xref: /openbmc/qemu/include/hw/core/cpu.h (revision d19630d2)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/cpu-common.h"
26 #include "exec/hwaddr.h"
27 #include "exec/memattrs.h"
28 #include "exec/tlb-common.h"
29 #include "qapi/qapi-types-run-state.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/rcu_queue.h"
32 #include "qemu/queue.h"
33 #include "qemu/thread.h"
34 #include "qemu/plugin-event.h"
35 #include "qom/object.h"
36 
37 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
38                                      void *opaque);
39 
40 /**
41  * SECTION:cpu
42  * @section_id: QEMU-cpu
43  * @title: CPU Class
44  * @short_description: Base class for all CPUs
45  */
46 
47 #define TYPE_CPU "cpu"
48 
49 /* Since this macro is used a lot in hot code paths and in conjunction with
50  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
51  * an unchecked cast.
52  */
53 #define CPU(obj) ((CPUState *)(obj))
54 
55 /*
56  * The class checkers bring in CPU_GET_CLASS() which is potentially
57  * expensive given the eventual call to
58  * object_class_dynamic_cast_assert(). Because of this the CPUState
59  * has a cached value for the class in cs->cc which is set up in
60  * cpu_exec_realizefn() for use in hot code paths.
61  */
62 typedef struct CPUClass CPUClass;
63 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
64                        TYPE_CPU)
65 
66 /**
67  * OBJECT_DECLARE_CPU_TYPE:
68  * @CpuInstanceType: instance struct name
69  * @CpuClassType: class struct name
70  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
71  *
72  * This macro is typically used in "cpu-qom.h" header file, and will:
73  *
74  *   - create the typedefs for the CPU object and class structs
75  *   - register the type for use with g_autoptr
76  *   - provide three standard type cast functions
77  *
78  * The object struct and class struct need to be declared manually.
79  */
80 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
81     typedef struct ArchCPU CpuInstanceType; \
82     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
83 
84 typedef enum MMUAccessType {
85     MMU_DATA_LOAD  = 0,
86     MMU_DATA_STORE = 1,
87     MMU_INST_FETCH = 2
88 #define MMU_ACCESS_COUNT 3
89 } MMUAccessType;
90 
91 typedef struct CPUWatchpoint CPUWatchpoint;
92 
93 /* see tcg-cpu-ops.h */
94 struct TCGCPUOps;
95 
96 /* see accel-cpu.h */
97 struct AccelCPUClass;
98 
99 /* see sysemu-cpu-ops.h */
100 struct SysemuCPUOps;
101 
102 /**
103  * CPUClass:
104  * @class_by_name: Callback to map -cpu command line model name to an
105  *                 instantiatable CPU type.
106  * @parse_features: Callback to parse command line arguments.
107  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
108  * @has_work: Callback for checking if there is work to do.
109  * @memory_rw_debug: Callback for GDB memory access.
110  * @dump_state: Callback for dumping state.
111  * @query_cpu_fast:
112  *       Fill in target specific information for the "query-cpus-fast"
113  *       QAPI call.
114  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
115  * @set_pc: Callback for setting the Program Counter register. This
116  *       should have the semantics used by the target architecture when
117  *       setting the PC from a source such as an ELF file entry point;
118  *       for example on Arm it will also set the Thumb mode bit based
119  *       on the least significant bit of the new PC value.
120  *       If the target behaviour here is anything other than "set
121  *       the PC register to the value passed in" then the target must
122  *       also implement the synchronize_from_tb hook.
123  * @get_pc: Callback for getting the Program Counter register.
124  *       As above, with the semantics of the target architecture.
125  * @gdb_read_register: Callback for letting GDB read a register.
126  * @gdb_write_register: Callback for letting GDB write a register.
127  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
128  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
129  *       its Harvard architecture split code and data.
130  * @gdb_num_core_regs: Number of core registers accessible to GDB.
131  * @gdb_core_xml_file: File name for core registers GDB XML description.
132  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
133  *           before the insn which triggers a watchpoint rather than after it.
134  * @gdb_arch_name: Optional callback that returns the architecture name known
135  * to GDB. The caller must free the returned string with g_free.
136  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
137  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
138  *   or NULL if the CPU doesn't have a dynamically generated content for it.
139  * @disas_set_info: Setup architecture specific components of disassembly info
140  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
141  * address before attempting to match it against watchpoints.
142  * @deprecation_note: If this CPUClass is deprecated, this field provides
143  *                    related information.
144  *
145  * Represents a CPU family or model.
