xref: /openbmc/qemu/include/hw/core/cpu.h (revision cfbc3c6083dbdd0fdd9cc98965182e79431d3c63)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 
33 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
34                                      void *opaque);
35 
36 /**
37  * vaddr:
38  * Type wide enough to contain any #target_ulong virtual address.
39  */
40 typedef uint64_t vaddr;
41 #define VADDR_PRId PRId64
42 #define VADDR_PRIu PRIu64
43 #define VADDR_PRIo PRIo64
44 #define VADDR_PRIx PRIx64
45 #define VADDR_PRIX PRIX64
46 #define VADDR_MAX UINT64_MAX
47 
48 /**
49  * SECTION:cpu
50  * @section_id: QEMU-cpu
51  * @title: CPU Class
52  * @short_description: Base class for all CPUs
53  */
54 
55 #define TYPE_CPU "cpu"
56 
57 /* Since this macro is used a lot in hot code paths and in conjunction with
58  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
59  * an unchecked cast.
60  */
61 #define CPU(obj) ((CPUState *)(obj))
62 
63 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
64 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
65 
66 typedef enum MMUAccessType {
67     MMU_DATA_LOAD  = 0,
68     MMU_DATA_STORE = 1,
69     MMU_INST_FETCH = 2
70 } MMUAccessType;
71 
72 typedef struct CPUWatchpoint CPUWatchpoint;
73 
74 typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
75                                     bool is_write, bool is_exec, int opaque,
76                                     unsigned size);
77 
78 struct TranslationBlock;
79 
80 /**
81  * CPUClass:
82  * @class_by_name: Callback to map -cpu command line model name to an
83  * instantiatable CPU type.
84  * @parse_features: Callback to parse command line arguments.
85  * @reset: Callback to reset the #CPUState to its initial state.
86  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
87  * @has_work: Callback for checking if there is work to do.
88  * @do_interrupt: Callback for interrupt handling.
89  * @do_unassigned_access: Callback for unassigned access handling.
90  * (this is deprecated: new targets should use do_transaction_failed instead)
91  * @do_unaligned_access: Callback for unaligned access handling, if
92  * the target defines #TARGET_ALIGNED_ONLY.
93  * @do_transaction_failed: Callback for handling failed memory transactions
94  * (ie bus faults or external aborts; not MMU faults)
95  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
96  * runtime configurable endianness is currently big-endian. Non-configurable
97  * CPUs can use the default implementation of this method. This method should
98  * not be used by any callers other than the pre-1.0 virtio devices.
99  * @memory_rw_debug: Callback for GDB memory access.
100  * @dump_state: Callback for dumping state.
101  * @dump_statistics: Callback for dumping statistics.
102  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
103  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
104  * @get_memory_mapping: Callback for obtaining the memory mappings.
105  * @set_pc: Callback for setting the Program Counter register. This
106  *       should have the semantics used by the target architecture when
107  *       setting the PC from a source such as an ELF file entry point;
108  *       for example on Arm it will also set the Thumb mode bit based
109  *       on the least significant bit of the new PC value.
110  *       If the target behaviour here is anything other than "set
111  *       the PC register to the value passed in" then the target must
112  *       also implement the synchronize_from_tb hook.
113  * @synchronize_from_tb: Callback for synchronizing state from a TCG
114  *       #TranslationBlock. This is called when we abandon execution
115  *       of a TB before starting it, and must set all parts of the CPU
116  *       state which the previous TB in the chain may not have updated.
117  *       This always includes at least the program counter; some targets
118  *       will need to do more. If this hook is not implemented then the
119  *       default is to call @set_pc(tb->pc).
120  * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
121  *       address fault.  For system mode, if the access is valid, call
122  *       tlb_set_page and return true; if the access is invalid, and
123  *       probe is true, return false; otherwise raise an exception and
124  *       do not return.  For user-only mode, always raise an exception
125  *       and do not return.
126  * @get_phys_page_debug: Callback for obtaining a physical address.
127  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
128  *       associated memory transaction attributes to use for the access.
129  *       CPUs which use memory transaction attributes should implement this
130  *       instead of get_phys_page_debug.
131  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
132  *       a memory access with the specified memory transaction attributes.
133  * @gdb_read_register: Callback for letting GDB read a register.
134  * @gdb_write_register: Callback for letting GDB write a register.
135  * @debug_check_watchpoint: Callback: return true if the architectural
136  *       watchpoint whose address has matched should really fire.
137  * @debug_excp_handler: Callback for handling debug exceptions.
