[MMU_ACCESS_COUNT]; 237 238 /* 239 * Allow target-specific additions to this structure. 240 * This may be used to cache items from the guest cpu 241 * page tables for later use by the implementation. 242 */ 243 union { 244 /* 245 * Cache the attrs and shareability fields from the page table entry. 246 * 247 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 248 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 249 * For shareability and guarded, as in the SH and GP fields respectively 250 * of the VMSAv8-64 PTEs. 251 */ 252 struct { 253 uint8_t pte_attrs; 254 uint8_t shareability; 255 bool guarded; 256 } arm; 257 } extra; 258 } CPUTLBEntryFull; 259 260 /* 261 * Data elements that are per MMU mode, minus the bits accessed by 262 * the TCG fast path. 263 */ 264 typedef struct CPUTLBDesc { 265 /* 266 * Describe a region covering all of the large pages allocated 267 * into the tlb. When any page within this region is flushed, 268 * we must flush the entire tlb. The region is matched if 269 * (addr & large_page_mask) == large_page_addr. 270 */ 271 vaddr large_page_addr; 272 vaddr large_page_mask; 273 /* host time (in ns) at the beginning of the time window */ 274 int64_t window_begin_ns; 275 /* maximum number of entries observed in the window */ 276 size_t window_max_entries; 277 size_t n_used_entries; 278 /* The next index to use in the tlb victim table. */ 279 size_t vindex; 280 /* The tlb victim table, in two parts. */ 281 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 282 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 283 CPUTLBEntryFull *fulltlb; 284 } CPUTLBDesc; 285 286 /* 287 * Data elements that are shared between all MMU modes. 288 */ 289 typedef struct CPUTLBCommon { 290 /* Serialize updates to f.table and d.vtable, and others as noted. */ 291 QemuSpin lock; 292 /* 293 * Within dirty, for each bit N, modifications have been made to 294 * mmu_idx N since the last time that mmu_idx was flushed. 295 * Protected by tlb_c.lock. 296 */ 297 uint16_t dirty; 298 /* 299 * Statistics. These are not lock protected, but are read and 300 * written atomically. This allows the monitor to print a snapshot 301 * of the stats without interfering with the cpu. 302 */ 303 size_t full_flush_count; 304 size_t part_flush_count; 305 size_t elide_flush_count; 306 } CPUTLBCommon; 307 308 /* 309 * The entire softmmu tlb, for all MMU modes. 310 * The meaning of each of the MMU modes is defined in the target code. 311 * Since this is placed within CPUNegativeOffsetState, the smallest 312 * negative offsets are at the end of the struct. 313 */ 314 typedef struct CPUTLB { 315 #ifdef CONFIG_TCG 316 CPUTLBCommon c; 317 CPUTLBDesc d[NB_MMU_MODES]; 318 CPUTLBDescFast f[NB_MMU_MODES]; 319 #endif 320 } CPUTLB; 321 322 /* 323 * Low 16 bits: number of cycles left, used only in icount mode. 324 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 325 * for this CPU and return to its top level loop (even in non-icount mode). 326 * This allows a single read-compare-cbranch-write sequence to test 327 * for both decrementer underflow and exceptions. 328 */ 329 typedef union IcountDecr { 330 uint32_t u32; 331 struct { 332 #if HOST_BIG_ENDIAN 333 uint16_t high; 334 uint16_t low; 335 #else 336 uint16_t low; 337 uint16_t high; 338 #endif 339 } u16; 340 } IcountDecr; 341 342 /* 343 * Elements of CPUState most efficiently accessed from CPUArchState, 344 * via small negative offsets. 345 */ 346 typedef struct CPUNegativeOffsetState { 347 CPUTLB tlb; 348 IcountDecr icount_decr; 349 bool can_do_io; 350 } CPUNegativeOffsetState; 351 352 struct KVMState; 353 struct kvm_run; 354 355 /* work queue */ 356 357 /* The union type allows passing of 64 bit target pointers on 32 bit 358 * hosts in a single parameter 359 */ 360 typedef union { 361 int host_int; 362 unsigned long host_ulong; 363 void *host_ptr; 364 vaddr target_ptr; 365 } run_on_cpu_data; 366 367 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 368 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 369 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 370 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 371 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 372 373 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 374 375 struct qemu_work_item; 376 377 #define CPU_UNSET_NUMA_NODE_ID -1 378 379 /** 380 * CPUState: 381 * @cpu_index: CPU index (informative). 