146  */
147 struct CPUClass {
148     /*< private >*/
149     DeviceClass parent_class;
150     /*< public >*/
151 
152     ObjectClass *(*class_by_name)(const char *cpu_model);
153     void (*parse_features)(const char *typename, char *str, Error **errp);
154 
155     bool (*has_work)(CPUState *cpu);
156     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
157                            uint8_t *buf, int len, bool is_write);
158     void (*dump_state)(CPUState *cpu, FILE *, int flags);
159     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
160     int64_t (*get_arch_id)(CPUState *cpu);
161     void (*set_pc)(CPUState *cpu, vaddr value);
162     vaddr (*get_pc)(CPUState *cpu);
163     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
164     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
165     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
166 
167     const char *gdb_core_xml_file;
168     const gchar * (*gdb_arch_name)(CPUState *cpu);
169     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
170 
171     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
172 
173     const char *deprecation_note;
174     struct AccelCPUClass *accel_cpu;
175 
176     /* when system emulation is not available, this pointer is NULL */
177     const struct SysemuCPUOps *sysemu_ops;
178 
179     /* when TCG is not available, this pointer is NULL */
180     const struct TCGCPUOps *tcg_ops;
181 
182     /*
183      * if not NULL, this is called in order for the CPUClass to initialize
184      * class data that depends on the accelerator, see accel/accel-common.c.
185      */
186     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
187 
188     /*
189      * Keep non-pointer data at the end to minimize holes.
190      */
191     int reset_dump_flags;
192     int gdb_num_core_regs;
193     bool gdb_stop_before_watchpoint;
194 };
195 
196 /*
197  * Fix the number of mmu modes to 16, which is also the maximum
198  * supported by the softmmu tlb api.
199  */
200 #define NB_MMU_MODES 16
201 
202 /* Use a fully associative victim tlb of 8 entries. */
203 #define CPU_VTLB_SIZE 8
204 
205 /*
206  * The full TLB entry, which is not accessed by generated TCG code,
207  * so the layout is not as critical as that of CPUTLBEntry. This is
208  * also why we don't want to combine the two structs.
209  */
210 typedef struct CPUTLBEntryFull {
211     /*
212      * @xlat_section contains:
213      *  - in the lower TARGET_PAGE_BITS, a physical section number
214      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
215      *    must be added to the virtual address to obtain:
216      *     + the ram_addr_t of the target RAM (if the physical section
217      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
218      *     + the offset within the target MemoryRegion (otherwise)
219      */
220     hwaddr xlat_section;
221 
222     /*
223      * @phys_addr contains the physical address in the address space
224      * given by cpu_asidx_from_attrs(cpu, @attrs).
225      */
226     hwaddr phys_addr;
227 
228     /* @attrs contains the memory transaction attributes for the page. */
229     MemTxAttrs attrs;
230 
231     /* @prot contains the complete protections for the page. */
232     uint8_t prot;
233 
234     /* @lg_page_size contains the log2 of the page size. */
235     uint8_t lg_page_size;
236 
237     /*
238      * Additional tlb flags for use by the slow path. If non-zero,
239      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
240      */
241     uint8_t slow_flags[MMU_ACCESS_COUNT];
242 
243     /*
244      * Allow target-specific additions to this structure.
245      * This may be used to cache items from the guest cpu
246      * page tables for later use by the implementation.
247      */
248     union {
249         /*
250          * Cache the attrs and shareability fields from the page table entry.
251          *
252          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
253          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
254          * For shareability and guarded, as in the SH and GP fields respectively
255          * of the VMSAv8-64 PTEs.
256          */
257         struct {
258             uint8_t pte_attrs;
259             uint8_t shareability;
260             bool guarded;
261         } arm;
262     } extra;
263 } CPUTLBEntryFull;
264 
265 /*
266  * Data elements that are per MMU mode, minus the bits accessed by
267  * the TCG fast path.
268  */
269 typedef struct CPUTLBDesc {
270     /*
271      * Describe a region covering all of the large pages allocated
272      * into the tlb.  When any page within this region is flushed,
273      * we must flush the entire tlb.  The region is matched if
274      * (addr & large_page_mask) == large_page_addr.
275      */
276     vaddr large_page_addr;
277     vaddr large_page_mask;
278     /* host time (in ns) at the beginning of the time window */
279     int64_t window_begin_ns;
280     /* maximum number of entries observed in the window */
281     size_t window_max_entries;
282     size_t n_used_entries;
283     /* The next index to use in the tlb victim table.  */
284     size_t vindex;
285     /* The tlb victim table, in two parts.  */
286     CPUTLBEntry vtable[CPU_VTLB_SIZE];
287     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
288     CPUTLBEntryFull *fulltlb;
289 } CPUTLBDesc;
290 
291 /*
292  * Data elements that are shared between all MMU modes.
