1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-machine.h" 32 #include "qapi/qapi-types-run-state.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/rcu_queue.h" 35 #include "qemu/queue.h" 36 #include "qemu/thread.h" 37 #include "qom/object.h" 38 39 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 40 void *opaque); 41 42 /** 43 * SECTION:cpu 44 * @section_id: QEMU-cpu 45 * @title: CPU Class 46 * @short_description: Base class for all CPUs 47 */ 48 49 #define TYPE_CPU "cpu" 50 51 /* Since this macro is used a lot in hot code paths and in conjunction with 52 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 53 * an unchecked cast. 54 */ 55 #define CPU(obj) ((CPUState *)(obj)) 56 57 /* 58 * The class checkers bring in CPU_GET_CLASS() which is potentially 59 * expensive given the eventual call to 60 * object_class_dynamic_cast_assert(). Because of this the CPUState 61 * has a cached value for the class in cs->cc which is set up in 62 * cpu_exec_realizefn() for use in hot code paths. 63 */ 64 typedef struct CPUClass CPUClass; 65 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 66 TYPE_CPU) 67 68 /** 69 * OBJECT_DECLARE_CPU_TYPE: 70 * @CpuInstanceType: instance struct name 71 * @CpuClassType: class struct name 72 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 73 * 74 * This macro is typically used in "cpu-qom.h" header file, and will: 75 * 76 * - create the typedefs for the CPU object and class structs 77 * - register the type for use with g_autoptr 78 * - provide three standard type cast functions 79 * 80 * The object struct and class struct need to be declared manually. 81 */ 82 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 83 typedef struct ArchCPU CpuInstanceType; \ 84 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 85 86 typedef struct CPUWatchpoint CPUWatchpoint; 87 88 /* see physmem.c */ 89 struct CPUAddressSpace; 90 91 /* see accel/tcg/tb-jmp-cache.h */ 92 struct CPUJumpCache; 93 94 /* see accel-cpu.h */ 95 struct AccelCPUClass; 96 97 /* see sysemu-cpu-ops.h */ 98 struct SysemuCPUOps; 99 100 /** 101 * CPUClass: 102 * @class_by_name: Callback to map -cpu command line model name to an 103 * instantiatable CPU type. 104 * @parse_features: Callback to parse command line arguments. 105 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 106 * @has_work: Callback for checking if there is work to do. 107 * @mmu_index: Callback for choosing softmmu mmu index; 108 * may be used internally by memory_rw_debug without TCG. 109 * @memory_rw_debug: Callback for GDB memory access. 110 * @dump_state: Callback for dumping state. 111 * @query_cpu_fast: 112 * Fill in target specific information for the "query-cpus-fast" 113 * QAPI call. 114 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 115 * @set_pc: Callback for setting the Program Counter register. This 116 * should have the semantics used by the target architecture when 117 * setting the PC from a source such as an ELF file entry point; 118 * for example on Arm it will also set the Thumb mode bit based 119 * on the least significant bit of the new PC value. 120 * If the target behaviour here is anything other than "set 121 * the PC register to the value passed in" then the target must 122 * also implement the synchronize_from_tb hook. 123 * @get_pc: Callback for getting the Program Counter register. 124 * As above, with the semantics of the target architecture. 125 * @gdb_read_register: Callback for letting GDB read a register. 126 * @gdb_write_register: Callback for letting GDB write a register. 127 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 128 * breakpoint. Used by AVR to handle a gdb mis-feature with 129 * its Harvard architecture split code and data. 130 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 131 * from @gdb_core_xml_file. 132 * @gdb_core_xml_file: File name for core registers GDB XML description. 133 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 134 * before the insn which triggers a watchpoint rather than after it. 135 * @gdb_arch_name: Optional callback that returns the architecture name known 136 * to GDB. The caller must free the returned string with g_free. 137 * @disas_set_info: Setup architecture specific components of disassembly info 138 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 139 * address before attempting to match it against watchpoints. 140 * @deprecation_note: If this CPUClass is deprecated, this field provides 141 * related information. 142 * 143 * Represents a CPU family or model. 