1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 35 void *opaque); 36 37 /** 38 * vaddr: 39 * Type wide enough to contain any #target_ulong virtual address. 40 */ 41 typedef uint64_t vaddr; 42 #define VADDR_PRId PRId64 43 #define VADDR_PRIu PRIu64 44 #define VADDR_PRIo PRIo64 45 #define VADDR_PRIx PRIx64 46 #define VADDR_PRIX PRIX64 47 #define VADDR_MAX UINT64_MAX 48 49 /** 50 * SECTION:cpu 51 * @section_id: QEMU-cpu 52 * @title: CPU Class 53 * @short_description: Base class for all CPUs 54 */ 55 56 #define TYPE_CPU "cpu" 57 58 /* Since this macro is used a lot in hot code paths and in conjunction with 59 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 60 * an unchecked cast. 61 */ 62 #define CPU(obj) ((CPUState *)(obj)) 63 64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU) 65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU) 66 67 typedef enum MMUAccessType { 68 MMU_DATA_LOAD = 0, 69 MMU_DATA_STORE = 1, 70 MMU_INST_FETCH = 2 71 } MMUAccessType; 72 73 typedef struct CPUWatchpoint CPUWatchpoint; 74 75 struct TranslationBlock; 76 77 /** 78 * CPUClass: 79 * @class_by_name: Callback to map -cpu command line model name to an 80 * instantiatable CPU type. 81 * @parse_features: Callback to parse command line arguments. 82 * @reset: Callback to reset the #CPUState to its initial state. 83 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 84 * @has_work: Callback for checking if there is work to do. 85 * @do_interrupt: Callback for interrupt handling. 86 * @do_unaligned_access: Callback for unaligned access handling, if 87 * the target defines #TARGET_ALIGNED_ONLY. 88 * @do_transaction_failed: Callback for handling failed memory transactions 89 * (ie bus faults or external aborts; not MMU faults) 90 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 91 * runtime configurable endianness is currently big-endian. Non-configurable 92 * CPUs can use the default implementation of this method. This method should 93 * not be used by any callers other than the pre-1.0 virtio devices. 94 * @memory_rw_debug: Callback for GDB memory access. 95 * @dump_state: Callback for dumping state. 96 * @dump_statistics: Callback for dumping statistics. 97 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 98 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 99 * @get_memory_mapping: Callback for obtaining the memory mappings. 100 * @set_pc: Callback for setting the Program Counter register. This 101 * should have the semantics used by the target architecture when 102 * setting the PC from a source such as an ELF file entry point; 103 * for example on Arm it will also set the Thumb mode bit based 104 * on the least significant bit of the new PC value. 105 * If the target behaviour here is anything other than "set 106 * the PC register to the value passed in" then the target must 107 * also implement the synchronize_from_tb hook. 108 * @synchronize_from_tb: Callback for synchronizing state from a TCG 109 * #TranslationBlock. This is called when we abandon execution 110 * of a TB before starting it, and must set all parts of the CPU 111 * state which the previous TB in the chain may not have updated. 112 * This always includes at least the program counter; some targets 113 * will need to do more. If this hook is not implemented then the 114 * default is to call @set_pc(tb->pc). 115 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only 116 * address fault. For system mode, if the access is valid, call 117 * tlb_set_page and return true; if the access is invalid, and 118 * probe is true, return false; otherwise raise an exception and 119 * do not return. For user-only mode, always raise an exception 120 * and do not return. 121 * @get_phys_page_debug: Callback for obtaining a physical address. 122 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 123 * associated memory transaction attributes to use for the access. 124 * CPUs which use memory transaction attributes should implement this 125 * instead of get_phys_page_debug. 126 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 127 * a memory access with the specified memory transaction attributes. 128 * @gdb_read_register: Callback for letting GDB read a register. 129 * @gdb_write_register: Callback for letting GDB write a register. 130 * @debug_check_watchpoint: Callback: return true if the architectural 131 * watchpoint whose address has matched should really fire. 132 * @debug_excp_handler: Callback for handling debug exceptions. 