293  */
294 typedef struct CPUTLBCommon {
295     /* Serialize updates to f.table and d.vtable, and others as noted. */
296     QemuSpin lock;
297     /*
298      * Within dirty, for each bit N, modifications have been made to
299      * mmu_idx N since the last time that mmu_idx was flushed.
300      * Protected by tlb_c.lock.
301      */
302     uint16_t dirty;
303     /*
304      * Statistics.  These are not lock protected, but are read and
305      * written atomically.  This allows the monitor to print a snapshot
306      * of the stats without interfering with the cpu.
307      */
308     size_t full_flush_count;
309     size_t part_flush_count;
310     size_t elide_flush_count;
311 } CPUTLBCommon;
312 
313 /*
314  * The entire softmmu tlb, for all MMU modes.
315  * The meaning of each of the MMU modes is defined in the target code.
316  * Since this is placed within CPUNegativeOffsetState, the smallest
317  * negative offsets are at the end of the struct.
318  */
319 typedef struct CPUTLB {
320 #ifdef CONFIG_TCG
321     CPUTLBCommon c;
322     CPUTLBDesc d[NB_MMU_MODES];
323     CPUTLBDescFast f[NB_MMU_MODES];
324 #endif
325 } CPUTLB;
326 
327 /*
328  * Low 16 bits: number of cycles left, used only in icount mode.
329  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
330  * for this CPU and return to its top level loop (even in non-icount mode).
331  * This allows a single read-compare-cbranch-write sequence to test
332  * for both decrementer underflow and exceptions.
333  */
334 typedef union IcountDecr {
335     uint32_t u32;
336     struct {
337 #if HOST_BIG_ENDIAN
338         uint16_t high;
339         uint16_t low;
340 #else
341         uint16_t low;
342         uint16_t high;
343 #endif
344     } u16;
345 } IcountDecr;
346 
347 /*
348  * Elements of CPUState most efficiently accessed from CPUArchState,
349  * via small negative offsets.
350  */
351 typedef struct CPUNegativeOffsetState {
352     CPUTLB tlb;
353     IcountDecr icount_decr;
354     bool can_do_io;
355 } CPUNegativeOffsetState;
356 
357 typedef struct CPUBreakpoint {
358     vaddr pc;
359     int flags; /* BP_* */
360     QTAILQ_ENTRY(CPUBreakpoint) entry;
361 } CPUBreakpoint;
362 
363 struct CPUWatchpoint {
364     vaddr vaddr;
365     vaddr len;
366     vaddr hitaddr;
367     MemTxAttrs hitattrs;
368     int flags; /* BP_* */
369     QTAILQ_ENTRY(CPUWatchpoint) entry;
370 };
371 
372 struct KVMState;
373 struct kvm_run;
374 
375 /* work queue */
376 
377 /* The union type allows passing of 64 bit target pointers on 32 bit
378  * hosts in a single parameter
379  */
380 typedef union {
381     int           host_int;
382     unsigned long host_ulong;
383     void         *host_ptr;
384     vaddr         target_ptr;
385 } run_on_cpu_data;
386 
387 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
388 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
389 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
390 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
391 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
392 
393 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
394 
395 struct qemu_work_item;
396 
397 #define CPU_UNSET_NUMA_NODE_ID -1
398 
399 /**
400  * CPUState:
401  * @cpu_index: CPU index (informative).
402  * @cluster_index: Identifies which cluster this CPU is in.
403  *   For boards which don't define clusters or for "loose" CPUs not assigned
404  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
405  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
406  *   QOM parent.
407  *   Under TCG this value is propagated to @tcg_cflags.
408  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
409  * @tcg_cflags: Pre-computed cflags for this cpu.
410  * @nr_cores: Number of cores within this CPU package.
411  * @nr_threads: Number of threads within this CPU core.
412  * @running: #true if CPU is currently running (lockless).
413  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
414  * valid under cpu_list_lock.
415  * @created: Indicates whether the CPU thread has been successfully created.
416  * @interrupt_request: Indicates a pending interrupt request.
417  * @halted: Nonzero if the CPU is in suspended state.
418  * @stop: Indicates a pending stop request.
419  * @stopped: Indicates the CPU has been artificially stopped.
420  * @unplug: Indicates a pending CPU unplug request.
421  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
422  * @singlestep_enabled: Flags for single-stepping.
423  * @icount_extra: Instructions until next timer event.
424  * @neg.can_do_io: True if memory-mapped IO is allowed.
