xref: /openbmc/qemu/include/hw/core/cpu.h (revision ce7cdebd)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 
34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
35                                      void *opaque);
36 
37 /**
38  * vaddr:
39  * Type wide enough to contain any #target_ulong virtual address.
40  */
41 typedef uint64_t vaddr;
42 #define VADDR_PRId PRId64
43 #define VADDR_PRIu PRIu64
44 #define VADDR_PRIo PRIo64
45 #define VADDR_PRIx PRIx64
46 #define VADDR_PRIX PRIX64
47 #define VADDR_MAX UINT64_MAX
48 
49 /**
50  * SECTION:cpu
51  * @section_id: QEMU-cpu
52  * @title: CPU Class
53  * @short_description: Base class for all CPUs
54  */
55 
56 #define TYPE_CPU "cpu"
57 
58 /* Since this macro is used a lot in hot code paths and in conjunction with
59  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
60  * an unchecked cast.
61  */
62 #define CPU(obj) ((CPUState *)(obj))
63 
64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
66 
67 typedef enum MMUAccessType {
68     MMU_DATA_LOAD  = 0,
69     MMU_DATA_STORE = 1,
70     MMU_INST_FETCH = 2
71 } MMUAccessType;
72 
73 typedef struct CPUWatchpoint CPUWatchpoint;
74 
75 struct TranslationBlock;
76 
77 /**
78  * CPUClass:
79  * @class_by_name: Callback to map -cpu command line model name to an
80  * instantiatable CPU type.
81  * @parse_features: Callback to parse command line arguments.
82  * @reset: Callback to reset the #CPUState to its initial state.
83  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
84  * @has_work: Callback for checking if there is work to do.
85  * @do_interrupt: Callback for interrupt handling.
86  * @do_unaligned_access: Callback for unaligned access handling, if
87  * the target defines #TARGET_ALIGNED_ONLY.
88  * @do_transaction_failed: Callback for handling failed memory transactions
89  * (ie bus faults or external aborts; not MMU faults)
90  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
91  * runtime configurable endianness is currently big-endian. Non-configurable
92  * CPUs can use the default implementation of this method. This method should
93  * not be used by any callers other than the pre-1.0 virtio devices.
94  * @memory_rw_debug: Callback for GDB memory access.
95  * @dump_state: Callback for dumping state.
96  * @dump_statistics: Callback for dumping statistics.
97  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
98  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
99  * @get_memory_mapping: Callback for obtaining the memory mappings.
100  * @set_pc: Callback for setting the Program Counter register. This
101  *       should have the semantics used by the target architecture when
102  *       setting the PC from a source such as an ELF file entry point;
103  *       for example on Arm it will also set the Thumb mode bit based
104  *       on the least significant bit of the new PC value.
105  *       If the target behaviour here is anything other than "set
106  *       the PC register to the value passed in" then the target must
107  *       also implement the synchronize_from_tb hook.
108  * @synchronize_from_tb: Callback for synchronizing state from a TCG
109  *       #TranslationBlock. This is called when we abandon execution
110  *       of a TB before starting it, and must set all parts of the CPU
111  *       state which the previous TB in the chain may not have updated.
112  *       This always includes at least the program counter; some targets
113  *       will need to do more. If this hook is not implemented then the
114  *       default is to call @set_pc(tb->pc).
115  * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
116  *       address fault.  For system mode, if the access is valid, call
117  *       tlb_set_page and return true; if the access is invalid, and
118  *       probe is true, return false; otherwise raise an exception and
119  *       do not return.  For user-only mode, always raise an exception
120  *       and do not return.
121  * @get_phys_page_debug: Callback for obtaining a physical address.
122  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
123  *       associated memory transaction attributes to use for the access.
124  *       CPUs which use memory transaction attributes should implement this
125  *       instead of get_phys_page_debug.
126  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
127  *       a memory access with the specified memory transaction attributes.
128  * @gdb_read_register: Callback for letting GDB read a register.
129  * @gdb_write_register: Callback for letting GDB write a register.
130  * @debug_check_watchpoint: Callback: return true if the architectural
131  *       watchpoint whose address has matched should really fire.
132  * @debug_excp_handler: Callback for handling debug exceptions.
133  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
134  * 64-bit VM coredump.
135  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
136  * note to a 32-bit VM coredump.
137  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
138  * 32-bit VM coredump.
139  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
140  * note to a 32-bit VM coredump.
141  * @vmsd: State description for migration.