133 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 134 * 64-bit VM coredump. 135 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 136 * note to a 32-bit VM coredump. 137 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 138 * 32-bit VM coredump. 139 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 140 * note to a 32-bit VM coredump. 141 * @vmsd: State description for migration. 142 * @gdb_num_core_regs: Number of core registers accessible to GDB. 143 * @gdb_core_xml_file: File name for core registers GDB XML description. 144 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 145 * before the insn which triggers a watchpoint rather than after it. 146 * @gdb_arch_name: Optional callback that returns the architecture name known 147 * to GDB. The caller must free the returned string with g_free. 148 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 149 * gdb stub. Returns a pointer to the XML contents for the specified XML file 150 * or NULL if the CPU doesn't have a dynamically generated content for it. 151 * @cpu_exec_enter: Callback for cpu_exec preparation. 152 * @cpu_exec_exit: Callback for cpu_exec cleanup. 153 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec. 154 * @disas_set_info: Setup architecture specific components of disassembly info 155 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 156 * address before attempting to match it against watchpoints. 157 * 158 * Represents a CPU family or model. 159 */ 160 typedef struct CPUClass { 161 /*< private >*/ 162 DeviceClass parent_class; 163 /*< public >*/ 164 165 ObjectClass *(*class_by_name)(const char *cpu_model); 166 void (*parse_features)(const char *typename, char *str, Error **errp); 167 168 void (*reset)(CPUState *cpu); 169 int reset_dump_flags; 170 bool (*has_work)(CPUState *cpu); 171 void (*do_interrupt)(CPUState *cpu); 172 void (*do_unaligned_access)(CPUState *cpu, vaddr addr, 173 MMUAccessType access_type, 174 int mmu_idx, uintptr_t retaddr); 175 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, 176 unsigned size, MMUAccessType access_type, 177 int mmu_idx, MemTxAttrs attrs, 178 MemTxResult response, uintptr_t retaddr); 179 bool (*virtio_is_big_endian)(CPUState *cpu); 180 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 181 uint8_t *buf, int len, bool is_write); 182 void (*dump_state)(CPUState *cpu, FILE *, int flags); 183 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 184 void (*dump_statistics)(CPUState *cpu, int flags); 185 int64_t (*get_arch_id)(CPUState *cpu); 186 bool (*get_paging_enabled)(const CPUState *cpu); 187 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 188 Error **errp); 189 void (*set_pc)(CPUState *cpu, vaddr value); 190 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb); 191 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, 192 MMUAccessType access_type, int mmu_idx, 193 bool probe, uintptr_t retaddr); 194 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 195 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 196 MemTxAttrs *attrs); 197 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 198 int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg); 199 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 200 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); 201 void (*debug_excp_handler)(CPUState *cpu); 202 203 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 204 int cpuid, void *opaque); 205 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 206 void *opaque); 207 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 208 int cpuid, void *opaque); 209 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 210 void *opaque); 211 212 const VMStateDescription *vmsd; 213 const char *gdb_core_xml_file; 214 gchar * (*gdb_arch_name)(CPUState *cpu); 215 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 216 void (*cpu_exec_enter)(CPUState *cpu); 217 void (*cpu_exec_exit)(CPUState *cpu); 218 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); 219 220 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 221 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); 222 void (*tcg_initialize)(void); 223 224 /* Keep non-pointer data at the end to minimize holes. */ 225 int gdb_num_core_regs; 226 bool gdb_stop_before_watchpoint; 227 } CPUClass; 228 229 /* 230 * Low 16 bits: number of cycles left, used only in icount mode. 231 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 232 * for this CPU and return to its top level loop (even in non-icount mode). 