425  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
426  *            AddressSpaces this CPU has)
427  * @num_ases: number of CPUAddressSpaces in @cpu_ases
428  * @as: Pointer to the first AddressSpace, for the convenience of targets which
429  *      only have a single AddressSpace
430  * @gdb_regs: Additional GDB registers.
431  * @gdb_num_regs: Number of total registers accessible to GDB.
432  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
433  * @next_cpu: Next CPU sharing TB cache.
434  * @opaque: User data.
435  * @mem_io_pc: Host Program Counter at which the memory was accessed.
436  * @accel: Pointer to accelerator specific state.
437  * @kvm_fd: vCPU file descriptor for KVM.
438  * @work_mutex: Lock to prevent multiple access to @work_list.
439  * @work_list: List of pending asynchronous work.
440  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
441  *                        to @trace_dstate).
442  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
443  * @plugin_mask: Plugin event bitmap. Modified only via async work.
444  * @ignore_memory_transaction_failures: Cached copy of the MachineState
445  *    flag of the same name: allows the board to suppress calling of the
446  *    CPU do_transaction_failed hook function.
447  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
448  *    ring is enabled.
449  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
450  *    dirty ring structure.
451  *
452  * State of one CPU core or thread.
453  *
454  * Align, in order to match possible alignment required by CPUArchState,
455  * and eliminate a hole between CPUState and CPUArchState within ArchCPU.
456  */
457 struct CPUState {
458     /*< private >*/
459     DeviceState parent_obj;
460     /* cache to avoid expensive CPU_GET_CLASS */
461     CPUClass *cc;
462     /*< public >*/
463 
464     int nr_cores;
465     int nr_threads;
466 
467     struct QemuThread *thread;
468 #ifdef _WIN32
469     QemuSemaphore sem;
470 #endif
471     int thread_id;
472     bool running, has_waiter;
473     struct QemuCond *halt_cond;
474     bool thread_kicked;
475     bool created;
476     bool stop;
477     bool stopped;
478 
479     /* Should CPU start in powered-off state? */
480     bool start_powered_off;
481 
482     bool unplug;
483     bool crash_occurred;
484     bool exit_request;
485     int exclusive_context_count;
486     uint32_t cflags_next_tb;
487     /* updates protected by BQL */
488     uint32_t interrupt_request;
489     int singlestep_enabled;
490     int64_t icount_budget;
491     int64_t icount_extra;
492     uint64_t random_seed;
493     sigjmp_buf jmp_env;
494 
495     QemuMutex work_mutex;
496     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
497 
498     CPUAddressSpace *cpu_ases;
499     int num_ases;
500     AddressSpace *as;
501     MemoryRegion *memory;
502 
503     CPUJumpCache *tb_jmp_cache;
504 
505     GArray *gdb_regs;
506     int gdb_num_regs;
507     int gdb_num_g_regs;
508     QTAILQ_ENTRY(CPUState) node;
509 
510     /* ice debug support */
511     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
512 
513     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
514     CPUWatchpoint *watchpoint_hit;
515 
516     void *opaque;
517 
518     /* In order to avoid passing too many arguments to the MMIO helpers,
519      * we store some rarely used information in the CPU context.
520      */
521     uintptr_t mem_io_pc;
522 
523     /* Only used in KVM */
524     int kvm_fd;
525     struct KVMState *kvm_state;
526     struct kvm_run *kvm_run;
527     struct kvm_dirty_gfn *kvm_dirty_gfns;
528     uint32_t kvm_fetch_index;
529     uint64_t dirty_pages;
530     int kvm_vcpu_stats_fd;
531 
532     /* Use by accel-block: CPU is executing an ioctl() */
533     QemuLockCnt in_ioctl_lock;
534 
535     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
536 
537 #ifdef CONFIG_PLUGIN
538     GArray *plugin_mem_cbs;
539 #endif
540 
541     /* TODO Move common fields from CPUArchState here. */
542     int cpu_index;
543     int cluster_index;
544     uint32_t tcg_cflags;
545     uint32_t halted;
546     int32_t exception_index;
547 
548     AccelCPUState *accel;
549     /* shared by kvm and hvf */
550     bool vcpu_dirty;
551 
552     /* Used to keep track of an outstanding cpu throttle thread for migration
553      * autoconverge
554      */
555     bool throttle_thread_scheduled;
556 
557     /*
558      * Sleep throttle_us_per_full microseconds once dirty ring is full
559      * if dirty page rate limit is enabled.