142  * @gdb_num_core_regs: Number of core registers accessible to GDB.
143  * @gdb_core_xml_file: File name for core registers GDB XML description.
144  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
145  *           before the insn which triggers a watchpoint rather than after it.
146  * @gdb_arch_name: Optional callback that returns the architecture name known
147  * to GDB. The caller must free the returned string with g_free.
148  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
149  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
150  *   or NULL if the CPU doesn't have a dynamically generated content for it.
151  * @cpu_exec_enter: Callback for cpu_exec preparation.
152  * @cpu_exec_exit: Callback for cpu_exec cleanup.
153  * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
154  * @disas_set_info: Setup architecture specific components of disassembly info
155  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
156  * address before attempting to match it against watchpoints.
157  *
158  * Represents a CPU family or model.
159  */
160 typedef struct CPUClass {
161     /*< private >*/
162     DeviceClass parent_class;
163     /*< public >*/
164 
165     ObjectClass *(*class_by_name)(const char *cpu_model);
166     void (*parse_features)(const char *typename, char *str, Error **errp);
167 
168     void (*reset)(CPUState *cpu);
169     int reset_dump_flags;
170     bool (*has_work)(CPUState *cpu);
171     void (*do_interrupt)(CPUState *cpu);
172     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
173                                 MMUAccessType access_type,
174                                 int mmu_idx, uintptr_t retaddr);
175     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
176                                   unsigned size, MMUAccessType access_type,
177                                   int mmu_idx, MemTxAttrs attrs,
178                                   MemTxResult response, uintptr_t retaddr);
179     bool (*virtio_is_big_endian)(CPUState *cpu);
180     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
181                            uint8_t *buf, int len, bool is_write);
182     void (*dump_state)(CPUState *cpu, FILE *, int flags);
183     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
184     void (*dump_statistics)(CPUState *cpu, int flags);
185     int64_t (*get_arch_id)(CPUState *cpu);
186     bool (*get_paging_enabled)(const CPUState *cpu);
187     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
188                                Error **errp);
189     void (*set_pc)(CPUState *cpu, vaddr value);
190     void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
191     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
192                      MMUAccessType access_type, int mmu_idx,
193                      bool probe, uintptr_t retaddr);
194     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
195     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
196                                         MemTxAttrs *attrs);
197     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
198     int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
199     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
200     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
201     void (*debug_excp_handler)(CPUState *cpu);
202 
203     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
204                             int cpuid, void *opaque);
205     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
206                                 void *opaque);
207     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
208                             int cpuid, void *opaque);
209     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
210                                 void *opaque);
211 
212     const VMStateDescription *vmsd;
213     const char *gdb_core_xml_file;
214     gchar * (*gdb_arch_name)(CPUState *cpu);
215     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
216     void (*cpu_exec_enter)(CPUState *cpu);
217     void (*cpu_exec_exit)(CPUState *cpu);
218     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
219 
220     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
221     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
222     void (*tcg_initialize)(void);
223 
224     /* Keep non-pointer data at the end to minimize holes.  */
225     int gdb_num_core_regs;
226     bool gdb_stop_before_watchpoint;
227 } CPUClass;
228 
229 /*
230  * Low 16 bits: number of cycles left, used only in icount mode.
231  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
232  * for this CPU and return to its top level loop (even in non-icount mode).
233  * This allows a single read-compare-cbranch-write sequence to test
234  * for both decrementer underflow and exceptions.
235  */
236 typedef union IcountDecr {
237     uint32_t u32;
238     struct {
239 #ifdef HOST_WORDS_BIGENDIAN
240         uint16_t high;
241         uint16_t low;
242 #else
243         uint16_t low;
244         uint16_t high;
245 #endif
246     } u16;
247 } IcountDecr;
248 
249 typedef struct CPUBreakpoint {
250     vaddr pc;
251     int flags; /* BP_* */
252     QTAILQ_ENTRY(CPUBreakpoint) entry;
253 } CPUBreakpoint;
254 
255 struct CPUWatchpoint {
256     vaddr vaddr;
257     vaddr len;
258     vaddr hitaddr;
259     MemTxAttrs hitattrs;
260     int flags; /* BP_* */
261     QTAILQ_ENTRY(CPUWatchpoint) entry;
262 };
263 
264 struct KVMState;
265 struct kvm_run;
266 
267 struct hax_vcpu_state;
268 
269 #define TB_JMP_CACHE_BITS 12
270 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
271 
272 /* work queue */
273 
274 /* The union type allows passing of 64 bit target pointers on 32 bit
275  * hosts in a single parameter
276  */
277 typedef union {
278     int           host_int;
279     unsigned long host_ulong;
280     void         *host_ptr;
281     vaddr         target_ptr;
282 } run_on_cpu_data;
283 
284 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
285 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
286 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
287 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
288 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
289 
290 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
291 
292 struct qemu_work_item;
293 
294 #define CPU_UNSET_NUMA_NODE_ID -1
295 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
296 
297 /**
298  * CPUState:
299  * @cpu_index: CPU index (informative).