233 * This allows a single read-compare-cbranch-write sequence to test 234 * for both decrementer underflow and exceptions. 235 */ 236 typedef union IcountDecr { 237 uint32_t u32; 238 struct { 239 #ifdef HOST_WORDS_BIGENDIAN 240 uint16_t high; 241 uint16_t low; 242 #else 243 uint16_t low; 244 uint16_t high; 245 #endif 246 } u16; 247 } IcountDecr; 248 249 typedef struct CPUBreakpoint { 250 vaddr pc; 251 int flags; /* BP_* */ 252 QTAILQ_ENTRY(CPUBreakpoint) entry; 253 } CPUBreakpoint; 254 255 struct CPUWatchpoint { 256 vaddr vaddr; 257 vaddr len; 258 vaddr hitaddr; 259 MemTxAttrs hitattrs; 260 int flags; /* BP_* */ 261 QTAILQ_ENTRY(CPUWatchpoint) entry; 262 }; 263 264 struct KVMState; 265 struct kvm_run; 266 267 struct hax_vcpu_state; 268 269 #define TB_JMP_CACHE_BITS 12 270 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 271 272 /* work queue */ 273 274 /* The union type allows passing of 64 bit target pointers on 32 bit 275 * hosts in a single parameter 276 */ 277 typedef union { 278 int host_int; 279 unsigned long host_ulong; 280 void *host_ptr; 281 vaddr target_ptr; 282 } run_on_cpu_data; 283 284 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 285 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 286 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 287 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 288 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 289 290 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 291 292 struct qemu_work_item; 293 294 #define CPU_UNSET_NUMA_NODE_ID -1 295 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 296 297 /** 298 * CPUState: 299 * @cpu_index: CPU index (informative). 300 * @cluster_index: Identifies which cluster this CPU is in. 301 * For boards which don't define clusters or for "loose" CPUs not assigned 302 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 303 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 304 * QOM parent. 305 * @nr_cores: Number of cores within this CPU package. 306 * @nr_threads: Number of threads within this CPU. 307 * @running: #true if CPU is currently running (lockless). 308 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 309 * valid under cpu_list_lock. 310 * @created: Indicates whether the CPU thread has been successfully created. 311 * @interrupt_request: Indicates a pending interrupt request. 312 * @halted: Nonzero if the CPU is in suspended state. 313 * @stop: Indicates a pending stop request. 314 * @stopped: Indicates the CPU has been artificially stopped. 315 * @unplug: Indicates a pending CPU unplug request. 316 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 317 * @singlestep_enabled: Flags for single-stepping. 318 * @icount_extra: Instructions until next timer event. 319 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 320 * requires that IO only be performed on the last instruction of a TB 321 * so that interrupts take effect immediately. 322 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 323 * AddressSpaces this CPU has) 324 * @num_ases: number of CPUAddressSpaces in @cpu_ases 325 * @as: Pointer to the first AddressSpace, for the convenience of targets which 326 * only have a single AddressSpace 327 * @env_ptr: Pointer to subclass-specific CPUArchState field. 328 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 329 * @gdb_regs: Additional GDB registers. 330 * @gdb_num_regs: Number of total registers accessible to GDB. 331 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 332 * @next_cpu: Next CPU sharing TB cache. 333 * @opaque: User data. 334 * @mem_io_pc: Host Program Counter at which the memory was accessed. 335 * @kvm_fd: vCPU file descriptor for KVM. 336 * @work_mutex: Lock to prevent multiple access to queued_work_*. 337 * @queued_work_first: First asynchronous work pending. 338 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 339 * to @trace_dstate). 340 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 341 * @plugin_mask: Plugin event bitmap. Modified only via async work. 342 * @ignore_memory_transaction_failures: Cached copy of the MachineState 343 * flag of the same name: allows the board to suppress calling of the 344 * CPU do_transaction_failed hook function. 345 * 346 * State of one CPU core or thread. 