560      */
561     int64_t throttle_us_per_full;
562 
563     bool ignore_memory_transaction_failures;
564 
565     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
566     bool prctl_unalign_sigbus;
567 
568     /* track IOMMUs whose translations we've cached in the TCG TLB */
569     GArray *iommu_notifiers;
570 
571     /*
572      * MUST BE LAST in order to minimize the displacement to CPUArchState.
573      */
574     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
575     CPUNegativeOffsetState neg;
576 };
577 
578 /* Validate placement of CPUNegativeOffsetState. */
579 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
580                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
581 
582 static inline CPUArchState *cpu_env(CPUState *cpu)
583 {
584     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
585     return (CPUArchState *)(cpu + 1);
586 }
587 
588 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
589 extern CPUTailQ cpus_queue;
590 
591 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
592 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
593 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
594 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
595     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
596 
597 extern __thread CPUState *current_cpu;
598 
599 /**
600  * qemu_tcg_mttcg_enabled:
601  * Check whether we are running MultiThread TCG or not.
602  *
603  * Returns: %true if we are in MTTCG mode %false otherwise.
604  */
605 extern bool mttcg_enabled;
606 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
607 
608 /**
609  * cpu_paging_enabled:
610  * @cpu: The CPU whose state is to be inspected.
611  *
612  * Returns: %true if paging is enabled, %false otherwise.
613  */
614 bool cpu_paging_enabled(const CPUState *cpu);
615 
616 /**
617  * cpu_get_memory_mapping:
618  * @cpu: The CPU whose memory mappings are to be obtained.
619  * @list: Where to write the memory mappings to.
620  * @errp: Pointer for reporting an #Error.
621  *
622  * Returns: %true on success, %false otherwise.
623  */
624 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
625                             Error **errp);
626 
627 #if !defined(CONFIG_USER_ONLY)
628 
629 /**
630  * cpu_write_elf64_note:
631  * @f: pointer to a function that writes memory to a file
632  * @cpu: The CPU whose memory is to be dumped
633  * @cpuid: ID number of the CPU
634  * @opaque: pointer to the CPUState struct
635  */
636 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
637                          int cpuid, void *opaque);
638 
639 /**
640  * cpu_write_elf64_qemunote:
641  * @f: pointer to a function that writes memory to a file
642  * @cpu: The CPU whose memory is to be dumped
643  * @cpuid: ID number of the CPU
644  * @opaque: pointer to the CPUState struct
645  */
646 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
647                              void *opaque);
648 
649 /**
650  * cpu_write_elf32_note:
651  * @f: pointer to a function that writes memory to a file
652  * @cpu: The CPU whose memory is to be dumped
653  * @cpuid: ID number of the CPU
654  * @opaque: pointer to the CPUState struct
655  */
656 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
657                          int cpuid, void *opaque);
658 
659 /**
660  * cpu_write_elf32_qemunote:
661  * @f: pointer to a function that writes memory to a file
662  * @cpu: The CPU whose memory is to be dumped
663  * @cpuid: ID number of the CPU
664  * @opaque: pointer to the CPUState struct
665  */
666 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
667                              void *opaque);
668 
669 /**
670  * cpu_get_crash_info:
671  * @cpu: The CPU to get crash information for
672  *
673  * Gets the previously saved crash information.
674  * Caller is responsible for freeing the data.
675  */
676 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
677 
678 #endif /* !CONFIG_USER_ONLY */
679 
680 /**
681  * CPUDumpFlags:
682  * @CPU_DUMP_CODE:
683  * @CPU_DUMP_FPU: dump FPU register state, not just integer
684  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
685  * @CPU_DUMP_VPU: dump VPU registers
686  */
687 enum CPUDumpFlags {
688     CPU_DUMP_CODE = 0x00010000,
689     CPU_DUMP_FPU  = 0x00020000,
690     CPU_DUMP_CCOP = 0x00040000,
691     CPU_DUMP_VPU  = 0x00080000,
692 };
693 
694 /**
695  * cpu_dump_state:
696  * @cpu: The CPU whose state is to be dumped.
697  * @f: If non-null, dump to this stream, else to current print sink.
698  *
699  * Dumps CPU state.
700  */
701 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
702 
703 #ifndef CONFIG_USER_ONLY
704 /**
705  * cpu_get_phys_page_attrs_debug:
706  * @cpu: The CPU to obtain the physical page address for.
707  * @addr: The virtual address.
708  * @attrs: Updated on return with the memory transaction attributes to use
709  *         for this access.
710  *
711  * Obtains the physical page corresponding to a virtual one, together
712  * with the corresponding memory transaction attributes to use for the access.
713  * Use it only for debugging because no protection checks are done.
714  *
715  * Returns: Corresponding physical page address or -1 if no page found.