144 */ 145 struct CPUClass { 146 /*< private >*/ 147 DeviceClass parent_class; 148 /*< public >*/ 149 150 ObjectClass *(*class_by_name)(const char *cpu_model); 151 void (*parse_features)(const char *typename, char *str, Error **errp); 152 153 bool (*has_work)(CPUState *cpu); 154 int (*mmu_index)(CPUState *cpu, bool ifetch); 155 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 156 uint8_t *buf, int len, bool is_write); 157 void (*dump_state)(CPUState *cpu, FILE *, int flags); 158 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 159 int64_t (*get_arch_id)(CPUState *cpu); 160 void (*set_pc)(CPUState *cpu, vaddr value); 161 vaddr (*get_pc)(CPUState *cpu); 162 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 163 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 164 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 165 166 const char *gdb_core_xml_file; 167 const gchar * (*gdb_arch_name)(CPUState *cpu); 168 169 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 170 171 const char *deprecation_note; 172 struct AccelCPUClass *accel_cpu; 173 174 /* when system emulation is not available, this pointer is NULL */ 175 const struct SysemuCPUOps *sysemu_ops; 176 177 /* when TCG is not available, this pointer is NULL */ 178 const TCGCPUOps *tcg_ops; 179 180 /* 181 * if not NULL, this is called in order for the CPUClass to initialize 182 * class data that depends on the accelerator, see accel/accel-common.c. 183 */ 184 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 185 186 /* 187 * Keep non-pointer data at the end to minimize holes. 188 */ 189 int reset_dump_flags; 190 int gdb_num_core_regs; 191 bool gdb_stop_before_watchpoint; 192 }; 193 194 /* 195 * Fix the number of mmu modes to 16, which is also the maximum 196 * supported by the softmmu tlb api. 197 */ 198 #define NB_MMU_MODES 16 199 200 /* Use a fully associative victim tlb of 8 entries. */ 201 #define CPU_VTLB_SIZE 8 202 203 /* 204 * The full TLB entry, which is not accessed by generated TCG code, 205 * so the layout is not as critical as that of CPUTLBEntry. This is 206 * also why we don't want to combine the two structs. 207 */ 208 typedef struct CPUTLBEntryFull { 209 /* 210 * @xlat_section contains: 211 * - in the lower TARGET_PAGE_BITS, a physical section number 212 * - with the lower TARGET_PAGE_BITS masked off, an offset which 213 * must be added to the virtual address to obtain: 214 * + the ram_addr_t of the target RAM (if the physical section 215 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 216 * + the offset within the target MemoryRegion (otherwise) 217 */ 218 hwaddr xlat_section; 219 220 /* 221 * @phys_addr contains the physical address in the address space 222 * given by cpu_asidx_from_attrs(cpu, @attrs). 223 */ 224 hwaddr phys_addr; 225 226 /* @attrs contains the memory transaction attributes for the page. */ 227 MemTxAttrs attrs; 228 229 /* @prot contains the complete protections for the page. */ 230 uint8_t prot; 231 232 /* @lg_page_size contains the log2 of the page size. */ 233 uint8_t lg_page_size; 234 235 /* Additional tlb flags requested by tlb_fill. */ 236 uint8_t tlb_fill_flags; 237 238 /* 239 * Additional tlb flags for use by the slow path. If non-zero, 240 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 241 */ 242 uint8_t slow_flags[MMU_ACCESS_COUNT]; 243 244 /* 245 * Allow target-specific additions to this structure. 246 * This may be used to cache items from the guest cpu 247 * page tables for later use by the implementation. 248 */ 249 union { 250 /* 251 * Cache the attrs and shareability fields from the page table entry. 252 * 253 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 254 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 255 * For shareability and guarded, as in the SH and GP fields respectively 256 * of the VMSAv8-64 PTEs. 257 */ 258 struct { 259 uint8_t pte_attrs; 260 uint8_t shareability; 261 bool guarded; 262 } arm; 263 } extra; 264 } CPUTLBEntryFull; 265 266 /* 267 * Data elements that are per MMU mode, minus the bits accessed by 268 * the TCG fast path. 269 */ 270 typedef struct CPUTLBDesc { 271 /* 272 * Describe a region covering all of the large pages allocated 273 * into the tlb. When any page within this region is flushed, 274 * we must flush the entire tlb. The region is matched if 275 * (addr & large_page_mask) == large_page_addr. 276 */ 277 vaddr large_page_addr; 278 vaddr large_page_mask; 279 /* host time (in ns) at the beginning of the time window */ 280 int64_t window_begin_ns; 281 /* maximum number of entries observed in the window */ 282 size_t window_max_entries; 283 size_t n_used_entries; 284 /* The next index to use in the tlb victim table. */ 285 size_t vindex; 286 /* The tlb victim table, in two parts. */ 287 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 288 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 289 CPUTLBEntryFull *fulltlb; 290 } CPUTLBDesc; 291 292 /* 293 * Data elements that are shared between all MMU modes. 