300  * @cluster_index: Identifies which cluster this CPU is in.
301  *   For boards which don't define clusters or for "loose" CPUs not assigned
302  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
303  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
304  *   QOM parent.
305  * @nr_cores: Number of cores within this CPU package.
306  * @nr_threads: Number of threads within this CPU.
307  * @running: #true if CPU is currently running (lockless).
308  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
309  * valid under cpu_list_lock.
310  * @created: Indicates whether the CPU thread has been successfully created.
311  * @interrupt_request: Indicates a pending interrupt request.
312  * @halted: Nonzero if the CPU is in suspended state.
313  * @stop: Indicates a pending stop request.
314  * @stopped: Indicates the CPU has been artificially stopped.
315  * @unplug: Indicates a pending CPU unplug request.
316  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
317  * @singlestep_enabled: Flags for single-stepping.
318  * @icount_extra: Instructions until next timer event.
319  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
320  * requires that IO only be performed on the last instruction of a TB
321  * so that interrupts take effect immediately.
322  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
323  *            AddressSpaces this CPU has)
324  * @num_ases: number of CPUAddressSpaces in @cpu_ases
325  * @as: Pointer to the first AddressSpace, for the convenience of targets which
326  *      only have a single AddressSpace
327  * @env_ptr: Pointer to subclass-specific CPUArchState field.
328  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
329  * @gdb_regs: Additional GDB registers.
330  * @gdb_num_regs: Number of total registers accessible to GDB.
331  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
332  * @next_cpu: Next CPU sharing TB cache.
333  * @opaque: User data.
334  * @mem_io_pc: Host Program Counter at which the memory was accessed.
335  * @kvm_fd: vCPU file descriptor for KVM.
336  * @work_mutex: Lock to prevent multiple access to queued_work_*.
337  * @queued_work_first: First asynchronous work pending.
338  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
339  *                        to @trace_dstate).
340  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
341  * @plugin_mask: Plugin event bitmap. Modified only via async work.
342  * @ignore_memory_transaction_failures: Cached copy of the MachineState
343  *    flag of the same name: allows the board to suppress calling of the
344  *    CPU do_transaction_failed hook function.
345  *
346  * State of one CPU core or thread.
347  */
348 struct CPUState {
349     /*< private >*/
350     DeviceState parent_obj;
351     /*< public >*/
352 
353     int nr_cores;
354     int nr_threads;
355 
356     struct QemuThread *thread;
357 #ifdef _WIN32
358     HANDLE hThread;
359 #endif
360     int thread_id;
361     bool running, has_waiter;
362     struct QemuCond *halt_cond;
363     bool thread_kicked;
364     bool created;
365     bool stop;
366     bool stopped;
367     bool unplug;
368     bool crash_occurred;
369     bool exit_request;
370     bool in_exclusive_context;
371     uint32_t cflags_next_tb;
372     /* updates protected by BQL */
373     uint32_t interrupt_request;
374     int singlestep_enabled;
375     int64_t icount_budget;
376     int64_t icount_extra;
377     uint64_t random_seed;
378     sigjmp_buf jmp_env;
379 
380     QemuMutex work_mutex;
381     struct qemu_work_item *queued_work_first, *queued_work_last;
382 
383     CPUAddressSpace *cpu_ases;
384     int num_ases;
385     AddressSpace *as;
386     MemoryRegion *memory;
387 
388     void *env_ptr; /* CPUArchState */
389     IcountDecr *icount_decr_ptr;
390 
391     /* Accessed in parallel; all accesses must be atomic */
392     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
393 
394     struct GDBRegisterState *gdb_regs;
395     int gdb_num_regs;
396     int gdb_num_g_regs;
397     QTAILQ_ENTRY(CPUState) node;
398 
399     /* ice debug support */
400     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
401 
402     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
403     CPUWatchpoint *watchpoint_hit;
404 
405     void *opaque;
406 
407     /* In order to avoid passing too many arguments to the MMIO helpers,
408      * we store some rarely used information in the CPU context.