716  */
717 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
718                                      MemTxAttrs *attrs);
719 
720 /**
721  * cpu_get_phys_page_debug:
722  * @cpu: The CPU to obtain the physical page address for.
723  * @addr: The virtual address.
724  *
725  * Obtains the physical page corresponding to a virtual one.
726  * Use it only for debugging because no protection checks are done.
727  *
728  * Returns: Corresponding physical page address or -1 if no page found.
729  */
730 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
731 
732 /** cpu_asidx_from_attrs:
733  * @cpu: CPU
734  * @attrs: memory transaction attributes
735  *
736  * Returns the address space index specifying the CPU AddressSpace
737  * to use for a memory access with the given transaction attributes.
738  */
739 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
740 
741 /**
742  * cpu_virtio_is_big_endian:
743  * @cpu: CPU
744 
745  * Returns %true if a CPU which supports runtime configurable endianness
746  * is currently big-endian.
747  */
748 bool cpu_virtio_is_big_endian(CPUState *cpu);
749 
750 #endif /* CONFIG_USER_ONLY */
751 
752 /**
753  * cpu_list_add:
754  * @cpu: The CPU to be added to the list of CPUs.
755  */
756 void cpu_list_add(CPUState *cpu);
757 
758 /**
759  * cpu_list_remove:
760  * @cpu: The CPU to be removed from the list of CPUs.
761  */
762 void cpu_list_remove(CPUState *cpu);
763 
764 /**
765  * cpu_reset:
766  * @cpu: The CPU whose state is to be reset.
767  */
768 void cpu_reset(CPUState *cpu);
769 
770 /**
771  * cpu_class_by_name:
772  * @typename: The CPU base type.
773  * @cpu_model: The model string without any parameters.
774  *
775  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
776  *
777  * Returns: A concrete #CPUClass or %NULL if no matching class is found
778  *          or if the matching class is abstract.
779  */
780 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
781 
782 /**
783  * cpu_create:
784  * @typename: The CPU type.
785  *
786  * Instantiates a CPU and realizes the CPU.
787  *
788  * Returns: A #CPUState or %NULL if an error occurred.
789  */
790 CPUState *cpu_create(const char *typename);
791 
792 /**
793  * parse_cpu_option:
794  * @cpu_option: The -cpu option including optional parameters.
795  *
796  * processes optional parameters and registers them as global properties
797  *
798  * Returns: type of CPU to create or prints error and terminates process
799  *          if an error occurred.
800  */
801 const char *parse_cpu_option(const char *cpu_option);
802 
803 /**
804  * cpu_has_work:
805  * @cpu: The vCPU to check.
806  *
807  * Checks whether the CPU has work to do.
808  *
809  * Returns: %true if the CPU has work, %false otherwise.
810  */
811 static inline bool cpu_has_work(CPUState *cpu)
812 {
813     CPUClass *cc = CPU_GET_CLASS(cpu);
814 
815     g_assert(cc->has_work);
816     return cc->has_work(cpu);
817 }
818 
819 /**
820  * qemu_cpu_is_self:
821  * @cpu: The vCPU to check against.
822  *
823  * Checks whether the caller is executing on the vCPU thread.
824  *
825  * Returns: %true if called from @cpu's thread, %false otherwise.
826  */
827 bool qemu_cpu_is_self(CPUState *cpu);
828 
829 /**
830  * qemu_cpu_kick:
831  * @cpu: The vCPU to kick.
832  *
833  * Kicks @cpu's thread.
834  */
835 void qemu_cpu_kick(CPUState *cpu);
836 
837 /**
838  * cpu_is_stopped:
839  * @cpu: The CPU to check.
840  *
841  * Checks whether the CPU is stopped.
842  *
843  * Returns: %true if run state is not running or if artificially stopped;
844  * %false otherwise.
845  */
846 bool cpu_is_stopped(CPUState *cpu);
847 
848 /**
849  * do_run_on_cpu:
850  * @cpu: The vCPU to run on.
851  * @func: The function to be executed.
852  * @data: Data to pass to the function.
853  * @mutex: Mutex to release while waiting for @func to run.
854  *
855  * Used internally in the implementation of run_on_cpu.
856  */
857 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
858                    QemuMutex *mutex);
859 
860 /**
861  * run_on_cpu:
862  * @cpu: The vCPU to run on.
863  * @func: The function to be executed.
864  * @data: Data to pass to the function.
865  *
866  * Schedules the function @func for execution on the vCPU @cpu.
867  */
868 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
869 
870 /**
871  * async_run_on_cpu:
872  * @cpu: The vCPU to run on.
873  * @func: The function to be executed.