294 */ 295 typedef struct CPUTLBCommon { 296 /* Serialize updates to f.table and d.vtable, and others as noted. */ 297 QemuSpin lock; 298 /* 299 * Within dirty, for each bit N, modifications have been made to 300 * mmu_idx N since the last time that mmu_idx was flushed. 301 * Protected by tlb_c.lock. 302 */ 303 uint16_t dirty; 304 /* 305 * Statistics. These are not lock protected, but are read and 306 * written atomically. This allows the monitor to print a snapshot 307 * of the stats without interfering with the cpu. 308 */ 309 size_t full_flush_count; 310 size_t part_flush_count; 311 size_t elide_flush_count; 312 } CPUTLBCommon; 313 314 /* 315 * The entire softmmu tlb, for all MMU modes. 316 * The meaning of each of the MMU modes is defined in the target code. 317 * Since this is placed within CPUNegativeOffsetState, the smallest 318 * negative offsets are at the end of the struct. 319 */ 320 typedef struct CPUTLB { 321 #ifdef CONFIG_TCG 322 CPUTLBCommon c; 323 CPUTLBDesc d[NB_MMU_MODES]; 324 CPUTLBDescFast f[NB_MMU_MODES]; 325 #endif 326 } CPUTLB; 327 328 /* 329 * Low 16 bits: number of cycles left, used only in icount mode. 330 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 331 * for this CPU and return to its top level loop (even in non-icount mode). 332 * This allows a single read-compare-cbranch-write sequence to test 333 * for both decrementer underflow and exceptions. 334 */ 335 typedef union IcountDecr { 336 uint32_t u32; 337 struct { 338 #if HOST_BIG_ENDIAN 339 uint16_t high; 340 uint16_t low; 341 #else 342 uint16_t low; 343 uint16_t high; 344 #endif 345 } u16; 346 } IcountDecr; 347 348 /** 349 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed 350 * from CPUArchState, via small negative offsets. 351 * @can_do_io: True if memory-mapped IO is allowed. 352 * @plugin_mem_cbs: active plugin memory callbacks 353 */ 354 typedef struct CPUNegativeOffsetState { 355 CPUTLB tlb; 356 #ifdef CONFIG_PLUGIN 357 /* 358 * The callback pointer are accessed via TCG (see gen_empty_mem_helper). 359 */ 360 GArray *plugin_mem_cbs; 361 #endif 362 IcountDecr icount_decr; 363 bool can_do_io; 364 } CPUNegativeOffsetState; 365 366 struct KVMState; 367 struct kvm_run; 368 369 /* work queue */ 370 371 /* The union type allows passing of 64 bit target pointers on 32 bit 372 * hosts in a single parameter 373 */ 374 typedef union { 375 int host_int; 376 unsigned long host_ulong; 377 void *host_ptr; 378 vaddr target_ptr; 379 } run_on_cpu_data; 380 381 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 382 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 383 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 384 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 385 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 386 387 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 388 389 struct qemu_work_item; 390 391 #define CPU_UNSET_NUMA_NODE_ID -1 392 393 /** 394 * struct CPUState - common state of one CPU core or thread. 395 * 396 * @cpu_index: CPU index (informative). 397 * @cluster_index: Identifies which cluster this CPU is in. 398 * For boards which don't define clusters or for "loose" CPUs not assigned 399 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 400 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 401 * QOM parent. 402 * Under TCG this value is propagated to @tcg_cflags. 403 * See TranslationBlock::TCG CF_CLUSTER_MASK. 404 * @tcg_cflags: Pre-computed cflags for this cpu. 405 * @nr_cores: Number of cores within this CPU package. 406 * @nr_threads: Number of threads within this CPU core. 407 * @thread: Host thread details, only live once @created is #true 408 * @sem: WIN32 only semaphore used only for qtest 409 * @thread_id: native thread id of vCPU, only live once @created is #true 410 * @running: #true if CPU is currently running (lockless). 411 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 412 * valid under cpu_list_lock. 413 * @created: Indicates whether the CPU thread has been successfully created. 