138  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
139  * 64-bit VM coredump.
140  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
141  * note to a 32-bit VM coredump.
142  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
143  * 32-bit VM coredump.
144  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
145  * note to a 32-bit VM coredump.
146  * @vmsd: State description for migration.
147  * @gdb_num_core_regs: Number of core registers accessible to GDB.
148  * @gdb_core_xml_file: File name for core registers GDB XML description.
149  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
150  *           before the insn which triggers a watchpoint rather than after it.
151  * @gdb_arch_name: Optional callback that returns the architecture name known
152  * to GDB. The caller must free the returned string with g_free.
153  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
154  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
155  *   or NULL if the CPU doesn't have a dynamically generated content for it.
156  * @cpu_exec_enter: Callback for cpu_exec preparation.
157  * @cpu_exec_exit: Callback for cpu_exec cleanup.
158  * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
159  * @disas_set_info: Setup architecture specific components of disassembly info
160  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
161  * address before attempting to match it against watchpoints.
162  *
163  * Represents a CPU family or model.
164  */
165 typedef struct CPUClass {
166     /*< private >*/
167     DeviceClass parent_class;
168     /*< public >*/
169 
170     ObjectClass *(*class_by_name)(const char *cpu_model);
171     void (*parse_features)(const char *typename, char *str, Error **errp);
172 
173     void (*reset)(CPUState *cpu);
174     int reset_dump_flags;
175     bool (*has_work)(CPUState *cpu);
176     void (*do_interrupt)(CPUState *cpu);
177     CPUUnassignedAccess do_unassigned_access;
178     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
179                                 MMUAccessType access_type,
180                                 int mmu_idx, uintptr_t retaddr);
181     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
182                                   unsigned size, MMUAccessType access_type,
183                                   int mmu_idx, MemTxAttrs attrs,
184                                   MemTxResult response, uintptr_t retaddr);
185     bool (*virtio_is_big_endian)(CPUState *cpu);
186     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
187                            uint8_t *buf, int len, bool is_write);
188     void (*dump_state)(CPUState *cpu, FILE *, int flags);
189     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
190     void (*dump_statistics)(CPUState *cpu, int flags);
191     int64_t (*get_arch_id)(CPUState *cpu);
192     bool (*get_paging_enabled)(const CPUState *cpu);
193     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
194                                Error **errp);
195     void (*set_pc)(CPUState *cpu, vaddr value);
196     void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
197     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
198                      MMUAccessType access_type, int mmu_idx,
199                      bool probe, uintptr_t retaddr);
200     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
201     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
202                                         MemTxAttrs *attrs);
203     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
204     int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
205     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
206     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
207     void (*debug_excp_handler)(CPUState *cpu);
208 
209     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
210                             int cpuid, void *opaque);
211     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
212                                 void *opaque);
213     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
214                             int cpuid, void *opaque);
215     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
216                                 void *opaque);
217 
218     const VMStateDescription *vmsd;
219     const char *gdb_core_xml_file;
220     gchar * (*gdb_arch_name)(CPUState *cpu);
221     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
222     void (*cpu_exec_enter)(CPUState *cpu);
223     void (*cpu_exec_exit)(CPUState *cpu);
224     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
225 
226     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
227     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
228     void (*tcg_initialize)(void);
229 
230     /* Keep non-pointer data at the end to minimize holes.  */
231     int gdb_num_core_regs;
232     bool gdb_stop_before_watchpoint;
233 } CPUClass;
234 
235 /*
236  * Low 16 bits: number of cycles left, used only in icount mode.
237  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
238  * for this CPU and return to its top level loop (even in non-icount mode).
239  * This allows a single read-compare-cbranch-write sequence to test
240  * for both decrementer underflow and exceptions.