874  * @data: Data to pass to the function.
875  *
876  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
877  */
878 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
879 
880 /**
881  * async_safe_run_on_cpu:
882  * @cpu: The vCPU to run on.
883  * @func: The function to be executed.
884  * @data: Data to pass to the function.
885  *
886  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
887  * while all other vCPUs are sleeping.
888  *
889  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
890  * BQL.
891  */
892 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
893 
894 /**
895  * cpu_in_exclusive_context()
896  * @cpu: The vCPU to check
897  *
898  * Returns true if @cpu is an exclusive context, for example running
899  * something which has previously been queued via async_safe_run_on_cpu().
900  */
901 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
902 {
903     return cpu->exclusive_context_count;
904 }
905 
906 /**
907  * qemu_get_cpu:
908  * @index: The CPUState@cpu_index value of the CPU to obtain.
909  *
910  * Gets a CPU matching @index.
911  *
912  * Returns: The CPU or %NULL if there is no matching CPU.
913  */
914 CPUState *qemu_get_cpu(int index);
915 
916 /**
917  * cpu_exists:
918  * @id: Guest-exposed CPU ID to lookup.
919  *
920  * Search for CPU with specified ID.
921  *
922  * Returns: %true - CPU is found, %false - CPU isn't found.
923  */
924 bool cpu_exists(int64_t id);
925 
926 /**
927  * cpu_by_arch_id:
928  * @id: Guest-exposed CPU ID of the CPU to obtain.
929  *
930  * Get a CPU with matching @id.
931  *
932  * Returns: The CPU or %NULL if there is no matching CPU.
933  */
934 CPUState *cpu_by_arch_id(int64_t id);
935 
936 /**
937  * cpu_interrupt:
938  * @cpu: The CPU to set an interrupt on.
939  * @mask: The interrupts to set.
940  *
941  * Invokes the interrupt handler.
942  */
943 
944 void cpu_interrupt(CPUState *cpu, int mask);
945 
946 /**
947  * cpu_set_pc:
948  * @cpu: The CPU to set the program counter for.
949  * @addr: Program counter value.
950  *
951  * Sets the program counter for a CPU.
952  */
953 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
954 {
955     CPUClass *cc = CPU_GET_CLASS(cpu);
956 
957     cc->set_pc(cpu, addr);
958 }
959 
960 /**
961  * cpu_reset_interrupt:
962  * @cpu: The CPU to clear the interrupt on.
963  * @mask: The interrupt mask to clear.
964  *
965  * Resets interrupts on the vCPU @cpu.
966  */
967 void cpu_reset_interrupt(CPUState *cpu, int mask);
968 
969 /**
970  * cpu_exit:
971  * @cpu: The CPU to exit.
972  *
973  * Requests the CPU @cpu to exit execution.
974  */
975 void cpu_exit(CPUState *cpu);
976 
977 /**
978  * cpu_resume:
979  * @cpu: The CPU to resume.
980  *
981  * Resumes CPU, i.e. puts CPU into runnable state.
982  */
983 void cpu_resume(CPUState *cpu);
984 
985 /**
986  * cpu_remove_sync:
987  * @cpu: The CPU to remove.
988  *
989  * Requests the CPU to be removed and waits till it is removed.
990  */
991 void cpu_remove_sync(CPUState *cpu);
992 
993 /**
994  * process_queued_cpu_work() - process all items on CPU work queue
995  * @cpu: The CPU which work queue to process.
996  */
997 void process_queued_cpu_work(CPUState *cpu);
998 
999 /**
1000  * cpu_exec_start:
1001  * @cpu: The CPU for the current thread.
1002  *
1003  * Record that a CPU has started execution and can be interrupted with
1004  * cpu_exit.
1005  */
1006 void cpu_exec_start(CPUState *cpu);
1007 
1008 /**
1009  * cpu_exec_end:
1010  * @cpu: The CPU for the current thread.
1011  *
1012  * Record that a CPU has stopped execution and exclusive sections
1013  * can be executed without interrupting it.
1014  */
1015 void cpu_exec_end(CPUState *cpu);
1016 
1017 /**
1018  * start_exclusive:
1019  *
1020  * Wait for a concurrent exclusive section to end, and then start
1021  * a section of work that is run while other CPUs are not running
1022  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1023  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1024  * during the exclusive section go to sleep until this CPU calls
1025  * end_exclusive.
1026  */
1027 void start_exclusive(void);
1028 
1029 /**
1030  * end_exclusive:
1031  *
1032  * Concludes an exclusive execution section started by start_exclusive.