382 * @cluster_index: Identifies which cluster this CPU is in. 383 * For boards which don't define clusters or for "loose" CPUs not assigned 384 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 385 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 386 * QOM parent. 387 * Under TCG this value is propagated to @tcg_cflags. 388 * See TranslationBlock::TCG CF_CLUSTER_MASK. 389 * @tcg_cflags: Pre-computed cflags for this cpu. 390 * @nr_cores: Number of cores within this CPU package. 391 * @nr_threads: Number of threads within this CPU core. 392 * @running: #true if CPU is currently running (lockless). 393 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 394 * valid under cpu_list_lock. 395 * @created: Indicates whether the CPU thread has been successfully created. 396 * @interrupt_request: Indicates a pending interrupt request. 397 * @halted: Nonzero if the CPU is in suspended state. 398 * @stop: Indicates a pending stop request. 399 * @stopped: Indicates the CPU has been artificially stopped. 400 * @unplug: Indicates a pending CPU unplug request. 401 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 402 * @singlestep_enabled: Flags for single-stepping. 403 * @icount_extra: Instructions until next timer event. 404 * @neg.can_do_io: True if memory-mapped IO is allowed. 405 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 406 * AddressSpaces this CPU has) 407 * @num_ases: number of CPUAddressSpaces in @cpu_ases 408 * @as: Pointer to the first AddressSpace, for the convenience of targets which 409 * only have a single AddressSpace 410 * @gdb_regs: Additional GDB registers. 411 * @gdb_num_regs: Number of total registers accessible to GDB. 412 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 413 * @node: QTAILQ of CPUs sharing TB cache. 414 * @opaque: User data. 415 * @mem_io_pc: Host Program Counter at which the memory was accessed. 416 * @accel: Pointer to accelerator specific state. 417 * @kvm_fd: vCPU file descriptor for KVM. 418 * @work_mutex: Lock to prevent multiple access to @work_list. 419 * @work_list: List of pending asynchronous work. 420 * @plugin_mem_cbs: active plugin memory callbacks 421 * @plugin_state: per-CPU plugin state 422 * @ignore_memory_transaction_failures: Cached copy of the MachineState 423 * flag of the same name: allows the board to suppress calling of the 424 * CPU do_transaction_failed hook function. 425 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 426 * ring is enabled. 427 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 428 * dirty ring structure. 429 * 430 * State of one CPU core or thread. 431 * 432 * Align, in order to match possible alignment required by CPUArchState, 433 * and eliminate a hole between CPUState and CPUArchState within ArchCPU. 434 */ 435 struct CPUState { 436 /*< private >*/ 437 DeviceState parent_obj; 438 /* cache to avoid expensive CPU_GET_CLASS */ 439 CPUClass *cc; 440 /*< public >*/ 441 442 int nr_cores; 443 int nr_threads; 444 445 struct QemuThread *thread; 446 #ifdef _WIN32 447 QemuSemaphore sem; 448 #endif 449 int thread_id; 450 bool running, has_waiter; 451 struct QemuCond *halt_cond; 452 bool thread_kicked; 453 bool created; 454 bool stop; 455 bool stopped; 456 457 /* Should CPU start in powered-off state? */ 458 bool start_powered_off; 459 460 bool unplug; 461 bool crash_occurred; 462 bool exit_request; 463 int exclusive_context_count; 464 uint32_t cflags_next_tb; 465 /* updates protected by BQL */ 466 uint32_t interrupt_request; 467 int singlestep_enabled; 468 int64_t icount_budget; 469 int64_t icount_extra; 470 