347 */ 348 struct CPUState { 349 /*< private >*/ 350 DeviceState parent_obj; 351 /*< public >*/ 352 353 int nr_cores; 354 int nr_threads; 355 356 struct QemuThread *thread; 357 #ifdef _WIN32 358 HANDLE hThread; 359 #endif 360 int thread_id; 361 bool running, has_waiter; 362 struct QemuCond *halt_cond; 363 bool thread_kicked; 364 bool created; 365 bool stop; 366 bool stopped; 367 bool unplug; 368 bool crash_occurred; 369 bool exit_request; 370 bool in_exclusive_context; 371 uint32_t cflags_next_tb; 372 /* updates protected by BQL */ 373 uint32_t interrupt_request; 374 int singlestep_enabled; 375 int64_t icount_budget; 376 int64_t icount_extra; 377 uint64_t random_seed; 378 sigjmp_buf jmp_env; 379 380 QemuMutex work_mutex; 381 struct qemu_work_item *queued_work_first, *queued_work_last; 382 383 CPUAddressSpace *cpu_ases; 384 int num_ases; 385 AddressSpace *as; 386 MemoryRegion *memory; 387 388 void *env_ptr; /* CPUArchState */ 389 IcountDecr *icount_decr_ptr; 390 391 /* Accessed in parallel; all accesses must be atomic */ 392 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 393 394 struct GDBRegisterState *gdb_regs; 395 int gdb_num_regs; 396 int gdb_num_g_regs; 397 QTAILQ_ENTRY(CPUState) node; 398 399 /* ice debug support */ 400 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 401 402 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 403 CPUWatchpoint *watchpoint_hit; 404 405 void *opaque; 406 407 /* In order to avoid passing too many arguments to the MMIO helpers, 408 * we store some rarely used information in the CPU context. 409 */ 410 uintptr_t mem_io_pc; 411 412 int kvm_fd; 413 struct KVMState *kvm_state; 414 struct kvm_run *kvm_run; 415 416 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 417 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 418 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 419 420 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 421 422 GArray *plugin_mem_cbs; 423 424 /* TODO Move common fields from CPUArchState here. */ 425 int cpu_index; 426 int cluster_index; 427 uint32_t halted; 428 uint32_t can_do_io; 429 int32_t exception_index; 430 431 /* shared by kvm, hax and hvf */ 432 bool vcpu_dirty; 433 434 /* Used to keep track of an outstanding cpu throttle thread for migration 435 * autoconverge 436 */ 437 bool throttle_thread_scheduled; 438 439 bool ignore_memory_transaction_failures; 440 441 struct hax_vcpu_state *hax_vcpu; 442 443 int hvf_fd; 444 445 /* track IOMMUs whose translations we've cached in the TCG TLB */ 446 GArray *iommu_notifiers; 447 }; 448 449 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 450 extern CPUTailQ cpus; 451 452 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 453 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 454 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 455 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 456 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 457 458 extern __thread CPUState *current_cpu; 459 460 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 461 { 462 unsigned int i; 463 464 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 465 atomic_set(&cpu->tb_jmp_cache[i], NULL); 466 } 467 } 468 469 /** 470 * qemu_tcg_mttcg_enabled: 471 * Check whether we are running MultiThread TCG or not. 472 * 473 * Returns: %true if we are in MTTCG mode %false otherwise. 474 */ 475 extern bool mttcg_enabled; 476 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 477 478 /** 479 * cpu_paging_enabled: 480 * @cpu: The CPU whose state is to be inspected. 481 * 482 * Returns: %true if paging is enabled, %false otherwise. 483 */ 484 bool cpu_paging_enabled(const CPUState *cpu); 485 486 /** 487 * cpu_get_memory_mapping: 488 * @cpu: The CPU whose memory mappings are to be obtained. 489 * @list: Where to write the memory mappings to. 490 * @errp: Pointer for reporting an #Error. 491 */ 492 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 493 Error **errp); 494 495 /** 496 * cpu_write_elf64_note: 497 * @f: pointer to a function that writes memory to a file 498 * @cpu: The CPU whose memory is to be dumped 499 * @cpuid: ID number of the CPU 500 * @opaque: pointer to the CPUState struct 501 */ 502 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 503 int cpuid, void *opaque); 504 505 /** 506 * cpu_write_elf64_qemunote: 507 * @f: pointer to a function that writes memory to a file 508 * @cpu: The CPU whose memory is to be dumped 509 * @cpuid: ID number of the CPU 510 * @opaque: pointer to the CPUState struct 511 */ 512 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 513 void *opaque); 514 515 /** 516 * cpu_write_elf32_note: 517 * @f: pointer to a function that writes