241  */
242 typedef union IcountDecr {
243     uint32_t u32;
244     struct {
245 #ifdef HOST_WORDS_BIGENDIAN
246         uint16_t high;
247         uint16_t low;
248 #else
249         uint16_t low;
250         uint16_t high;
251 #endif
252     } u16;
253 } IcountDecr;
254 
255 typedef struct CPUBreakpoint {
256     vaddr pc;
257     int flags; /* BP_* */
258     QTAILQ_ENTRY(CPUBreakpoint) entry;
259 } CPUBreakpoint;
260 
261 struct CPUWatchpoint {
262     vaddr vaddr;
263     vaddr len;
264     vaddr hitaddr;
265     MemTxAttrs hitattrs;
266     int flags; /* BP_* */
267     QTAILQ_ENTRY(CPUWatchpoint) entry;
268 };
269 
270 struct KVMState;
271 struct kvm_run;
272 
273 struct hax_vcpu_state;
274 
275 #define TB_JMP_CACHE_BITS 12
276 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
277 
278 /* work queue */
279 
280 /* The union type allows passing of 64 bit target pointers on 32 bit
281  * hosts in a single parameter
282  */
283 typedef union {
284     int           host_int;
285     unsigned long host_ulong;
286     void         *host_ptr;
287     vaddr         target_ptr;
288 } run_on_cpu_data;
289 
290 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
291 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
292 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
293 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
294 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
295 
296 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
297 
298 struct qemu_work_item;
299 
300 #define CPU_UNSET_NUMA_NODE_ID -1
301 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
302 
303 /**
304  * CPUState:
305  * @cpu_index: CPU index (informative).
306  * @cluster_index: Identifies which cluster this CPU is in.
307  *   For boards which don't define clusters or for "loose" CPUs not assigned
308  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
309  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
310  *   QOM parent.
311  * @nr_cores: Number of cores within this CPU package.
312  * @nr_threads: Number of threads within this CPU.
313  * @running: #true if CPU is currently running (lockless).
314  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
315  * valid under cpu_list_lock.
316  * @created: Indicates whether the CPU thread has been successfully created.
317  * @interrupt_request: Indicates a pending interrupt request.
318  * @halted: Nonzero if the CPU is in suspended state.
319  * @stop: Indicates a pending stop request.
320  * @stopped: Indicates the CPU has been artificially stopped.
321  * @unplug: Indicates a pending CPU unplug request.
322  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
323  * @singlestep_enabled: Flags for single-stepping.
324  * @icount_extra: Instructions until next timer event.
325  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
326  * requires that IO only be performed on the last instruction of a TB
327  * so that interrupts take effect immediately.
328  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
329  *            AddressSpaces this CPU has)
330  * @num_ases: number of CPUAddressSpaces in @cpu_ases
331  * @as: Pointer to the first AddressSpace, for the convenience of targets which
332  *      only have a single AddressSpace
333  * @env_ptr: Pointer to subclass-specific CPUArchState field.
334  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
335  * @gdb_regs: Additional GDB registers.
336  * @gdb_num_regs: Number of total registers accessible to GDB.
337  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
338  * @next_cpu: Next CPU sharing TB cache.
339  * @opaque: User data.
340  * @mem_io_pc: Host Program Counter at which the memory was accessed.
341  * @kvm_fd: vCPU file descriptor for KVM.
342  * @work_mutex: Lock to prevent multiple access to queued_work_*.
343  * @queued_work_first: First asynchronous work pending.
344  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
345  *                        to @trace_dstate).
346  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
347  * @ignore_memory_transaction_failures: Cached copy of the MachineState
348  *    flag of the same name: allows the board to suppress calling of the
349  *    CPU do_transaction_failed hook function.
350  *
351  * State of one CPU core or thread.
352  */
353 struct CPUState {
354     /*< private >*/
355     DeviceState parent_obj;
356     /*< public >*/
357 
358     int nr_cores;
359     int nr_threads;
360 
361     struct QemuThread *thread;
362 #ifdef _WIN32
363     HANDLE hThread;
364 #endif
365     int thread_id;
366     bool running, has_waiter;
367     struct QemuCond *halt_cond;
368     bool thread_kicked;
369     bool created;
370     bool stop;
371     bool stopped;
372     bool unplug;
373     bool crash_occurred;
374     bool exit_request;
375     bool in_exclusive_context;
376     uint32_t cflags_next_tb;
377     /* updates protected by BQL */
378     uint32_t interrupt_request;
379     int singlestep_enabled;
380     int64_t icount_budget;
381     int64_t icount_extra;
382     uint64_t random_seed;
383     sigjmp_buf jmp_env;
384 
385     QemuMutex work_mutex;
386     struct qemu_work_item *queued_work_first, *queued_work_last;
387 
388     CPUAddressSpace *cpu_ases;
389     int num_ases;
390     AddressSpace *as;
391     MemoryRegion *memory;
392 
393     void *env_ptr; /* CPUArchState */
394     IcountDecr *icount_decr_ptr;
395 
396     /* Accessed in parallel; all accesses must be atomic */
397     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
398 
399     struct GDBRegisterState *gdb_regs;
400     int gdb_num_regs;
401     int gdb_num_g_regs;
402     QTAILQ_ENTRY(CPUState) node;
403 
404     /* ice debug support */
405     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
406 
407     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
408     CPUWatchpoint *watchpoint_hit;
409 
410     void *opaque;
411 
412     /* In order to avoid passing too many arguments to the MMIO helpers,
413      * we store some rarely used information in the CPU context.