1033  */
1034 void end_exclusive(void);
1035 
1036 /**
1037  * qemu_init_vcpu:
1038  * @cpu: The vCPU to initialize.
1039  *
1040  * Initializes a vCPU.
1041  */
1042 void qemu_init_vcpu(CPUState *cpu);
1043 
1044 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1045 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1046 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1047 
1048 /**
1049  * cpu_single_step:
1050  * @cpu: CPU to the flags for.
1051  * @enabled: Flags to enable.
1052  *
1053  * Enables or disables single-stepping for @cpu.
1054  */
1055 void cpu_single_step(CPUState *cpu, int enabled);
1056 
1057 /* Breakpoint/watchpoint flags */
1058 #define BP_MEM_READ           0x01
1059 #define BP_MEM_WRITE          0x02
1060 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1061 #define BP_STOP_BEFORE_ACCESS 0x04
1062 /* 0x08 currently unused */
1063 #define BP_GDB                0x10
1064 #define BP_CPU                0x20
1065 #define BP_ANY                (BP_GDB | BP_CPU)
1066 #define BP_HIT_SHIFT          6
1067 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1068 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1069 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1070 
1071 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1072                           CPUBreakpoint **breakpoint);
1073 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1074 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1075 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1076 
1077 /* Return true if PC matches an installed breakpoint.  */
1078 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1079 {
1080     CPUBreakpoint *bp;
1081 
1082     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1083         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1084             if (bp->pc == pc && (bp->flags & mask)) {
1085                 return true;
1086             }
1087         }
1088     }
1089     return false;
1090 }
1091 
1092 #if defined(CONFIG_USER_ONLY)
1093 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1094                                         int flags, CPUWatchpoint **watchpoint)
1095 {
1096     return -ENOSYS;
1097 }
1098 
1099 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1100                                         vaddr len, int flags)
1101 {
1102     return -ENOSYS;
1103 }
1104 
1105 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1106                                                 CPUWatchpoint *wp)
1107 {
1108 }
1109 
1110 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1111 {
1112 }
1113 #else
1114 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1115                           int flags, CPUWatchpoint **watchpoint);
1116 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1117                           vaddr len, int flags);
1118 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1119 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1120 #endif
1121 
1122 /**
1123  * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled?
1124  * @cs: CPUState pointer
1125  *
1126  * The memory callbacks are installed if a plugin has instrumented an
1127  * instruction for memory. This can be useful to know if you want to
1128  * force a slow path for a series of memory accesses.
1129  */
1130 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu)
1131 {
1132 #ifdef CONFIG_PLUGIN
1133     return !!cpu->plugin_mem_cbs;
1134 #else
1135     return false;
1136 #endif
1137 }
1138 
1139 /**
1140  * cpu_get_address_space:
1141  * @cpu: CPU to get address space from
1142  * @asidx: index identifying which address space to get
1143  *
1144  * Return the requested address space of this CPU. @asidx
1145  * specifies which address space to read.
1146  */
1147 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1148 
1149 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1150     G_GNUC_PRINTF(2, 3);
1151 
1152 /* $(top_srcdir)/cpu.c */
1153 void cpu_class_init_props(DeviceClass *dc);
1154 void cpu_exec_initfn(CPUState *cpu);
1155 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1156 void cpu_exec_unrealizefn(CPUState *cpu);
1157 void cpu_exec_reset_hold(CPUState *cpu);
1158 
1159 /**
1160  * target_words_bigendian:
1161  * Returns true if the (default) endianness of the target is big endian,
1162  * false otherwise. Note that in target-specific code, you can use
1163  * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1164  * code should normally never need to know about the endianness of the
1165  * target, so please do *not* use this function unless you know very well
1166  * what you are doing!
1167  */
1168 bool target_words_bigendian(void);
1169 
1170 const char *target_name(void);
1171 
1172 void page_size_init(void);
1173 
1174 #ifdef NEED_CPU_H
1175 
1176 #ifndef CONFIG_USER_ONLY
1177 
1178 extern const VMStateDescription vmstate_cpu_common;
1179 
1180 #define VMSTATE_CPU() {                                                     \
1181     .name = "parent_obj",                                                   \
1182     .size = sizeof(CPUState),                                               \
1183     .vmsd = &vmstate_cpu_common,                                            \
1184     .flags = VMS_STRUCT,                                                    \
1185     .offset = 0,                                                            \
1186 }
1187 #endif /* !CONFIG_USER_ONLY */
1188 
1189 #endif /* NEED_CPU_H */
1190 
1191 #define UNASSIGNED_CPU_INDEX -1
1192 #define UNASSIGNED_CLUSTER_INDEX -1
1193 
1194 #endif
1195