memory to a file 518 * @cpu: The CPU whose memory is to be dumped 519 * @cpuid: ID number of the CPU 520 * @opaque: pointer to the CPUState struct 521 */ 522 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 523 int cpuid, void *opaque); 524 525 /** 526 * cpu_write_elf32_qemunote: 527 * @f: pointer to a function that writes memory to a file 528 * @cpu: The CPU whose memory is to be dumped 529 * @cpuid: ID number of the CPU 530 * @opaque: pointer to the CPUState struct 531 */ 532 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 533 void *opaque); 534 535 /** 536 * cpu_get_crash_info: 537 * @cpu: The CPU to get crash information for 538 * 539 * Gets the previously saved crash information. 540 * Caller is responsible for freeing the data. 541 */ 542 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 543 544 /** 545 * CPUDumpFlags: 546 * @CPU_DUMP_CODE: 547 * @CPU_DUMP_FPU: dump FPU register state, not just integer 548 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 549 */ 550 enum CPUDumpFlags { 551 CPU_DUMP_CODE = 0x00010000, 552 CPU_DUMP_FPU = 0x00020000, 553 CPU_DUMP_CCOP = 0x00040000, 554 }; 555 556 /** 557 * cpu_dump_state: 558 * @cpu: The CPU whose state is to be dumped. 559 * @f: If non-null, dump to this stream, else to current print sink. 560 * 561 * Dumps CPU state. 562 */ 563 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 564 565 /** 566 * cpu_dump_statistics: 567 * @cpu: The CPU whose state is to be dumped. 568 * @flags: Flags what to dump. 569 * 570 * Dump CPU statistics to the current monitor if we have one, else to 571 * stdout. 572 */ 573 void cpu_dump_statistics(CPUState *cpu, int flags); 574 575 #ifndef CONFIG_USER_ONLY 576 /** 577 * cpu_get_phys_page_attrs_debug: 578 * @cpu: The CPU to obtain the physical page address for. 579 * @addr: The virtual address. 580 * @attrs: Updated on return with the memory transaction attributes to use 581 * for this access. 582 * 583 * Obtains the physical page corresponding to a virtual one, together 584 * with the corresponding memory transaction attributes to use for the access. 585 * Use it only for debugging because no protection checks are done. 586 * 587 * Returns: Corresponding physical page address or -1 if no page found. 588 */ 589 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 590 MemTxAttrs *attrs) 591 { 592 CPUClass *cc = CPU_GET_CLASS(cpu); 593 594 if (cc->get_phys_page_attrs_debug) { 595 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 596 } 597 /* Fallback for CPUs which don't implement the _attrs_ hook */ 598 *attrs = MEMTXATTRS_UNSPECIFIED; 599 return cc->get_phys_page_debug(cpu, addr); 600 } 601 602 /** 603 * cpu_get_phys_page_debug: 604 * @cpu: The CPU to obtain the physical page address for. 605 * @addr: The virtual address. 606 * 607 * Obtains the physical page corresponding to a virtual one. 608 * Use it only for debugging because no protection checks are done. 609 * 610 * Returns: Corresponding physical page address or -1 if no page found. 611 */ 612 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 613 { 614 MemTxAttrs attrs = {}; 615 616 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 617 } 618 619 /** cpu_asidx_from_attrs: 620 * @cpu: CPU 621 * @attrs: memory transaction attributes 622 * 623 * Returns the address space index specifying the CPU AddressSpace 624 * to use for a memory access with the given transaction attributes. 625 */ 626 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 627 { 628 CPUClass *cc = CPU_GET_CLASS(cpu); 629 int ret = 0; 630 631 if (cc->asidx_from_attrs) { 632 ret = cc->asidx_from_attrs(cpu, attrs); 633 assert(ret < cpu->num_ases && ret >= 0); 634 } 635 return ret; 636 } 637 #endif 638 639 /** 640 * cpu_list_add: 641 * @cpu: The CPU to be added to the list of CPUs. 642 */ 643 void cpu_list_add(CPUState *cpu); 644 645 /** 646 * cpu_list_remove: 647 * @cpu: The CPU to be removed from the list of CPUs. 648 */ 649 void cpu_list_remove(CPUState *cpu); 650 651 /** 652 * cpu_reset: 653 * @cpu: The CPU whose state is to be reset. 654 */ 655 void cpu_reset(CPUState *cpu); 656 657 /** 658 * cpu_class_by_name: 659 * @typename: The CPU base type. 660 * @cpu_model: The model string without any parameters. 661 * 662 * Looks up a CPU #ObjectClass matching name @cpu_model. 663 * 664 * Returns: A #CPUClass or %NULL if not matching class is found. 665 */ 666 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 667 668 /** 669 * cpu_create: 670 * @typename: The CPU type. 671 * 672 * Instantiates a CPU and realizes the CPU. 673 * 674 * Returns: A #CPUState or %NULL if an error occurred. 