414      */
415     uintptr_t mem_io_pc;
416     /*
417      * This is only needed for the legacy cpu_unassigned_access() hook;
418      * when all targets using it have been converted to use
419      * cpu_transaction_failed() instead it can be removed.
420      */
421     MMUAccessType mem_io_access_type;
422 
423     int kvm_fd;
424     struct KVMState *kvm_state;
425     struct kvm_run *kvm_run;
426 
427     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
428     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
429     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
430 
431     /* TODO Move common fields from CPUArchState here. */
432     int cpu_index;
433     int cluster_index;
434     uint32_t halted;
435     uint32_t can_do_io;
436     int32_t exception_index;
437 
438     /* shared by kvm, hax and hvf */
439     bool vcpu_dirty;
440 
441     /* Used to keep track of an outstanding cpu throttle thread for migration
442      * autoconverge
443      */
444     bool throttle_thread_scheduled;
445 
446     bool ignore_memory_transaction_failures;
447 
448     struct hax_vcpu_state *hax_vcpu;
449 
450     int hvf_fd;
451 
452     /* track IOMMUs whose translations we've cached in the TCG TLB */
453     GArray *iommu_notifiers;
454 };
455 
456 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
457 extern CPUTailQ cpus;
458 
459 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
460 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
461 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
462 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
463     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
464 
465 extern __thread CPUState *current_cpu;
466 
467 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
468 {
469     unsigned int i;
470 
471     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
472         atomic_set(&cpu->tb_jmp_cache[i], NULL);
473     }
474 }
475 
476 /**
477  * qemu_tcg_mttcg_enabled:
478  * Check whether we are running MultiThread TCG or not.
479  *
480  * Returns: %true if we are in MTTCG mode %false otherwise.
481  */
482 extern bool mttcg_enabled;
483 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
484 
485 /**
486  * cpu_paging_enabled:
487  * @cpu: The CPU whose state is to be inspected.
488  *
489  * Returns: %true if paging is enabled, %false otherwise.
490  */
491 bool cpu_paging_enabled(const CPUState *cpu);
492 
493 /**
494  * cpu_get_memory_mapping:
495  * @cpu: The CPU whose memory mappings are to be obtained.
496  * @list: Where to write the memory mappings to.
497  * @errp: Pointer for reporting an #Error.
498  */
499 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
500                             Error **errp);
501 
502 /**
503  * cpu_write_elf64_note:
504  * @f: pointer to a function that writes memory to a file
505  * @cpu: The CPU whose memory is to be dumped
506  * @cpuid: ID number of the CPU
507  * @opaque: pointer to the CPUState struct
508  */
509 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
510                          int cpuid, void *opaque);
511 
512 /**
513  * cpu_write_elf64_qemunote:
514  * @f: pointer to a function that writes memory to a file
515  * @cpu: The CPU whose memory is to be dumped
516  * @cpuid: ID number of the CPU
517  * @opaque: pointer to the CPUState struct
518  */
519 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
520                              void *opaque);
521 
522 /**
523  * cpu_write_elf32_note:
524  * @f: pointer to a function that writes memory to a file
525  * @cpu: The CPU whose memory is to be dumped
526  * @cpuid: ID number of the CPU
527  * @opaque: pointer to the CPUState struct
528  */
529 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
530                          int cpuid, void *opaque);
531 
532 /**
533  * cpu_write_elf32_qemunote:
534  * @f: pointer to a function that writes memory to a file
535  * @cpu: The CPU whose memory is to be dumped
536  * @cpuid: ID number of the CPU
537  * @opaque: pointer to the CPUState struct
538  */
539 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
540                              void *opaque);
541 
542 /**
543  * cpu_get_crash_info:
544  * @cpu: The CPU to get crash information for
545  *
546  * Gets the previously saved crash information.
547  * Caller is responsible for freeing the data.
548  */
549 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
550 
551 /**
552  * CPUDumpFlags:
553  * @CPU_DUMP_CODE:
554  * @CPU_DUMP_FPU: dump FPU register state, not just integer
555  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
556  */
557 enum CPUDumpFlags {
558     CPU_DUMP_CODE = 0x00010000,
559     CPU_DUMP_FPU  = 0x00020000,
560     CPU_DUMP_CCOP = 0x00040000,
561 };
562 
563 /**
564  * cpu_dump_state:
565  * @cpu: The CPU whose state is to be dumped.