409      */
410     uintptr_t mem_io_pc;
411 
412     int kvm_fd;
413     struct KVMState *kvm_state;
414     struct kvm_run *kvm_run;
415 
416     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
417     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
418     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
419 
420     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
421 
422     GArray *plugin_mem_cbs;
423 
424     /* TODO Move common fields from CPUArchState here. */
425     int cpu_index;
426     int cluster_index;
427     uint32_t halted;
428     uint32_t can_do_io;
429     int32_t exception_index;
430 
431     /* shared by kvm, hax and hvf */
432     bool vcpu_dirty;
433 
434     /* Used to keep track of an outstanding cpu throttle thread for migration
435      * autoconverge
436      */
437     bool throttle_thread_scheduled;
438 
439     bool ignore_memory_transaction_failures;
440 
441     struct hax_vcpu_state *hax_vcpu;
442 
443     int hvf_fd;
444 
445     /* track IOMMUs whose translations we've cached in the TCG TLB */
446     GArray *iommu_notifiers;
447 };
448 
449 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
450 extern CPUTailQ cpus;
451 
452 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
453 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
454 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
455 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
456     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
457 
458 extern __thread CPUState *current_cpu;
459 
460 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
461 {
462     unsigned int i;
463 
464     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
465         atomic_set(&cpu->tb_jmp_cache[i], NULL);
466     }
467 }
468 
469 /**
470  * qemu_tcg_mttcg_enabled:
471  * Check whether we are running MultiThread TCG or not.
472  *
473  * Returns: %true if we are in MTTCG mode %false otherwise.
474  */
475 extern bool mttcg_enabled;
476 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
477 
478 /**
479  * cpu_paging_enabled:
480  * @cpu: The CPU whose state is to be inspected.
481  *
482  * Returns: %true if paging is enabled, %false otherwise.
483  */
484 bool cpu_paging_enabled(const CPUState *cpu);
485 
486 /**
487  * cpu_get_memory_mapping:
488  * @cpu: The CPU whose memory mappings are to be obtained.
489  * @list: Where to write the memory mappings to.
490  * @errp: Pointer for reporting an #Error.
491  */
492 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
493                             Error **errp);
494 
495 /**
496  * cpu_write_elf64_note:
497  * @f: pointer to a function that writes memory to a file
498  * @cpu: The CPU whose memory is to be dumped
499  * @cpuid: ID number of the CPU
500  * @opaque: pointer to the CPUState struct
501  */
502 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
503                          int cpuid, void *opaque);
504 
505 /**
506  * cpu_write_elf64_qemunote:
507  * @f: pointer to a function that writes memory to a file
508  * @cpu: The CPU whose memory is to be dumped
509  * @cpuid: ID number of the CPU
510  * @opaque: pointer to the CPUState struct
511  */
512 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
513                              void *opaque);
514 
515 /**
516  * cpu_write_elf32_note:
517  * @f: pointer to a function that writes memory to a file
518  * @cpu: The CPU whose memory is to be dumped
519  * @cpuid: ID number of the CPU
520  * @opaque: pointer to the CPUState struct
521  */
522 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
523                          int cpuid, void *opaque);
524 
525 /**
526  * cpu_write_elf32_qemunote:
527  * @f: pointer to a function that writes memory to a file
528  * @cpu: The CPU whose memory is to be dumped
529  * @cpuid: ID number of the CPU
530  * @opaque: pointer to the CPUState struct
531  */
532 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
533                              void *opaque);
534 
535 /**
536  * cpu_get_crash_info:
537  * @cpu: The CPU to get crash information for
538  *
539  * Gets the previously saved crash information.
540  * Caller is responsible for freeing the data.
541  */
542 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
543 
544 /**
545  * CPUDumpFlags:
546  * @CPU_DUMP_CODE:
547  * @CPU_DUMP_FPU: dump FPU register state, not just integer
548  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
549  */
550 enum CPUDumpFlags {
551     CPU_DUMP_CODE = 0x00010000,
552     CPU_DUMP_FPU  = 0x00020000,
553     CPU_DUMP_CCOP = 0x00040000,
554 };
555 
556 /**
557  * cpu_dump_state:
558  * @cpu: The CPU whose state is to be dumped.