414 * @halt_cond: condition variable sleeping threads can wait on. 415 * @interrupt_request: Indicates a pending interrupt request. 416 * @halted: Nonzero if the CPU is in suspended state. 417 * @stop: Indicates a pending stop request. 418 * @stopped: Indicates the CPU has been artificially stopped. 419 * @unplug: Indicates a pending CPU unplug request. 420 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 421 * @singlestep_enabled: Flags for single-stepping. 422 * @icount_extra: Instructions until next timer event. 423 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 424 * AddressSpaces this CPU has) 425 * @num_ases: number of CPUAddressSpaces in @cpu_ases 426 * @as: Pointer to the first AddressSpace, for the convenience of targets which 427 * only have a single AddressSpace 428 * @gdb_regs: Additional GDB registers. 429 * @gdb_num_regs: Number of total registers accessible to GDB. 430 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 431 * @node: QTAILQ of CPUs sharing TB cache. 432 * @opaque: User data. 433 * @mem_io_pc: Host Program Counter at which the memory was accessed. 434 * @accel: Pointer to accelerator specific state. 435 * @kvm_fd: vCPU file descriptor for KVM. 436 * @work_mutex: Lock to prevent multiple access to @work_list. 437 * @work_list: List of pending asynchronous work. 438 * @plugin_state: per-CPU plugin state 439 * @ignore_memory_transaction_failures: Cached copy of the MachineState 440 * flag of the same name: allows the board to suppress calling of the 441 * CPU do_transaction_failed hook function. 442 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 443 * ring is enabled. 444 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 445 * dirty ring structure. 446 * 447 * @neg_align: The CPUState is the common part of a concrete ArchCPU 448 * which is allocated when an individual CPU instance is created. As 449 * such care is taken is ensure there is no gap between between 450 * CPUState and CPUArchState within ArchCPU. 451 * 452 * @neg: The architectural register state ("cpu_env") immediately follows 453 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds 454 * some common TCG CPU variables which are accessed with a negative offset 455 * from cpu_env. 456 */ 457 struct CPUState { 458 /*< private >*/ 459 DeviceState parent_obj; 460 /* cache to avoid expensive CPU_GET_CLASS */ 461 CPUClass *cc; 462 /*< public >*/ 463 464 int nr_cores; 465 int nr_threads; 466 467 struct QemuThread *thread; 468 #ifdef _WIN32 469 QemuSemaphore sem; 470 #endif 471 int thread_id; 472 bool running, has_waiter; 473 struct QemuCond *halt_cond; 474 bool thread_kicked; 475 bool created; 476 bool stop; 477 bool stopped; 478 479 /* Should CPU start in powered-off state? */ 480 bool start_powered_off; 481 482 bool unplug; 483 bool crash_occurred; 484 bool exit_request; 485 int exclusive_context_count; 486 uint32_t cflags_next_tb; 487 /* updates protected by BQL */ 488 uint32_t interrupt_request; 489 int singlestep_enabled; 490 int64_t icount_budget; 491 int64_t icount_extra; 492 uint64_t random_seed; 493 sigjmp_buf jmp_env; 494 495 QemuMutex work_mutex; 496 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 497 498 struct CPUAddressSpace *cpu_ases; 499 int num_ases; 500 AddressSpace *as; 501 MemoryRegion *memory; 502 503 struct CPUJumpCache *tb_jmp_cache; 504 505 GArray *gdb_regs; 506 int gdb_num_regs; 507 int gdb_num_g_regs; 508 QTAILQ_ENTRY(CPUState) node; 509 510 /* ice debug support */ 511 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 512 513 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 514 CPUWatchpoint *watchpoint_hit; 515 516 void *opaque; 517 518 /* In order to avoid passing too many arguments to the MMIO helpers, 519 * we store some rarely used information in the CPU context. 520 */ 521 uintptr_t mem_io_pc; 522 523 /* Only used in KVM */ 524 int kvm_fd; 525 struct KVMState *kvm_state; 526 struct kvm_run *kvm_run; 527 struct kvm_dirty_gfn *kvm_dirty_gfns; 528 uint32_t kvm_fetch_index; 529 uint64_t dirty_pages; 530 int kvm_vcpu_stats_fd; 531 bool vcpu_dirty; 532 533 /* Use by accel-block: CPU is executing an ioctl() */ 534 QemuLockCnt in_ioctl_lock; 535 536 #ifdef CONFIG_PLUGIN 537 CPUPluginState *plugin_state; 538 #endif 539 540 /* TODO Move common fields from CPUArchState here. */ 541 int cpu_index; 542 int cluster_index; 543 uint32_t tcg_cflags; 544 uint32_t halted; 545 int32_t exception_index; 546 547 AccelCPUState *accel; 548 549 /* Used to keep track of an outstanding cpu throttle thread for migration 550 * autoconverge 551 */ 552 bool throttle_thread_scheduled; 553 554 /* 555 * Sleep throttle_us_per_full microseconds once dirty ring is full 556 * if dirty page rate limit is enabled. 