566  * @f: If non-null, dump to this stream, else to current print sink.
567  *
568  * Dumps CPU state.
569  */
570 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
571 
572 /**
573  * cpu_dump_statistics:
574  * @cpu: The CPU whose state is to be dumped.
575  * @flags: Flags what to dump.
576  *
577  * Dump CPU statistics to the current monitor if we have one, else to
578  * stdout.
579  */
580 void cpu_dump_statistics(CPUState *cpu, int flags);
581 
582 #ifndef CONFIG_USER_ONLY
583 /**
584  * cpu_get_phys_page_attrs_debug:
585  * @cpu: The CPU to obtain the physical page address for.
586  * @addr: The virtual address.
587  * @attrs: Updated on return with the memory transaction attributes to use
588  *         for this access.
589  *
590  * Obtains the physical page corresponding to a virtual one, together
591  * with the corresponding memory transaction attributes to use for the access.
592  * Use it only for debugging because no protection checks are done.
593  *
594  * Returns: Corresponding physical page address or -1 if no page found.
595  */
596 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
597                                                    MemTxAttrs *attrs)
598 {
599     CPUClass *cc = CPU_GET_CLASS(cpu);
600 
601     if (cc->get_phys_page_attrs_debug) {
602         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
603     }
604     /* Fallback for CPUs which don't implement the _attrs_ hook */
605     *attrs = MEMTXATTRS_UNSPECIFIED;
606     return cc->get_phys_page_debug(cpu, addr);
607 }
608 
609 /**
610  * cpu_get_phys_page_debug:
611  * @cpu: The CPU to obtain the physical page address for.
612  * @addr: The virtual address.
613  *
614  * Obtains the physical page corresponding to a virtual one.
615  * Use it only for debugging because no protection checks are done.
616  *
617  * Returns: Corresponding physical page address or -1 if no page found.
618  */
619 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
620 {
621     MemTxAttrs attrs = {};
622 
623     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
624 }
625 
626 /** cpu_asidx_from_attrs:
627  * @cpu: CPU
628  * @attrs: memory transaction attributes
629  *
630  * Returns the address space index specifying the CPU AddressSpace
631  * to use for a memory access with the given transaction attributes.
632  */
633 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
634 {
635     CPUClass *cc = CPU_GET_CLASS(cpu);
636     int ret = 0;
637 
638     if (cc->asidx_from_attrs) {
639         ret = cc->asidx_from_attrs(cpu, attrs);
640         assert(ret < cpu->num_ases && ret >= 0);
641     }
642     return ret;
643 }
644 #endif
645 
646 /**
647  * cpu_list_add:
648  * @cpu: The CPU to be added to the list of CPUs.
649  */
650 void cpu_list_add(CPUState *cpu);
651 
652 /**
653  * cpu_list_remove:
654  * @cpu: The CPU to be removed from the list of CPUs.
655  */
656 void cpu_list_remove(CPUState *cpu);
657 
658 /**
659  * cpu_reset:
660  * @cpu: The CPU whose state is to be reset.
661  */
662 void cpu_reset(CPUState *cpu);
663 
664 /**
665  * cpu_class_by_name:
666  * @typename: The CPU base type.
667  * @cpu_model: The model string without any parameters.
668  *
669  * Looks up a CPU #ObjectClass matching name @cpu_model.
670  *
671  * Returns: A #CPUClass or %NULL if not matching class is found.
672  */
673 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
674 
675 /**
676  * cpu_create:
677  * @typename: The CPU type.
678  *
679  * Instantiates a CPU and realizes the CPU.
680  *
681  * Returns: A #CPUState or %NULL if an error occurred.
682  */
683 CPUState *cpu_create(const char *typename);
684 
685 /**
686  * parse_cpu_option:
687  * @cpu_option: The -cpu option including optional parameters.
688  *
689  * processes optional parameters and registers them as global properties
690  *
691  * Returns: type of CPU to create or prints error and terminates process
692  *          if an error occurred.
693  */
694 const char *parse_cpu_option(const char *cpu_option);
695 
696 /**
697  * cpu_has_work:
698  * @cpu: The vCPU to check.
699  *
700  * Checks whether the CPU has work to do.
701  *
702  * Returns: %true if the CPU has work, %false otherwise.