uint64_t random_seed; 471 sigjmp_buf jmp_env; 472 473 QemuMutex work_mutex; 474 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 475 476 CPUAddressSpace *cpu_ases; 477 int num_ases; 478 AddressSpace *as; 479 MemoryRegion *memory; 480 481 CPUJumpCache *tb_jmp_cache; 482 483 GArray *gdb_regs; 484 int gdb_num_regs; 485 int gdb_num_g_regs; 486 QTAILQ_ENTRY(CPUState) node; 487 488 /* ice debug support */ 489 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 490 491 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 492 CPUWatchpoint *watchpoint_hit; 493 494 void *opaque; 495 496 /* In order to avoid passing too many arguments to the MMIO helpers, 497 * we store some rarely used information in the CPU context. 498 */ 499 uintptr_t mem_io_pc; 500 501 /* Only used in KVM */ 502 int kvm_fd; 503 struct KVMState *kvm_state; 504 struct kvm_run *kvm_run; 505 struct kvm_dirty_gfn *kvm_dirty_gfns; 506 uint32_t kvm_fetch_index; 507 uint64_t dirty_pages; 508 int kvm_vcpu_stats_fd; 509 bool vcpu_dirty; 510 511 /* Use by accel-block: CPU is executing an ioctl() */ 512 QemuLockCnt in_ioctl_lock; 513 514 #ifdef CONFIG_PLUGIN 515 /* 516 * The callback pointer stays in the main CPUState as it is 517 * accessed via TCG (see gen_empty_mem_helper). 518 */ 519 GArray *plugin_mem_cbs; 520 CPUPluginState *plugin_state; 521 #endif 522 523 /* TODO Move common fields from CPUArchState here. */ 524 int cpu_index; 525 int cluster_index; 526 uint32_t tcg_cflags; 527 uint32_t halted; 528 int32_t exception_index; 529 530 AccelCPUState *accel; 531 532 /* Used to keep track of an outstanding cpu throttle thread for migration 533 * autoconverge 534 */ 535 bool throttle_thread_scheduled; 536 537 /* 538 * Sleep throttle_us_per_full microseconds once dirty ring is full 539 * if dirty page rate limit is enabled. 540 */ 541 int64_t throttle_us_per_full; 542 543 bool ignore_memory_transaction_failures; 544 545 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 546 bool prctl_unalign_sigbus; 547 548 /* track IOMMUs whose translations we've cached in the TCG TLB */ 549 GArray *iommu_notifiers; 550 551 /* 552 * MUST BE LAST in order to minimize the displacement to CPUArchState. 553 */ 554 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 555 CPUNegativeOffsetState neg; 556 }; 557 558 /* Validate placement of CPUNegativeOffsetState. */ 559 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 560 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 561 562 static inline CPUArchState *cpu_env(CPUState *cpu) 563 { 564 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 565 return (CPUArchState *)(cpu + 1); 566 } 567 568 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 569 extern CPUTailQ cpus_queue; 570 571 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 572 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 573 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 574 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 575 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 576 577 extern __thread CPUState *current_cpu; 578 579 /** 580 * qemu_tcg_mttcg_enabled: 581 * Check whether we are running MultiThread TCG or not. 582 * 583 * Returns: %true if we are in MTTCG mode %false otherwise. 584 */ 585 extern bool mttcg_enabled; 586 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 587 588 /** 589 * cpu_paging_enabled: 590 * @cpu: The CPU whose state is to be inspected. 591 * 592 * Returns: %true if paging is enabled, %false otherwise. 593 */ 594 bool cpu_paging_enabled(const CPUState *cpu); 595 596 /** 597 * cpu_get_memory_mapping: 598 * @cpu: The CPU whose memory mappings are to be obtained. 599 * @list: Where to write the memory mappings to. 600 * @errp: Pointer for reporting an #Error. 601 * 602 * Returns: %true on success, %false otherwise. 