559  * @f: If non-null, dump to this stream, else to current print sink.
560  *
561  * Dumps CPU state.
562  */
563 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
564 
565 /**
566  * cpu_dump_statistics:
567  * @cpu: The CPU whose state is to be dumped.
568  * @flags: Flags what to dump.
569  *
570  * Dump CPU statistics to the current monitor if we have one, else to
571  * stdout.
572  */
573 void cpu_dump_statistics(CPUState *cpu, int flags);
574 
575 #ifndef CONFIG_USER_ONLY
576 /**
577  * cpu_get_phys_page_attrs_debug:
578  * @cpu: The CPU to obtain the physical page address for.
579  * @addr: The virtual address.
580  * @attrs: Updated on return with the memory transaction attributes to use
581  *         for this access.
582  *
583  * Obtains the physical page corresponding to a virtual one, together
584  * with the corresponding memory transaction attributes to use for the access.
585  * Use it only for debugging because no protection checks are done.
586  *
587  * Returns: Corresponding physical page address or -1 if no page found.
588  */
589 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
590                                                    MemTxAttrs *attrs)
591 {
592     CPUClass *cc = CPU_GET_CLASS(cpu);
593 
594     if (cc->get_phys_page_attrs_debug) {
595         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
596     }
597     /* Fallback for CPUs which don't implement the _attrs_ hook */
598     *attrs = MEMTXATTRS_UNSPECIFIED;
599     return cc->get_phys_page_debug(cpu, addr);
600 }
601 
602 /**
603  * cpu_get_phys_page_debug:
604  * @cpu: The CPU to obtain the physical page address for.
605  * @addr: The virtual address.
606  *
607  * Obtains the physical page corresponding to a virtual one.
608  * Use it only for debugging because no protection checks are done.
609  *
610  * Returns: Corresponding physical page address or -1 if no page found.
611  */
612 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
613 {
614     MemTxAttrs attrs = {};
615 
616     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
617 }
618 
619 /** cpu_asidx_from_attrs:
620  * @cpu: CPU
621  * @attrs: memory transaction attributes
622  *
623  * Returns the address space index specifying the CPU AddressSpace
624  * to use for a memory access with the given transaction attributes.
625  */
626 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
627 {
628     CPUClass *cc = CPU_GET_CLASS(cpu);
629     int ret = 0;
630 
631     if (cc->asidx_from_attrs) {
632         ret = cc->asidx_from_attrs(cpu, attrs);
633         assert(ret < cpu->num_ases && ret >= 0);
634     }
635     return ret;
636 }
637 #endif
638 
639 /**
640  * cpu_list_add:
641  * @cpu: The CPU to be added to the list of CPUs.
642  */
643 void cpu_list_add(CPUState *cpu);
644 
645 /**
646  * cpu_list_remove:
647  * @cpu: The CPU to be removed from the list of CPUs.
648  */
649 void cpu_list_remove(CPUState *cpu);
650 
651 /**
652  * cpu_reset:
653  * @cpu: The CPU whose state is to be reset.
654  */
655 void cpu_reset(CPUState *cpu);
656 
657 /**
658  * cpu_class_by_name:
659  * @typename: The CPU base type.
660  * @cpu_model: The model string without any parameters.
661  *
662  * Looks up a CPU #ObjectClass matching name @cpu_model.
663  *
664  * Returns: A #CPUClass or %NULL if not matching class is found.
665  */
666 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
667 
668 /**
669  * cpu_create:
670  * @typename: The CPU type.
671  *
672  * Instantiates a CPU and realizes the CPU.
673  *
674  * Returns: A #CPUState or %NULL if an error occurred.
675  */
676 CPUState *cpu_create(const char *typename);
677 
678 /**
679  * parse_cpu_option:
680  * @cpu_option: The -cpu option including optional parameters.
681  *
682  * processes optional parameters and registers them as global properties
683  *
684  * Returns: type of CPU to create or prints error and terminates process
685  *          if an error occurred.
686  */
687 const char *parse_cpu_option(const char *cpu_option);
688 
689 /**
690  * cpu_has_work:
691  * @cpu: The vCPU to check.
692  *
693  * Checks whether the CPU has work to do.
694  *
695  * Returns: %true if the CPU has work, %false otherwise.
696  */
697 static inline bool cpu_has_work(CPUState *cpu)
698 {
699     CPUClass *cc = CPU_GET_CLASS(cpu);
700 
701     g_assert(cc->has_work);
702     return cc->has_work(cpu);
703 }
704 
705 /**
706  * qemu_cpu_is_self:
707  * @cpu: The vCPU to check against.