703  */
704 static inline bool cpu_has_work(CPUState *cpu)
705 {
706     CPUClass *cc = CPU_GET_CLASS(cpu);
707 
708     g_assert(cc->has_work);
709     return cc->has_work(cpu);
710 }
711 
712 /**
713  * qemu_cpu_is_self:
714  * @cpu: The vCPU to check against.
715  *
716  * Checks whether the caller is executing on the vCPU thread.
717  *
718  * Returns: %true if called from @cpu's thread, %false otherwise.
719  */
720 bool qemu_cpu_is_self(CPUState *cpu);
721 
722 /**
723  * qemu_cpu_kick:
724  * @cpu: The vCPU to kick.
725  *
726  * Kicks @cpu's thread.
727  */
728 void qemu_cpu_kick(CPUState *cpu);
729 
730 /**
731  * cpu_is_stopped:
732  * @cpu: The CPU to check.
733  *
734  * Checks whether the CPU is stopped.
735  *
736  * Returns: %true if run state is not running or if artificially stopped;
737  * %false otherwise.
738  */
739 bool cpu_is_stopped(CPUState *cpu);
740 
741 /**
742  * do_run_on_cpu:
743  * @cpu: The vCPU to run on.
744  * @func: The function to be executed.
745  * @data: Data to pass to the function.
746  * @mutex: Mutex to release while waiting for @func to run.
747  *
748  * Used internally in the implementation of run_on_cpu.
749  */
750 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
751                    QemuMutex *mutex);
752 
753 /**
754  * run_on_cpu:
755  * @cpu: The vCPU to run on.
756  * @func: The function to be executed.
757  * @data: Data to pass to the function.
758  *
759  * Schedules the function @func for execution on the vCPU @cpu.
760  */
761 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
762 
763 /**
764  * async_run_on_cpu:
765  * @cpu: The vCPU to run on.
766  * @func: The function to be executed.
767  * @data: Data to pass to the function.
768  *
769  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
770  */
771 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
772 
773 /**
774  * async_safe_run_on_cpu:
775  * @cpu: The vCPU to run on.
776  * @func: The function to be executed.
777  * @data: Data to pass to the function.
778  *
779  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
780  * while all other vCPUs are sleeping.
781  *
782  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
783  * BQL.
784  */
785 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
786 
787 /**
788  * cpu_in_exclusive_context()
789  * @cpu: The vCPU to check
790  *
791  * Returns true if @cpu is an exclusive context, for example running
792  * something which has previously been queued via async_safe_run_on_cpu().
793  */
794 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
795 {
796     return cpu->in_exclusive_context;
797 }
798 
799 /**
800  * qemu_get_cpu:
801  * @index: The CPUState@cpu_index value of the CPU to obtain.
802  *
803  * Gets a CPU matching @index.
804  *
805  * Returns: The CPU or %NULL if there is no matching CPU.
806  */
807 CPUState *qemu_get_cpu(int index);
808 
809 /**
810  * cpu_exists:
811  * @id: Guest-exposed CPU ID to lookup.
812  *
813  * Search for CPU with specified ID.
814  *
815  * Returns: %true - CPU is found, %false - CPU isn't found.
816  */
817 bool cpu_exists(int64_t id);
818 
819 /**
820  * cpu_by_arch_id:
821  * @id: Guest-exposed CPU ID of the CPU to obtain.
822  *
823  * Get a CPU with matching @id.
824  *
825  * Returns: The CPU or %NULL if there is no matching CPU.
826  */
827 CPUState *cpu_by_arch_id(int64_t id);
828 
829 /**
830  * cpu_throttle_set:
831  * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
832  *
833  * Throttles all vcpus by forcing them to sleep for the given percentage of
834  * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
835  * (example: 10ms sleep for every 30ms awake).
836  *
837  * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
838  * Once the throttling starts, it will remain in effect until cpu_throttle_stop
839  * is called.
840  */
841 void cpu_throttle_set(int new_throttle_pct);
842 
843 /**
844  * cpu_throttle_stop:
845  *
846  * Stops the vcpu throttling started by cpu_throttle_set.
847  */
848 void cpu_throttle_stop(void);
849 
850 /**
851  * cpu_throttle_active:
852  *
853  * Returns: %true if the vcpus are currently being throttled, %false otherwise.
854  */
855 bool cpu_throttle_active(void);
856 
857 /**
858  * cpu_throttle_get_percentage:
859  *
860  * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
861  *
862  * Returns: The throttle percentage in range 1 to 99.