603 */ 604 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 605 Error **errp); 606 607 #if !defined(CONFIG_USER_ONLY) 608 609 /** 610 * cpu_write_elf64_note: 611 * @f: pointer to a function that writes memory to a file 612 * @cpu: The CPU whose memory is to be dumped 613 * @cpuid: ID number of the CPU 614 * @opaque: pointer to the CPUState struct 615 */ 616 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 617 int cpuid, void *opaque); 618 619 /** 620 * cpu_write_elf64_qemunote: 621 * @f: pointer to a function that writes memory to a file 622 * @cpu: The CPU whose memory is to be dumped 623 * @cpuid: ID number of the CPU 624 * @opaque: pointer to the CPUState struct 625 */ 626 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 627 void *opaque); 628 629 /** 630 * cpu_write_elf32_note: 631 * @f: pointer to a function that writes memory to a file 632 * @cpu: The CPU whose memory is to be dumped 633 * @cpuid: ID number of the CPU 634 * @opaque: pointer to the CPUState struct 635 */ 636 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 637 int cpuid, void *opaque); 638 639 /** 640 * cpu_write_elf32_qemunote: 641 * @f: pointer to a function that writes memory to a file 642 * @cpu: The CPU whose memory is to be dumped 643 * @cpuid: ID number of the CPU 644 * @opaque: pointer to the CPUState struct 645 */ 646 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 647 void *opaque); 648 649 /** 650 * cpu_get_crash_info: 651 * @cpu: The CPU to get crash information for 652 * 653 * Gets the previously saved crash information. 654 * Caller is responsible for freeing the data. 655 */ 656 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 657 658 #endif /* !CONFIG_USER_ONLY */ 659 660 /** 661 * CPUDumpFlags: 662 * @CPU_DUMP_CODE: 663 * @CPU_DUMP_FPU: dump FPU register state, not just integer 664 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 665 * @CPU_DUMP_VPU: dump VPU registers 666 */ 667 enum CPUDumpFlags { 668 CPU_DUMP_CODE = 0x00010000, 669 CPU_DUMP_FPU = 0x00020000, 670 CPU_DUMP_CCOP = 0x00040000, 671 CPU_DUMP_VPU = 0x00080000, 672 }; 673 674 /** 675 * cpu_dump_state: 676 * @cpu: The CPU whose state is to be dumped. 677 * @f: If non-null, dump to this stream, else to current print sink. 678 * 679 * Dumps CPU state. 680 */ 681 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 682 683 #ifndef CONFIG_USER_ONLY 684 /** 685 * cpu_get_phys_page_attrs_debug: 686 * @cpu: The CPU to obtain the physical page address for. 687 * @addr: The virtual address. 688 * @attrs: Updated on return with the memory transaction attributes to use 689 * for this access. 690 * 691 * Obtains the physical page corresponding to a virtual one, together 692 * with the corresponding memory transaction attributes to use for the access. 693 * Use it only for debugging because no protection checks are done. 694 * 695 * Returns: Corresponding physical page address or -1 if no page found. 696 */ 697 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 698 MemTxAttrs *attrs); 699 700 /** 701 * cpu_get_phys_page_debug: 702 * @cpu: The CPU to obtain the physical page address for. 703 * @addr: The virtual address. 704 * 705 * Obtains the physical page corresponding to a virtual one. 706 * Use it only for debugging because no protection checks are done. 707 * 708 * Returns: Corresponding physical page address or -1 if no page found. 709 */ 710 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 711 712 /** cpu_asidx_from_attrs: 713 * @cpu: CPU 714 * @attrs: memory transaction attributes 715 * 716 * Returns the address space index specifying the CPU AddressSpace 717 * to use for a memory access with the given transaction attributes. 718 */ 719 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 720 721 /** 722 * cpu_virtio_is_big_endian: 723 * @cpu: CPU 724 725 * Returns %true if a CPU which supports runtime configurable endianness 726 * is currently big-endian. 727 */ 728 bool cpu_virtio_is_big_endian(CPUState *cpu); 729 730 #endif /* CONFIG_USER_ONLY */ 731 732 /** 733 * cpu_list_add: 734 * @cpu: The CPU to be added to the list of CPUs. 735 */ 736 void cpu_list_add(CPUState *cpu); 737 738 /** 739 * cpu_list_remove: 740 * @cpu: The CPU to be removed from the list of CPUs. 741 */ 742 void cpu_list_remove(CPUState *cpu); 743 744 /** 745 * cpu_reset: 746 * @cpu: The CPU whose state is to be reset. 