675 */ 676 CPUState *cpu_create(const char *typename); 677 678 /** 679 * parse_cpu_option: 680 * @cpu_option: The -cpu option including optional parameters. 681 * 682 * processes optional parameters and registers them as global properties 683 * 684 * Returns: type of CPU to create or prints error and terminates process 685 * if an error occurred. 686 */ 687 const char *parse_cpu_option(const char *cpu_option); 688 689 /** 690 * cpu_has_work: 691 * @cpu: The vCPU to check. 692 * 693 * Checks whether the CPU has work to do. 694 * 695 * Returns: %true if the CPU has work, %false otherwise. 696 */ 697 static inline bool cpu_has_work(CPUState *cpu) 698 { 699 CPUClass *cc = CPU_GET_CLASS(cpu); 700 701 g_assert(cc->has_work); 702 return cc->has_work(cpu); 703 } 704 705 /** 706 * qemu_cpu_is_self: 707 * @cpu: The vCPU to check against. 708 * 709 * Checks whether the caller is executing on the vCPU thread. 710 * 711 * Returns: %true if called from @cpu's thread, %false otherwise. 712 */ 713 bool qemu_cpu_is_self(CPUState *cpu); 714 715 /** 716 * qemu_cpu_kick: 717 * @cpu: The vCPU to kick. 718 * 719 * Kicks @cpu's thread. 720 */ 721 void qemu_cpu_kick(CPUState *cpu); 722 723 /** 724 * cpu_is_stopped: 725 * @cpu: The CPU to check. 726 * 727 * Checks whether the CPU is stopped. 728 * 729 * Returns: %true if run state is not running or if artificially stopped; 730 * %false otherwise. 731 */ 732 bool cpu_is_stopped(CPUState *cpu); 733 734 /** 735 * do_run_on_cpu: 736 * @cpu: The vCPU to run on. 737 * @func: The function to be executed. 738 * @data: Data to pass to the function. 739 * @mutex: Mutex to release while waiting for @func to run. 740 * 741 * Used internally in the implementation of run_on_cpu. 742 */ 743 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 744 QemuMutex *mutex); 745 746 /** 747 * run_on_cpu: 748 * @cpu: The vCPU to run on. 749 * @func: The function to be executed. 750 * @data: Data to pass to the function. 751 * 752 * Schedules the function @func for execution on the vCPU @cpu. 753 */ 754 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 755 756 /** 757 * async_run_on_cpu: 758 * @cpu: The vCPU to run on. 759 * @func: The function to be executed. 760 * @data: Data to pass to the function. 761 * 762 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 763 */ 764 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 765 766 /** 767 * async_safe_run_on_cpu: 768 * @cpu: The vCPU to run on. 769 * @func: The function to be executed. 770 * @data: Data to pass to the function. 771 * 772 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 773 * while all other vCPUs are sleeping. 774 * 775 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 776 * BQL. 777 */ 778 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 779 780 /** 781 * cpu_in_exclusive_context() 782 * @cpu: The vCPU to check 783 * 784 * Returns true if @cpu is an exclusive context, for example running 785 * something which has previously been queued via async_safe_run_on_cpu(). 786 */ 787 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 788 { 789 return cpu->in_exclusive_context; 790 } 791 792 /** 793 * qemu_get_cpu: 794 * @index: The CPUState@cpu_index value of the CPU to obtain. 795 * 796 * Gets a CPU matching @index. 797 * 798 * Returns: The CPU or %NULL if there is no matching CPU. 799 */ 800 CPUState *qemu_get_cpu(int index); 801 802 /** 803 * cpu_exists: 804 * @id: Guest-exposed CPU ID to lookup. 805 * 806 * Search for CPU with specified ID. 807 * 808 * Returns: %true - CPU is found, %false - CPU isn't found. 809 */ 810 bool cpu_exists(int64_t id); 811 812 /** 813 * cpu_by_arch_id: 814 * @id: Guest-exposed CPU ID of the CPU to obtain. 815 * 816 * Get a CPU with matching @id. 817 * 818 * Returns: The CPU or %NULL if there is no matching CPU. 819 */ 820 CPUState *cpu_by_arch_id(int64_t id); 821 822 /** 823 * cpu_throttle_set: 824 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99. 825 * 826 * Throttles all vcpus by forcing them to sleep for the given percentage of 827 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly. 828 * (example: 10ms sleep for every 30ms awake). 829 * 830 * cpu_throttle_set can be called as needed to adjust new_throttle_pct. 831 * Once the throttling starts, it will remain in effect until cpu_throttle_stop 832 * is called. 