863  */
864 int cpu_throttle_get_percentage(void);
865 
866 #ifndef CONFIG_USER_ONLY
867 
868 typedef void (*CPUInterruptHandler)(CPUState *, int);
869 
870 extern CPUInterruptHandler cpu_interrupt_handler;
871 
872 /**
873  * cpu_interrupt:
874  * @cpu: The CPU to set an interrupt on.
875  * @mask: The interrupts to set.
876  *
877  * Invokes the interrupt handler.
878  */
879 static inline void cpu_interrupt(CPUState *cpu, int mask)
880 {
881     cpu_interrupt_handler(cpu, mask);
882 }
883 
884 #else /* USER_ONLY */
885 
886 void cpu_interrupt(CPUState *cpu, int mask);
887 
888 #endif /* USER_ONLY */
889 
890 #ifdef NEED_CPU_H
891 
892 #ifdef CONFIG_SOFTMMU
893 static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
894                                          bool is_write, bool is_exec,
895                                          int opaque, unsigned size)
896 {
897     CPUClass *cc = CPU_GET_CLASS(cpu);
898 
899     if (cc->do_unassigned_access) {
900         cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
901     }
902 }
903 
904 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
905                                         MMUAccessType access_type,
906                                         int mmu_idx, uintptr_t retaddr)
907 {
908     CPUClass *cc = CPU_GET_CLASS(cpu);
909 
910     cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
911 }
912 
913 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
914                                           vaddr addr, unsigned size,
915                                           MMUAccessType access_type,
916                                           int mmu_idx, MemTxAttrs attrs,
917                                           MemTxResult response,
918                                           uintptr_t retaddr)
919 {
920     CPUClass *cc = CPU_GET_CLASS(cpu);
921 
922     if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
923         cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
924                                   mmu_idx, attrs, response, retaddr);
925     }
926 }
927 #endif
928 
929 #endif /* NEED_CPU_H */
930 
931 /**
932  * cpu_set_pc:
933  * @cpu: The CPU to set the program counter for.
934  * @addr: Program counter value.
935  *
936  * Sets the program counter for a CPU.
937  */
938 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
939 {
940     CPUClass *cc = CPU_GET_CLASS(cpu);
941 
942     cc->set_pc(cpu, addr);
943 }
944 
945 /**
946  * cpu_reset_interrupt:
947  * @cpu: The CPU to clear the interrupt on.
948  * @mask: The interrupt mask to clear.
949  *
950  * Resets interrupts on the vCPU @cpu.
951  */
952 void cpu_reset_interrupt(CPUState *cpu, int mask);
953 
954 /**
955  * cpu_exit:
956  * @cpu: The CPU to exit.
957  *
958  * Requests the CPU @cpu to exit execution.
959  */
960 void cpu_exit(CPUState *cpu);
961 
962 /**
963  * cpu_resume:
964  * @cpu: The CPU to resume.
965  *
966  * Resumes CPU, i.e. puts CPU into runnable state.
967  */
968 void cpu_resume(CPUState *cpu);
969 
970 /**
971  * cpu_remove:
972  * @cpu: The CPU to remove.
973  *
974  * Requests the CPU to be removed.
975  */
976 void cpu_remove(CPUState *cpu);
977 
978  /**
979  * cpu_remove_sync:
980  * @cpu: The CPU to remove.
981  *
982  * Requests the CPU to be removed and waits till it is removed.
983  */
984 void cpu_remove_sync(CPUState *cpu);
985 
986 /**
987  * process_queued_cpu_work() - process all items on CPU work queue
988  * @cpu: The CPU which work queue to process.
989  */
990 void process_queued_cpu_work(CPUState *cpu);
991 
992 /**
993  * cpu_exec_start:
994  * @cpu: The CPU for the current thread.
995  *
996  * Record that a CPU has started execution and can be interrupted with
997  * cpu_exit.
998  */
999 void cpu_exec_start(CPUState *cpu);
1000 
1001 /**
1002  * cpu_exec_end:
1003  * @cpu: The CPU for the current thread.
1004  *
1005  * Record that a CPU has stopped execution and exclusive sections
1006  * can be executed without interrupting it.
1007  */
1008 void cpu_exec_end(CPUState *cpu);
1009 
1010 /**
1011  * start_exclusive:
1012  *
1013  * Wait for a concurrent exclusive section to end, and then start
1014  * a section of work that is run while other CPUs are not running
1015  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1016  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1017  * during the exclusive section go to sleep until this CPU calls
1018  * end_exclusive.