747 */ 748 void cpu_reset(CPUState *cpu); 749 750 /** 751 * cpu_class_by_name: 752 * @typename: The CPU base type. 753 * @cpu_model: The model string without any parameters. 754 * 755 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 756 * 757 * Returns: A concrete #CPUClass or %NULL if no matching class is found 758 * or if the matching class is abstract. 759 */ 760 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 761 762 /** 763 * cpu_model_from_type: 764 * @typename: The CPU type name 765 * 766 * Extract the CPU model name from the CPU type name. The 767 * CPU type name is either the combination of the CPU model 768 * name and suffix, or same to the CPU model name. 769 * 770 * Returns: CPU model name or NULL if the CPU class doesn't exist 771 * The user should g_free() the string once no longer needed. 772 */ 773 char *cpu_model_from_type(const char *typename); 774 775 /** 776 * cpu_create: 777 * @typename: The CPU type. 778 * 779 * Instantiates a CPU and realizes the CPU. 780 * 781 * Returns: A #CPUState or %NULL if an error occurred. 782 */ 783 CPUState *cpu_create(const char *typename); 784 785 /** 786 * parse_cpu_option: 787 * @cpu_option: The -cpu option including optional parameters. 788 * 789 * processes optional parameters and registers them as global properties 790 * 791 * Returns: type of CPU to create or prints error and terminates process 792 * if an error occurred. 793 */ 794 const char *parse_cpu_option(const char *cpu_option); 795 796 /** 797 * cpu_has_work: 798 * @cpu: The vCPU to check. 799 * 800 * Checks whether the CPU has work to do. 801 * 802 * Returns: %true if the CPU has work, %false otherwise. 803 */ 804 static inline bool cpu_has_work(CPUState *cpu) 805 { 806 CPUClass *cc = CPU_GET_CLASS(cpu); 807 808 g_assert(cc->has_work); 809 return cc->has_work(cpu); 810 } 811 812 /** 813 * qemu_cpu_is_self: 814 * @cpu: The vCPU to check against. 815 * 816 * Checks whether the caller is executing on the vCPU thread. 817 * 818 * Returns: %true if called from @cpu's thread, %false otherwise. 819 */ 820 bool qemu_cpu_is_self(CPUState *cpu); 821 822 /** 823 * qemu_cpu_kick: 824 * @cpu: The vCPU to kick. 825 * 826 * Kicks @cpu's thread. 827 */ 828 void qemu_cpu_kick(CPUState *cpu); 829 830 /** 831 * cpu_is_stopped: 832 * @cpu: The CPU to check. 833 * 834 * Checks whether the CPU is stopped. 835 * 836 * Returns: %true if run state is not running or if artificially stopped; 837 * %false otherwise. 838 */ 839 bool cpu_is_stopped(CPUState *cpu); 840 841 /** 842 * do_run_on_cpu: 843 * @cpu: The vCPU to run on. 844 * @func: The function to be executed. 845 * @data: Data to pass to the function. 846 * @mutex: Mutex to release while waiting for @func to run. 847 * 848 * Used internally in the implementation of run_on_cpu. 849 */ 850 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 851 QemuMutex *mutex); 852 853 /** 854 * run_on_cpu: 855 * @cpu: The vCPU to run on. 856 * @func: The function to be executed. 857 * @data: Data to pass to the function. 858 * 859 * Schedules the function @func for execution on the vCPU @cpu. 860 */ 861 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 862 863 /** 864 * async_run_on_cpu: 865 * @cpu: The vCPU to run on. 866 * @func: The function to be executed. 867 * @data: Data to pass to the function. 868 * 869 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 870 */ 871 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 872 873 /** 874 * async_safe_run_on_cpu: 875 * @cpu: The vCPU to run on. 876 * @func: The function to be executed. 877 * @data: Data to pass to the function. 878 * 879 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 880 * while all other vCPUs are sleeping. 