557 */ 558 int64_t throttle_us_per_full; 559 560 bool ignore_memory_transaction_failures; 561 562 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 563 bool prctl_unalign_sigbus; 564 565 /* track IOMMUs whose translations we've cached in the TCG TLB */ 566 GArray *iommu_notifiers; 567 568 /* 569 * MUST BE LAST in order to minimize the displacement to CPUArchState. 570 */ 571 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 572 CPUNegativeOffsetState neg; 573 }; 574 575 /* Validate placement of CPUNegativeOffsetState. */ 576 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 577 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 578 579 static inline CPUArchState *cpu_env(CPUState *cpu) 580 { 581 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 582 return (CPUArchState *)(cpu + 1); 583 } 584 585 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 586 extern CPUTailQ cpus_queue; 587 588 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 589 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 590 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 591 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 592 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 593 594 extern __thread CPUState *current_cpu; 595 596 /** 597 * qemu_tcg_mttcg_enabled: 598 * Check whether we are running MultiThread TCG or not. 599 * 600 * Returns: %true if we are in MTTCG mode %false otherwise. 601 */ 602 extern bool mttcg_enabled; 603 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 604 605 /** 606 * cpu_paging_enabled: 607 * @cpu: The CPU whose state is to be inspected. 608 * 609 * Returns: %true if paging is enabled, %false otherwise. 610 */ 611 bool cpu_paging_enabled(const CPUState *cpu); 612 613 /** 614 * cpu_get_memory_mapping: 615 * @cpu: The CPU whose memory mappings are to be obtained. 616 * @list: Where to write the memory mappings to. 617 * @errp: Pointer for reporting an #Error. 618 * 619 * Returns: %true on success, %false otherwise. 620 */ 621 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 622 Error **errp); 623 624 #if !defined(CONFIG_USER_ONLY) 625 626 /** 627 * cpu_write_elf64_note: 628 * @f: pointer to a function that writes memory to a file 629 * @cpu: The CPU whose memory is to be dumped 630 * @cpuid: ID number of the CPU 631 * @opaque: pointer to the CPUState struct 632 */ 633 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 634 int cpuid, void *opaque); 635 636 /** 637 * cpu_write_elf64_qemunote: 638 * @f: pointer to a function that writes memory to a file 639 * @cpu: The CPU whose memory is to be dumped 640 * @cpuid: ID number of the CPU 641 * @opaque: pointer to the CPUState struct 642 */ 643 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 644 void *opaque); 645 646 /** 647 * cpu_write_elf32_note: 648 * @f: pointer to a function that writes memory to a file 649 * @cpu: The CPU whose memory is to be dumped 650 * @cpuid: ID number of the CPU 651 * @opaque: pointer to the CPUState struct 652 */ 653 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 654 int cpuid, void *opaque); 655 656 /** 657 * cpu_write_elf32_qemunote: 658 * @f: pointer to a function that writes memory to a file 659 * @cpu: The CPU whose memory is to be dumped 660 * @cpuid: ID number of the CPU 661 * @opaque: pointer to the CPUState struct 662 */ 663 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 664 void *opaque); 665 666 /** 667 * cpu_get_crash_info: 668 * @cpu: The CPU to get crash information for 669 * 670 * Gets the previously saved crash information. 671 * Caller is responsible for freeing the data. 672 */ 673 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 674 675 #endif /* !CONFIG_USER_ONLY */ 676 677 /** 678 * CPUDumpFlags: 679 * @CPU_DUMP_CODE: 680 * @CPU_DUMP_FPU: dump FPU register state, not just integer 681 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 682 * @CPU_DUMP_VPU: dump VPU registers 683 */ 684 enum CPUDumpFlags { 685 CPU_DUMP_CODE = 0x00010000, 686 CPU_DUMP_FPU = 0x00020000, 687 CPU_DUMP_CCOP = 0x00040000, 688 CPU_DUMP_VPU = 0x00080000, 689 }; 690 691 /** 692 * cpu_dump_state: 693 * @cpu: The CPU whose state is to be dumped. 694 * @f: If non-null, dump to this stream, else to current print sink. 695 * 696 * Dumps CPU state. 