708  *
709  * Checks whether the caller is executing on the vCPU thread.
710  *
711  * Returns: %true if called from @cpu's thread, %false otherwise.
712  */
713 bool qemu_cpu_is_self(CPUState *cpu);
714 
715 /**
716  * qemu_cpu_kick:
717  * @cpu: The vCPU to kick.
718  *
719  * Kicks @cpu's thread.
720  */
721 void qemu_cpu_kick(CPUState *cpu);
722 
723 /**
724  * cpu_is_stopped:
725  * @cpu: The CPU to check.
726  *
727  * Checks whether the CPU is stopped.
728  *
729  * Returns: %true if run state is not running or if artificially stopped;
730  * %false otherwise.
731  */
732 bool cpu_is_stopped(CPUState *cpu);
733 
734 /**
735  * do_run_on_cpu:
736  * @cpu: The vCPU to run on.
737  * @func: The function to be executed.
738  * @data: Data to pass to the function.
739  * @mutex: Mutex to release while waiting for @func to run.
740  *
741  * Used internally in the implementation of run_on_cpu.
742  */
743 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
744                    QemuMutex *mutex);
745 
746 /**
747  * run_on_cpu:
748  * @cpu: The vCPU to run on.
749  * @func: The function to be executed.
750  * @data: Data to pass to the function.
751  *
752  * Schedules the function @func for execution on the vCPU @cpu.
753  */
754 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
755 
756 /**
757  * async_run_on_cpu:
758  * @cpu: The vCPU to run on.
759  * @func: The function to be executed.
760  * @data: Data to pass to the function.
761  *
762  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
763  */
764 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
765 
766 /**
767  * async_safe_run_on_cpu:
768  * @cpu: The vCPU to run on.
769  * @func: The function to be executed.
770  * @data: Data to pass to the function.
771  *
772  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
773  * while all other vCPUs are sleeping.
774  *
775  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
776  * BQL.
777  */
778 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
779 
780 /**
781  * cpu_in_exclusive_context()
782  * @cpu: The vCPU to check
783  *
784  * Returns true if @cpu is an exclusive context, for example running
785  * something which has previously been queued via async_safe_run_on_cpu().
786  */
787 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
788 {
789     return cpu->in_exclusive_context;
790 }
791 
792 /**
793  * qemu_get_cpu:
794  * @index: The CPUState@cpu_index value of the CPU to obtain.
795  *
796  * Gets a CPU matching @index.
797  *
798  * Returns: The CPU or %NULL if there is no matching CPU.
799  */
800 CPUState *qemu_get_cpu(int index);
801 
802 /**
803  * cpu_exists:
804  * @id: Guest-exposed CPU ID to lookup.
805  *
806  * Search for CPU with specified ID.
807  *
808  * Returns: %true - CPU is found, %false - CPU isn't found.
809  */
810 bool cpu_exists(int64_t id);
811 
812 /**
813  * cpu_by_arch_id:
814  * @id: Guest-exposed CPU ID of the CPU to obtain.
815  *
816  * Get a CPU with matching @id.
817  *
818  * Returns: The CPU or %NULL if there is no matching CPU.
819  */
820 CPUState *cpu_by_arch_id(int64_t id);
821 
822 /**
823  * cpu_throttle_set:
824  * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
825  *
826  * Throttles all vcpus by forcing them to sleep for the given percentage of
827  * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
828  * (example: 10ms sleep for every 30ms awake).
829  *
830  * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
831  * Once the throttling starts, it will remain in effect until cpu_throttle_stop
832  * is called.
833  */
834 void cpu_throttle_set(int new_throttle_pct);
835 
836 /**
837  * cpu_throttle_stop:
838  *
839  * Stops the vcpu throttling started by cpu_throttle_set.
840  */
841 void cpu_throttle_stop(void);
842 
843 /**
844  * cpu_throttle_active:
845  *
846  * Returns: %true if the vcpus are currently being throttled, %false otherwise.
847  */
848 bool cpu_throttle_active(void);
849 
850 /**
851  * cpu_throttle_get_percentage:
852  *
853  * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
854  *
855  * Returns: The throttle percentage in range 1 to 99.