881 * 882 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 883 * BQL. 884 */ 885 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 886 887 /** 888 * cpu_in_exclusive_context() 889 * @cpu: The vCPU to check 890 * 891 * Returns true if @cpu is an exclusive context, for example running 892 * something which has previously been queued via async_safe_run_on_cpu(). 893 */ 894 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 895 { 896 return cpu->exclusive_context_count; 897 } 898 899 /** 900 * qemu_get_cpu: 901 * @index: The CPUState@cpu_index value of the CPU to obtain. 902 * 903 * Gets a CPU matching @index. 904 * 905 * Returns: The CPU or %NULL if there is no matching CPU. 906 */ 907 CPUState *qemu_get_cpu(int index); 908 909 /** 910 * cpu_exists: 911 * @id: Guest-exposed CPU ID to lookup. 912 * 913 * Search for CPU with specified ID. 914 * 915 * Returns: %true - CPU is found, %false - CPU isn't found. 916 */ 917 bool cpu_exists(int64_t id); 918 919 /** 920 * cpu_by_arch_id: 921 * @id: Guest-exposed CPU ID of the CPU to obtain. 922 * 923 * Get a CPU with matching @id. 924 * 925 * Returns: The CPU or %NULL if there is no matching CPU. 926 */ 927 CPUState *cpu_by_arch_id(int64_t id); 928 929 /** 930 * cpu_interrupt: 931 * @cpu: The CPU to set an interrupt on. 932 * @mask: The interrupts to set. 933 * 934 * Invokes the interrupt handler. 935 */ 936 937 void cpu_interrupt(CPUState *cpu, int mask); 938 939 /** 940 * cpu_set_pc: 941 * @cpu: The CPU to set the program counter for. 942 * @addr: Program counter value. 943 * 944 * Sets the program counter for a CPU. 945 */ 946 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 947 { 948 CPUClass *cc = CPU_GET_CLASS(cpu); 949 950 cc->set_pc(cpu, addr); 951 } 952 953 /** 954 * cpu_reset_interrupt: 955 * @cpu: The CPU to clear the interrupt on. 956 * @mask: The interrupt mask to clear. 957 * 958 * Resets interrupts on the vCPU @cpu. 959 */ 960 void cpu_reset_interrupt(CPUState *cpu, int mask); 961 962 /** 963 * cpu_exit: 964 * @cpu: The CPU to exit. 965 * 966 * Requests the CPU @cpu to exit execution. 967 */ 968 void cpu_exit(CPUState *cpu); 969 970 /** 971 * cpu_resume: 972 * @cpu: The CPU to resume. 973 * 974 * Resumes CPU, i.e. puts CPU into runnable state. 975 */ 976 void cpu_resume(CPUState *cpu); 977 978 /** 979 * cpu_remove_sync: 980 * @cpu: The CPU to remove. 981 * 982 * Requests the CPU to be removed and waits till it is removed. 983 */ 984 void cpu_remove_sync(CPUState *cpu); 985 986 /** 987 * process_queued_cpu_work() - process all items on CPU work queue 988 * @cpu: The CPU which work queue to process. 989 */ 990 void process_queued_cpu_work(CPUState *cpu); 991 992 /** 993 * cpu_exec_start: 994 * @cpu: The CPU for the current thread. 995 * 996 * Record that a CPU has started execution and can be interrupted with 997 * cpu_exit. 998 */ 999 void cpu_exec_start(CPUState *cpu); 1000 1001 /** 1002 * cpu_exec_end: 1003 * @cpu: The CPU for the current thread. 1004 * 1005 * Record that a CPU has stopped execution and exclusive sections 1006 * can be executed without interrupting it. 1007 */ 1008 void cpu_exec_end(CPUState *cpu); 1009 1010 /** 1011 * start_exclusive: 1012 * 1013 * Wait for a concurrent exclusive section to end, and then start 1014 * a section of work that is run while other CPUs are not running 1015 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1016 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1017 * during the exclusive section go to sleep until this CPU calls 1018 * end_exclusive. 1019 */ 1020 void start_exclusive(void); 1021 1022 /** 1023 * end_exclusive: 1024 * 1025 * Concludes an exclusive execution section started by start_exclusive. 1026 */ 1027 void end_exclusive(void); 1028 1029 /** 1030 * qemu_init_vcpu: 1031 * @cpu: The vCPU to initialize. 1032 * 1033 * Initializes a vCPU. 1034 */ 1035 void qemu_init_vcpu(CPUState *cpu); 1036 1037 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1038 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1039 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1040 1041 /** 1042 * cpu_single_step: 1043 * @cpu: CPU to the flags for. 1044 * @enabled: Flags to enable. 