697 */ 698 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 699 700 #ifndef CONFIG_USER_ONLY 701 /** 702 * cpu_get_phys_page_attrs_debug: 703 * @cpu: The CPU to obtain the physical page address for. 704 * @addr: The virtual address. 705 * @attrs: Updated on return with the memory transaction attributes to use 706 * for this access. 707 * 708 * Obtains the physical page corresponding to a virtual one, together 709 * with the corresponding memory transaction attributes to use for the access. 710 * Use it only for debugging because no protection checks are done. 711 * 712 * Returns: Corresponding physical page address or -1 if no page found. 713 */ 714 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 715 MemTxAttrs *attrs); 716 717 /** 718 * cpu_get_phys_page_debug: 719 * @cpu: The CPU to obtain the physical page address for. 720 * @addr: The virtual address. 721 * 722 * Obtains the physical page corresponding to a virtual one. 723 * Use it only for debugging because no protection checks are done. 724 * 725 * Returns: Corresponding physical page address or -1 if no page found. 726 */ 727 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 728 729 /** cpu_asidx_from_attrs: 730 * @cpu: CPU 731 * @attrs: memory transaction attributes 732 * 733 * Returns the address space index specifying the CPU AddressSpace 734 * to use for a memory access with the given transaction attributes. 735 */ 736 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 737 738 /** 739 * cpu_virtio_is_big_endian: 740 * @cpu: CPU 741 742 * Returns %true if a CPU which supports runtime configurable endianness 743 * is currently big-endian. 744 */ 745 bool cpu_virtio_is_big_endian(CPUState *cpu); 746 747 #endif /* CONFIG_USER_ONLY */ 748 749 /** 750 * cpu_list_add: 751 * @cpu: The CPU to be added to the list of CPUs. 752 */ 753 void cpu_list_add(CPUState *cpu); 754 755 /** 756 * cpu_list_remove: 757 * @cpu: The CPU to be removed from the list of CPUs. 758 */ 759 void cpu_list_remove(CPUState *cpu); 760 761 /** 762 * cpu_reset: 763 * @cpu: The CPU whose state is to be reset. 764 */ 765 void cpu_reset(CPUState *cpu); 766 767 /** 768 * cpu_class_by_name: 769 * @typename: The CPU base type. 770 * @cpu_model: The model string without any parameters. 771 * 772 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 773 * 774 * Returns: A concrete #CPUClass or %NULL if no matching class is found 775 * or if the matching class is abstract. 776 */ 777 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 778 779 /** 780 * cpu_model_from_type: 781 * @typename: The CPU type name 782 * 783 * Extract the CPU model name from the CPU type name. The 784 * CPU type name is either the combination of the CPU model 785 * name and suffix, or same to the CPU model name. 786 * 787 * Returns: CPU model name or NULL if the CPU class doesn't exist 788 * The user should g_free() the string once no longer needed. 789 */ 790 char *cpu_model_from_type(const char *typename); 791 792 /** 793 * cpu_create: 794 * @typename: The CPU type. 795 * 796 * Instantiates a CPU and realizes the CPU. 797 * 798 * Returns: A #CPUState or %NULL if an error occurred. 799 */ 800 CPUState *cpu_create(const char *typename); 801 802 /** 803 * parse_cpu_option: 804 * @cpu_option: The -cpu option including optional parameters. 805 * 806 * processes optional parameters and registers them as global properties 807 * 808 * Returns: type of CPU to create or prints error and terminates process 809 * if an error occurred. 810 */ 811 const char *parse_cpu_option(const char *cpu_option); 812 813 /** 814 * cpu_has_work: 815 * @cpu: The vCPU to check. 816 * 817 * Checks whether the CPU has work to do. 818 * 819 * Returns: %true if the CPU has work, %false otherwise. 820 */ 821 static inline bool cpu_has_work(CPUState *cpu) 822 { 823 CPUClass *cc = CPU_GET_CLASS(cpu); 824 825 g_assert(cc->has_work); 826 return cc->has_work(cpu); 827 } 828 829 /** 830 * qemu_cpu_is_self: 831 * @cpu: The vCPU to check against. 832 * 833 * Checks whether the caller is executing on the vCPU thread. 834 * 835 * Returns: %true if called from @cpu's thread, %false otherwise. 836 */ 837 bool qemu_cpu_is_self(CPUState *cpu); 838 839 /** 840 * qemu_cpu_kick: 841 * @cpu: The vCPU to kick. 842 * 843 * Kicks @cpu's thread. 844 */ 845 void qemu_cpu_kick(CPUState *cpu); 846 847 /** 848 * cpu_is_stopped: 849 * @cpu: The CPU to check. 850 * 851 * Checks whether the CPU is stopped. 852 * 853 * Returns: %true if run state is not running or if artificially stopped; 854 * %false otherwise. 855 */ 856 bool cpu_is_stopped(CPUState *cpu); 857 858 /** 859 * do_run_on_cpu: 860 * @cpu: The vCPU to run on. 861 * @func: The function to be executed. 