833 */ 834 void cpu_throttle_set(int new_throttle_pct); 835 836 /** 837 * cpu_throttle_stop: 838 * 839 * Stops the vcpu throttling started by cpu_throttle_set. 840 */ 841 void cpu_throttle_stop(void); 842 843 /** 844 * cpu_throttle_active: 845 * 846 * Returns: %true if the vcpus are currently being throttled, %false otherwise. 847 */ 848 bool cpu_throttle_active(void); 849 850 /** 851 * cpu_throttle_get_percentage: 852 * 853 * Returns the vcpu throttle percentage. See cpu_throttle_set for details. 854 * 855 * Returns: The throttle percentage in range 1 to 99. 856 */ 857 int cpu_throttle_get_percentage(void); 858 859 #ifndef CONFIG_USER_ONLY 860 861 typedef void (*CPUInterruptHandler)(CPUState *, int); 862 863 extern CPUInterruptHandler cpu_interrupt_handler; 864 865 /** 866 * cpu_interrupt: 867 * @cpu: The CPU to set an interrupt on. 868 * @mask: The interrupts to set. 869 * 870 * Invokes the interrupt handler. 871 */ 872 static inline void cpu_interrupt(CPUState *cpu, int mask) 873 { 874 cpu_interrupt_handler(cpu, mask); 875 } 876 877 #else /* USER_ONLY */ 878 879 void cpu_interrupt(CPUState *cpu, int mask); 880 881 #endif /* USER_ONLY */ 882 883 #ifdef NEED_CPU_H 884 885 #ifdef CONFIG_SOFTMMU 886 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 887 MMUAccessType access_type, 888 int mmu_idx, uintptr_t retaddr) 889 { 890 CPUClass *cc = CPU_GET_CLASS(cpu); 891 892 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 893 } 894 895 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 896 vaddr addr, unsigned size, 897 MMUAccessType access_type, 898 int mmu_idx, MemTxAttrs attrs, 899 MemTxResult response, 900 uintptr_t retaddr) 901 { 902 CPUClass *cc = CPU_GET_CLASS(cpu); 903 904 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) { 905 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type, 906 mmu_idx, attrs, response, retaddr); 907 } 908 } 909 #endif 910 911 #endif /* NEED_CPU_H */ 912 913 /** 914 * cpu_set_pc: 915 * @cpu: The CPU to set the program counter for. 916 * @addr: Program counter value. 917 * 918 * Sets the program counter for a CPU. 919 */ 920 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 921 { 922 CPUClass *cc = CPU_GET_CLASS(cpu); 923 924 cc->set_pc(cpu, addr); 925 } 926 927 /** 928 * cpu_reset_interrupt: 929 * @cpu: The CPU to clear the interrupt on. 930 * @mask: The interrupt mask to clear. 931 * 932 * Resets interrupts on the vCPU @cpu. 933 */ 934 void cpu_reset_interrupt(CPUState *cpu, int mask); 935 936 /** 937 * cpu_exit: 938 * @cpu: The CPU to exit. 939 * 940 * Requests the CPU @cpu to exit execution. 941 */ 942 void cpu_exit(CPUState *cpu); 943 944 /** 945 * cpu_resume: 946 * @cpu: The CPU to resume. 947 * 948 * Resumes CPU, i.e. puts CPU into runnable state. 949 */ 950 void cpu_resume(CPUState *cpu); 951 952 /** 953 * cpu_remove: 954 * @cpu: The CPU to remove. 955 * 956 * Requests the CPU to be removed. 957 */ 958 void cpu_remove(CPUState *cpu); 959 960 /** 961 * cpu_remove_sync: 962 * @cpu: The CPU to remove. 963 * 964 * Requests the CPU to be removed and waits till it is removed. 965 */ 966 void cpu_remove_sync(CPUState *cpu); 967 968 /** 969 * process_queued_cpu_work() - process all items on CPU work queue 970 * @cpu: The CPU which work queue to process. 971 */ 972 void process_queued_cpu_work(CPUState *cpu); 973 974 /** 975 * cpu_exec_start: 976 * @cpu: The CPU for the current thread. 977 * 978 * Record that a CPU has started execution and can be interrupted with 979 * cpu_exit. 980 */ 981 void cpu_exec_start(CPUState *cpu); 982 983 /** 984 * cpu_exec_end: 985 * @cpu: The CPU for the current thread. 986 * 987 * Record that a CPU has stopped execution and exclusive sections 988 * can be executed without interrupting it. 989 */ 990 void cpu_exec_end(CPUState *cpu); 991 992 /** 993 * start_exclusive: 994 * 995 * Wait for a concurrent exclusive section to end, and then start 996 * a section of work that is run while other CPUs are not running 997 * between cpu_exec_start and cpu_exec_end. CPUs that are running 998 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 999 * during the exclusive section go to sleep until this CPU calls 1000 * end_exclusive. 1001 */ 1002 void start_exclusive(void); 1003 1004 /** 1005 * end_exclusive: 1006 * 1007 * Concludes an exclusive execution section started by start_exclusive. 1008 */ 1009 void end_exclusive(void); 1010 1011 /** 1012 * qemu_init_vcpu: 1013 * @cpu: The vCPU to initialize. 