1045 * 1046 * Enables or disables single-stepping for @cpu. 1047 */ 1048 void cpu_single_step(CPUState *cpu, int enabled); 1049 1050 /* Breakpoint/watchpoint flags */ 1051 #define BP_MEM_READ 0x01 1052 #define BP_MEM_WRITE 0x02 1053 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1054 #define BP_STOP_BEFORE_ACCESS 0x04 1055 /* 0x08 currently unused */ 1056 #define BP_GDB 0x10 1057 #define BP_CPU 0x20 1058 #define BP_ANY (BP_GDB | BP_CPU) 1059 #define BP_HIT_SHIFT 6 1060 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1061 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1062 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1063 1064 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1065 CPUBreakpoint **breakpoint); 1066 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1067 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1068 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1069 1070 /* Return true if PC matches an installed breakpoint. */ 1071 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1072 { 1073 CPUBreakpoint *bp; 1074 1075 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1076 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1077 if (bp->pc == pc && (bp->flags & mask)) { 1078 return true; 1079 } 1080 } 1081 } 1082 return false; 1083 } 1084 1085 #if defined(CONFIG_USER_ONLY) 1086 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1087 int flags, CPUWatchpoint **watchpoint) 1088 { 1089 return -ENOSYS; 1090 } 1091 1092 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1093 vaddr len, int flags) 1094 { 1095 return -ENOSYS; 1096 } 1097 1098 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1099 CPUWatchpoint *wp) 1100 { 1101 } 1102 1103 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1104 { 1105 } 1106 #else 1107 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1108 int flags, CPUWatchpoint **watchpoint); 1109 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1110 vaddr len, int flags); 1111 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1112 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1113 #endif 1114 1115 /** 1116 * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled? 1117 * @cs: CPUState pointer 1118 * 1119 * The memory callbacks are installed if a plugin has instrumented an 1120 * instruction for memory. This can be useful to know if you want to 1121 * force a slow path for a series of memory accesses. 1122 */ 1123 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu) 1124 { 1125 #ifdef CONFIG_PLUGIN 1126 return !!cpu->plugin_mem_cbs; 1127 #else 1128 return false; 1129 #endif 1130 } 1131 1132 /** 1133 * cpu_get_address_space: 1134 * @cpu: CPU to get address space from 1135 * @asidx: index identifying which address space to get 1136 * 1137 * Return the requested address space of this CPU. @asidx 1138 * specifies which address space to read. 1139 */ 1140 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1141 1142 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1143 G_GNUC_PRINTF(2, 3); 1144 1145 /* $(top_srcdir)/cpu.c */ 1146 void cpu_class_init_props(DeviceClass *dc); 1147 void cpu_exec_initfn(CPUState *cpu); 1148 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1149 void cpu_exec_unrealizefn(CPUState *cpu); 1150 void cpu_exec_reset_hold(CPUState *cpu); 1151 1152 const char *target_name(void); 1153 1154 #ifdef COMPILING_PER_TARGET 1155 1156 #ifndef CONFIG_USER_ONLY 1157 1158 extern const VMStateDescription vmstate_cpu_common; 1159 1160 #define VMSTATE_CPU() { \ 1161 .name = "parent_obj", \ 1162 .size = sizeof(CPUState), \ 1163 .vmsd = &vmstate_cpu_common, \ 1164 .flags = VMS_STRUCT, \ 1165 .offset = 0, \ 1166 } 1167 #endif /* !CONFIG_USER_ONLY */ 1168 1169 #endif /* COMPILING_PER_TARGET */ 1170 1171 #define UNASSIGNED_CPU_INDEX -1 1172 #define UNASSIGNED_CLUSTER_INDEX -1 1173 1174 #endif 1175