862 * @data: Data to pass to the function. 863 * @mutex: Mutex to release while waiting for @func to run. 864 * 865 * Used internally in the implementation of run_on_cpu. 866 */ 867 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 868 QemuMutex *mutex); 869 870 /** 871 * run_on_cpu: 872 * @cpu: The vCPU to run on. 873 * @func: The function to be executed. 874 * @data: Data to pass to the function. 875 * 876 * Schedules the function @func for execution on the vCPU @cpu. 877 */ 878 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 879 880 /** 881 * async_run_on_cpu: 882 * @cpu: The vCPU to run on. 883 * @func: The function to be executed. 884 * @data: Data to pass to the function. 885 * 886 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 887 */ 888 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 889 890 /** 891 * async_safe_run_on_cpu: 892 * @cpu: The vCPU to run on. 893 * @func: The function to be executed. 894 * @data: Data to pass to the function. 895 * 896 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 897 * while all other vCPUs are sleeping. 898 * 899 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 900 * BQL. 901 */ 902 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 903 904 /** 905 * cpu_in_exclusive_context() 906 * @cpu: The vCPU to check 907 * 908 * Returns true if @cpu is an exclusive context, for example running 909 * something which has previously been queued via async_safe_run_on_cpu(). 910 */ 911 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 912 { 913 return cpu->exclusive_context_count; 914 } 915 916 /** 917 * qemu_get_cpu: 918 * @index: The CPUState@cpu_index value of the CPU to obtain. 919 * 920 * Gets a CPU matching @index. 921 * 922 * Returns: The CPU or %NULL if there is no matching CPU. 923 */ 924 CPUState *qemu_get_cpu(int index); 925 926 /** 927 * cpu_exists: 928 * @id: Guest-exposed CPU ID to lookup. 929 * 930 * Search for CPU with specified ID. 931 * 932 * Returns: %true - CPU is found, %false - CPU isn't found. 933 */ 934 bool cpu_exists(int64_t id); 935 936 /** 937 * cpu_by_arch_id: 938 * @id: Guest-exposed CPU ID of the CPU to obtain. 939 * 940 * Get a CPU with matching @id. 941 * 942 * Returns: The CPU or %NULL if there is no matching CPU. 943 */ 944 CPUState *cpu_by_arch_id(int64_t id); 945 946 /** 947 * cpu_interrupt: 948 * @cpu: The CPU to set an interrupt on. 949 * @mask: The interrupts to set. 950 * 951 * Invokes the interrupt handler. 952 */ 953 954 void cpu_interrupt(CPUState *cpu, int mask); 955 956 /** 957 * cpu_set_pc: 958 * @cpu: The CPU to set the program counter for. 959 * @addr: Program counter value. 960 * 961 * Sets the program counter for a CPU. 962 */ 963 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 964 { 965 CPUClass *cc = CPU_GET_CLASS(cpu); 966 967 cc->set_pc(cpu, addr); 968 } 969 970 /** 971 * cpu_reset_interrupt: 972 * @cpu: The CPU to clear the interrupt on. 973 * @mask: The interrupt mask to clear. 974 * 975 * Resets interrupts on the vCPU @cpu. 976 */ 977 void cpu_reset_interrupt(CPUState *cpu, int mask); 978 979 /** 980 * cpu_exit: 981 * @cpu: The CPU to exit. 982 * 983 * Requests the CPU @cpu to exit execution. 984 */ 985 void cpu_exit(CPUState *cpu); 986 987 /** 988 * cpu_pause: 989 * @cpu: The CPU to pause. 990 * 991 * Pauses CPU, i.e. puts CPU into stopped state. 992 */ 993 void cpu_pause(CPUState *cpu); 994 995 /** 996 * cpu_resume: 997 * @cpu: The CPU to resume. 998 * 999 * Resumes CPU, i.e. puts CPU into runnable state. 1000 */ 1001 void cpu_resume(CPUState *cpu); 1002 1003 /** 1004 * cpu_remove_sync: 1005 * @cpu: The CPU to remove. 1006 * 1007 * Requests the CPU to be removed and waits till it is removed. 1008 */ 1009 void cpu_remove_sync(CPUState *cpu); 1010 1011 /** 1012 * free_queued_cpu_work() - free all items on CPU work queue 1013 * @cpu: The CPU which work queue to free. 1014 */ 1015 void free_queued_cpu_work(CPUState *cpu); 1016 1017 /** 1018 * process_queued_cpu_work() - process all items on CPU work queue 1019 * @cpu: The CPU which work queue to process. 1020 */ 1021 void process_queued_cpu_work(CPUState *cpu); 1022 1023 /** 1024 * cpu_exec_start: 1025 * @cpu: The CPU for the current thread. 1026 * 1027 * Record that a CPU has started execution and can be interrupted with 1028 * cpu_exit. 1029 */ 1030 void cpu_exec_start(CPUState *cpu); 1031 1032 /** 1033 * cpu_exec_end: 1034 * @cpu: The CPU for the current thread. 