1019  */
1020 void start_exclusive(void);
1021 
1022 /**
1023  * end_exclusive:
1024  *
1025  * Concludes an exclusive execution section started by start_exclusive.
1026  */
1027 void end_exclusive(void);
1028 
1029 /**
1030  * qemu_init_vcpu:
1031  * @cpu: The vCPU to initialize.
1032  *
1033  * Initializes a vCPU.
1034  */
1035 void qemu_init_vcpu(CPUState *cpu);
1036 
1037 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1038 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1039 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1040 
1041 /**
1042  * cpu_single_step:
1043  * @cpu: CPU to the flags for.
1044  * @enabled: Flags to enable.
1045  *
1046  * Enables or disables single-stepping for @cpu.
1047  */
1048 void cpu_single_step(CPUState *cpu, int enabled);
1049 
1050 /* Breakpoint/watchpoint flags */
1051 #define BP_MEM_READ           0x01
1052 #define BP_MEM_WRITE          0x02
1053 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1054 #define BP_STOP_BEFORE_ACCESS 0x04
1055 /* 0x08 currently unused */
1056 #define BP_GDB                0x10
1057 #define BP_CPU                0x20
1058 #define BP_ANY                (BP_GDB | BP_CPU)
1059 #define BP_WATCHPOINT_HIT_READ 0x40
1060 #define BP_WATCHPOINT_HIT_WRITE 0x80
1061 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1062 
1063 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1064                           CPUBreakpoint **breakpoint);
1065 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1066 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1067 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1068 
1069 /* Return true if PC matches an installed breakpoint.  */
1070 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1071 {
1072     CPUBreakpoint *bp;
1073 
1074     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1075         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1076             if (bp->pc == pc && (bp->flags & mask)) {
1077                 return true;
1078             }
1079         }
1080     }
1081     return false;
1082 }
1083 
1084 #ifdef CONFIG_USER_ONLY
1085 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1086                                         int flags, CPUWatchpoint **watchpoint)
1087 {
1088     return -ENOSYS;
1089 }
1090 
1091 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1092                                         vaddr len, int flags)
1093 {
1094     return -ENOSYS;
1095 }
1096 
1097 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1098                                                 CPUWatchpoint *wp)
1099 {
1100 }
1101 
1102 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1103 {
1104 }
1105 
1106 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1107                                         MemTxAttrs atr, int fl, uintptr_t ra)
1108 {
1109 }
1110 
1111 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1112                                                  vaddr addr, vaddr len)
1113 {
1114     return 0;
1115 }
1116 #else
1117 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1118                           int flags, CPUWatchpoint **watchpoint);
1119 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1120                           vaddr len, int flags);
1121 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1122 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1123 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1124                           MemTxAttrs attrs, int flags, uintptr_t ra);
1125 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1126 #endif
1127 
1128 /**
1129  * cpu_get_address_space:
1130  * @cpu: CPU to get address space from
1131  * @asidx: index identifying which address space to get
1132  *
1133  * Return the requested address space of this CPU. @asidx
1134  * specifies which address space to read.
1135  */
1136 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1137 
1138 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1139     GCC_FMT_ATTR(2, 3);
1140 extern Property cpu_common_props[];
1141 void cpu_exec_initfn(CPUState *cpu);
1142 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1143 void cpu_exec_unrealizefn(CPUState *cpu);
1144 
1145 /**
1146  * target_words_bigendian:
1147  * Returns true if the (default) endianness of the target is big endian,
1148  * false otherwise. Note that in target-specific code, you can use
1149  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1150  * code should normally never need to know about the endianness of the
1151  * target, so please do *not* use this function unless you know very well
1152  * what you are doing!
1153  */
1154 bool target_words_bigendian(void);
1155 
1156 #ifdef NEED_CPU_H
1157 
1158 #ifdef CONFIG_SOFTMMU
1159 extern const VMStateDescription vmstate_cpu_common;
1160 #else
1161 #define vmstate_cpu_common vmstate_dummy
1162 #endif
1163 
1164 #define VMSTATE_CPU() {                                                     \
1165     .name = "parent_obj",                                                   \
1166     .size = sizeof(CPUState),                                               \
1167     .vmsd = &vmstate_cpu_common,                                            \
1168     .flags = VMS_STRUCT,                                                    \
1169     .offset = 0,                                                            \
1170 }
1171 
1172 #endif /* NEED_CPU_H */
1173 
1174 #define UNASSIGNED_CPU_INDEX -1
1175 #define UNASSIGNED_CLUSTER_INDEX -1
1176 
1177 #endif
1178