856  */
857 int cpu_throttle_get_percentage(void);
858 
859 #ifndef CONFIG_USER_ONLY
860 
861 typedef void (*CPUInterruptHandler)(CPUState *, int);
862 
863 extern CPUInterruptHandler cpu_interrupt_handler;
864 
865 /**
866  * cpu_interrupt:
867  * @cpu: The CPU to set an interrupt on.
868  * @mask: The interrupts to set.
869  *
870  * Invokes the interrupt handler.
871  */
872 static inline void cpu_interrupt(CPUState *cpu, int mask)
873 {
874     cpu_interrupt_handler(cpu, mask);
875 }
876 
877 #else /* USER_ONLY */
878 
879 void cpu_interrupt(CPUState *cpu, int mask);
880 
881 #endif /* USER_ONLY */
882 
883 #ifdef NEED_CPU_H
884 
885 #ifdef CONFIG_SOFTMMU
886 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
887                                         MMUAccessType access_type,
888                                         int mmu_idx, uintptr_t retaddr)
889 {
890     CPUClass *cc = CPU_GET_CLASS(cpu);
891 
892     cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
893 }
894 
895 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
896                                           vaddr addr, unsigned size,
897                                           MMUAccessType access_type,
898                                           int mmu_idx, MemTxAttrs attrs,
899                                           MemTxResult response,
900                                           uintptr_t retaddr)
901 {
902     CPUClass *cc = CPU_GET_CLASS(cpu);
903 
904     if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
905         cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
906                                   mmu_idx, attrs, response, retaddr);
907     }
908 }
909 #endif
910 
911 #endif /* NEED_CPU_H */
912 
913 /**
914  * cpu_set_pc:
915  * @cpu: The CPU to set the program counter for.
916  * @addr: Program counter value.
917  *
918  * Sets the program counter for a CPU.
919  */
920 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
921 {
922     CPUClass *cc = CPU_GET_CLASS(cpu);
923 
924     cc->set_pc(cpu, addr);
925 }
926 
927 /**
928  * cpu_reset_interrupt:
929  * @cpu: The CPU to clear the interrupt on.
930  * @mask: The interrupt mask to clear.
931  *
932  * Resets interrupts on the vCPU @cpu.
933  */
934 void cpu_reset_interrupt(CPUState *cpu, int mask);
935 
936 /**
937  * cpu_exit:
938  * @cpu: The CPU to exit.
939  *
940  * Requests the CPU @cpu to exit execution.
941  */
942 void cpu_exit(CPUState *cpu);
943 
944 /**
945  * cpu_resume:
946  * @cpu: The CPU to resume.
947  *
948  * Resumes CPU, i.e. puts CPU into runnable state.
949  */
950 void cpu_resume(CPUState *cpu);
951 
952 /**
953  * cpu_remove:
954  * @cpu: The CPU to remove.
955  *
956  * Requests the CPU to be removed.
957  */
958 void cpu_remove(CPUState *cpu);
959 
960  /**
961  * cpu_remove_sync:
962  * @cpu: The CPU to remove.
963  *
964  * Requests the CPU to be removed and waits till it is removed.
965  */
966 void cpu_remove_sync(CPUState *cpu);
967 
968 /**
969  * process_queued_cpu_work() - process all items on CPU work queue
970  * @cpu: The CPU which work queue to process.
971  */
972 void process_queued_cpu_work(CPUState *cpu);
973 
974 /**
975  * cpu_exec_start:
976  * @cpu: The CPU for the current thread.
977  *
978  * Record that a CPU has started execution and can be interrupted with
979  * cpu_exit.
980  */
981 void cpu_exec_start(CPUState *cpu);
982 
983 /**
984  * cpu_exec_end:
985  * @cpu: The CPU for the current thread.
986  *
987  * Record that a CPU has stopped execution and exclusive sections
988  * can be executed without interrupting it.
989  */
990 void cpu_exec_end(CPUState *cpu);
991 
992 /**
993  * start_exclusive:
994  *
995  * Wait for a concurrent exclusive section to end, and then start
996  * a section of work that is run while other CPUs are not running
997  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
998  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
999  * during the exclusive section go to sleep until this CPU calls
1000  * end_exclusive.
1001  */
1002 void start_exclusive(void);
1003 
1004 /**
1005  * end_exclusive:
1006  *
1007  * Concludes an exclusive execution section started by start_exclusive.
1008  */
1009 void end_exclusive(void);
1010 
1011 /**
1012  * qemu_init_vcpu:
1013  * @cpu: The vCPU to initialize.