1035 * 1036 * Record that a CPU has stopped execution and exclusive sections 1037 * can be executed without interrupting it. 1038 */ 1039 void cpu_exec_end(CPUState *cpu); 1040 1041 /** 1042 * start_exclusive: 1043 * 1044 * Wait for a concurrent exclusive section to end, and then start 1045 * a section of work that is run while other CPUs are not running 1046 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1047 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1048 * during the exclusive section go to sleep until this CPU calls 1049 * end_exclusive. 1050 */ 1051 void start_exclusive(void); 1052 1053 /** 1054 * end_exclusive: 1055 * 1056 * Concludes an exclusive execution section started by start_exclusive. 1057 */ 1058 void end_exclusive(void); 1059 1060 /** 1061 * qemu_init_vcpu: 1062 * @cpu: The vCPU to initialize. 1063 * 1064 * Initializes a vCPU. 1065 */ 1066 void qemu_init_vcpu(CPUState *cpu); 1067 1068 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1069 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1070 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1071 1072 /** 1073 * cpu_single_step: 1074 * @cpu: CPU to the flags for. 1075 * @enabled: Flags to enable. 1076 * 1077 * Enables or disables single-stepping for @cpu. 1078 */ 1079 void cpu_single_step(CPUState *cpu, int enabled); 1080 1081 /* Breakpoint/watchpoint flags */ 1082 #define BP_MEM_READ 0x01 1083 #define BP_MEM_WRITE 0x02 1084 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1085 #define BP_STOP_BEFORE_ACCESS 0x04 1086 /* 0x08 currently unused */ 1087 #define BP_GDB 0x10 1088 #define BP_CPU 0x20 1089 #define BP_ANY (BP_GDB | BP_CPU) 1090 #define BP_HIT_SHIFT 6 1091 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1092 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1093 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1094 1095 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1096 CPUBreakpoint **breakpoint); 1097 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1098 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1099 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1100 1101 /* Return true if PC matches an installed breakpoint. */ 1102 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1103 { 1104 CPUBreakpoint *bp; 1105 1106 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1107 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1108 if (bp->pc == pc && (bp->flags & mask)) { 1109 return true; 1110 } 1111 } 1112 } 1113 return false; 1114 } 1115 1116 #if defined(CONFIG_USER_ONLY) 1117 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1118 int flags, CPUWatchpoint **watchpoint) 1119 { 1120 return -ENOSYS; 1121 } 1122 1123 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1124 vaddr len, int flags) 1125 { 1126 return -ENOSYS; 1127 } 1128 1129 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1130 CPUWatchpoint *wp) 1131 { 1132 } 1133 1134 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1135 { 1136 } 1137 #else 1138 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1139 int flags, CPUWatchpoint **watchpoint); 1140 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1141 vaddr len, int flags); 1142 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1143 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1144 #endif 1145 1146 /** 1147 * cpu_get_address_space: 1148 * @cpu: CPU to get address space from 1149 * @asidx: index identifying which address space to get 1150 * 1151 * Return the requested address space of this CPU. @asidx 1152 * specifies which address space to read. 1153 */ 1154 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1155 1156 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1157 G_GNUC_PRINTF(2, 3); 1158 1159 /* $(top_srcdir)/cpu.c */ 1160 void cpu_class_init_props(DeviceClass *dc); 1161 void cpu_exec_initfn(CPUState *cpu); 1162 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1163 void cpu_exec_unrealizefn(CPUState *cpu); 1164 void cpu_exec_reset_hold(CPUState *cpu); 1165 1166 const char *target_name(void); 1167 1168 #ifdef COMPILING_PER_TARGET 1169 1170 #ifndef CONFIG_USER_ONLY 1171 1172 extern const VMStateDescription vmstate_cpu_common; 1173 1174 #define VMSTATE_CPU() { \ 1175 .name = "parent_obj", \ 1176 .size = sizeof(CPUState), \ 1177 .vmsd = &vmstate_cpu_common, \ 1178 .flags = VMS_STRUCT, \ 1179 .offset = 0, \ 1180 } 1181 #endif /* !CONFIG_USER_ONLY */ 1182 1183 #endif /* COMPILING_PER_TARGET */ 1184 1185 #define UNASSIGNED_CPU_INDEX -1 1186 #define UNASSIGNED_CLUSTER_INDEX -1 1187 1188 #endif 1189