1014 * 1015 * Initializes a vCPU. 1016 */ 1017 void qemu_init_vcpu(CPUState *cpu); 1018 1019 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1020 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1021 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1022 1023 /** 1024 * cpu_single_step: 1025 * @cpu: CPU to the flags for. 1026 * @enabled: Flags to enable. 1027 * 1028 * Enables or disables single-stepping for @cpu. 1029 */ 1030 void cpu_single_step(CPUState *cpu, int enabled); 1031 1032 /* Breakpoint/watchpoint flags */ 1033 #define BP_MEM_READ 0x01 1034 #define BP_MEM_WRITE 0x02 1035 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1036 #define BP_STOP_BEFORE_ACCESS 0x04 1037 /* 0x08 currently unused */ 1038 #define BP_GDB 0x10 1039 #define BP_CPU 0x20 1040 #define BP_ANY (BP_GDB | BP_CPU) 1041 #define BP_WATCHPOINT_HIT_READ 0x40 1042 #define BP_WATCHPOINT_HIT_WRITE 0x80 1043 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 1044 1045 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1046 CPUBreakpoint **breakpoint); 1047 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1048 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1049 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1050 1051 /* Return true if PC matches an installed breakpoint. */ 1052 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1053 { 1054 CPUBreakpoint *bp; 1055 1056 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1057 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1058 if (bp->pc == pc && (bp->flags & mask)) { 1059 return true; 1060 } 1061 } 1062 } 1063 return false; 1064 } 1065 1066 #ifdef CONFIG_USER_ONLY 1067 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1068 int flags, CPUWatchpoint **watchpoint) 1069 { 1070 return -ENOSYS; 1071 } 1072 1073 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1074 vaddr len, int flags) 1075 { 1076 return -ENOSYS; 1077 } 1078 1079 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1080 CPUWatchpoint *wp) 1081 { 1082 } 1083 1084 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1085 { 1086 } 1087 1088 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1089 MemTxAttrs atr, int fl, uintptr_t ra) 1090 { 1091 } 1092 1093 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 1094 vaddr addr, vaddr len) 1095 { 1096 return 0; 1097 } 1098 #else 1099 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1100 int flags, CPUWatchpoint **watchpoint); 1101 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1102 vaddr len, int flags); 1103 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1104 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1105 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1106 MemTxAttrs attrs, int flags, uintptr_t ra); 1107 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1108 #endif 1109 1110 /** 1111 * cpu_get_address_space: 1112 * @cpu: CPU to get address space from 1113 * @asidx: index identifying which address space to get 1114 * 1115 * Return the requested address space of this CPU. @asidx 1116 * specifies which address space to read. 1117 */ 1118 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1119 1120 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1121 GCC_FMT_ATTR(2, 3); 1122 extern Property cpu_common_props[]; 1123 void cpu_exec_initfn(CPUState *cpu); 1124 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1125 void cpu_exec_unrealizefn(CPUState *cpu); 1126 1127 /** 1128 * target_words_bigendian: 1129 * Returns true if the (default) endianness of the target is big endian, 1130 * false otherwise. Note that in target-specific code, you can use 1131 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1132 * code should normally never need to know about the endianness of the 1133 * target, so please do *not* use this function unless you know very well 1134 * what you are doing! 1135 */ 1136 bool target_words_bigendian(void); 1137 1138 void cpu_class_set_parent_reset(CPUClass *cc, 1139 void (*child_reset)(CPUState *cpu), 1140 void (**parent_reset)(CPUState *cpu)); 1141 1142 #ifdef NEED_CPU_H 1143 1144 #ifdef CONFIG_SOFTMMU 1145 extern const VMStateDescription vmstate_cpu_common; 1146 #else 1147 #define vmstate_cpu_common vmstate_dummy 1148 #endif 1149 1150 #define VMSTATE_CPU() { \ 1151 .name = "parent_obj", \ 1152 .size = sizeof(CPUState), \ 1153 .vmsd = &vmstate_cpu_common, \ 1154 .flags = VMS_STRUCT, \ 1155 .offset = 0, \ 1156 } 1157 1158 #endif /* NEED_CPU_H */ 1159 1160 #define UNASSIGNED_CPU_INDEX -1 1161 #define UNASSIGNED_CLUSTER_INDEX -1 1162 1163 #endif 1164