1014  *
1015  * Initializes a vCPU.
1016  */
1017 void qemu_init_vcpu(CPUState *cpu);
1018 
1019 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1020 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1021 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1022 
1023 /**
1024  * cpu_single_step:
1025  * @cpu: CPU to the flags for.
1026  * @enabled: Flags to enable.
1027  *
1028  * Enables or disables single-stepping for @cpu.
1029  */
1030 void cpu_single_step(CPUState *cpu, int enabled);
1031 
1032 /* Breakpoint/watchpoint flags */
1033 #define BP_MEM_READ           0x01
1034 #define BP_MEM_WRITE          0x02
1035 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1036 #define BP_STOP_BEFORE_ACCESS 0x04
1037 /* 0x08 currently unused */
1038 #define BP_GDB                0x10
1039 #define BP_CPU                0x20
1040 #define BP_ANY                (BP_GDB | BP_CPU)
1041 #define BP_WATCHPOINT_HIT_READ 0x40
1042 #define BP_WATCHPOINT_HIT_WRITE 0x80
1043 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1044 
1045 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1046                           CPUBreakpoint **breakpoint);
1047 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1048 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1049 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1050 
1051 /* Return true if PC matches an installed breakpoint.  */
1052 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1053 {
1054     CPUBreakpoint *bp;
1055 
1056     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1057         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1058             if (bp->pc == pc && (bp->flags & mask)) {
1059                 return true;
1060             }
1061         }
1062     }
1063     return false;
1064 }
1065 
1066 #ifdef CONFIG_USER_ONLY
1067 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068                                         int flags, CPUWatchpoint **watchpoint)
1069 {
1070     return -ENOSYS;
1071 }
1072 
1073 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1074                                         vaddr len, int flags)
1075 {
1076     return -ENOSYS;
1077 }
1078 
1079 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1080                                                 CPUWatchpoint *wp)
1081 {
1082 }
1083 
1084 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1085 {
1086 }
1087 
1088 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1089                                         MemTxAttrs atr, int fl, uintptr_t ra)
1090 {
1091 }
1092 
1093 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1094                                                  vaddr addr, vaddr len)
1095 {
1096     return 0;
1097 }
1098 #else
1099 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1100                           int flags, CPUWatchpoint **watchpoint);
1101 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1102                           vaddr len, int flags);
1103 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1104 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1105 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1106                           MemTxAttrs attrs, int flags, uintptr_t ra);
1107 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1108 #endif
1109 
1110 /**
1111  * cpu_get_address_space:
1112  * @cpu: CPU to get address space from
1113  * @asidx: index identifying which address space to get
1114  *
1115  * Return the requested address space of this CPU. @asidx
1116  * specifies which address space to read.
1117  */
1118 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1119 
1120 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1121     GCC_FMT_ATTR(2, 3);
1122 extern Property cpu_common_props[];
1123 void cpu_exec_initfn(CPUState *cpu);
1124 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1125 void cpu_exec_unrealizefn(CPUState *cpu);
1126 
1127 /**
1128  * target_words_bigendian:
1129  * Returns true if the (default) endianness of the target is big endian,
1130  * false otherwise. Note that in target-specific code, you can use
1131  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1132  * code should normally never need to know about the endianness of the
1133  * target, so please do *not* use this function unless you know very well
1134  * what you are doing!
1135  */
1136 bool target_words_bigendian(void);
1137 
1138 void cpu_class_set_parent_reset(CPUClass *cc,
1139                                 void (*child_reset)(CPUState *cpu),
1140                                 void (**parent_reset)(CPUState *cpu));
1141 
1142 #ifdef NEED_CPU_H
1143 
1144 #ifdef CONFIG_SOFTMMU
1145 extern const VMStateDescription vmstate_cpu_common;
1146 #else
1147 #define vmstate_cpu_common vmstate_dummy
1148 #endif
1149 
1150 #define VMSTATE_CPU() {                                                     \
1151     .name = "parent_obj",                                                   \
1152     .size = sizeof(CPUState),                                               \
1153     .vmsd = &vmstate_cpu_common,                                            \
1154     .flags = VMS_STRUCT,                                                    \
1155     .offset = 0,                                                            \
1156 }
1157 
1158 #endif /* NEED_CPU_H */
1159 
1160 #define UNASSIGNED_CPU_INDEX -1
1161 #define UNASSIGNED_CLUSTER_INDEX -1
1162 
1163 #endif
1164