1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 35 void *opaque); 36 37 /** 38 * vaddr: 39 * Type wide enough to contain any #target_ulong virtual address. 40 */ 41 typedef uint64_t vaddr; 42 #define VADDR_PRId PRId64 43 #define VADDR_PRIu PRIu64 44 #define VADDR_PRIo PRIo64 45 #define VADDR_PRIx PRIx64 46 #define VADDR_PRIX PRIX64 47 #define VADDR_MAX UINT64_MAX 48 49 /** 50 * SECTION:cpu 51 * @section_id: QEMU-cpu 52 * @title: CPU Class 53 * @short_description: Base class for all CPUs 54 */ 55 56 #define TYPE_CPU "cpu" 57 58 /* Since this macro is used a lot in hot code paths and in conjunction with 59 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 60 * an unchecked cast. 61 */ 62 #define CPU(obj) ((CPUState *)(obj)) 63 64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU) 65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU) 66 67 typedef enum MMUAccessType { 68 MMU_DATA_LOAD = 0, 69 MMU_DATA_STORE = 1, 70 MMU_INST_FETCH = 2 71 } MMUAccessType; 72 73 typedef struct CPUWatchpoint CPUWatchpoint; 74 75 struct TranslationBlock; 76 77 /** 78 * CPUClass: 79 * @class_by_name: Callback to map -cpu command line model name to an 80 * instantiatable CPU type. 81 * @parse_features: Callback to parse command line arguments. 82 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 83 * @has_work: Callback for checking if there is work to do. 84 * @do_interrupt: Callback for interrupt handling. 85 * @do_unaligned_access: Callback for unaligned access handling, if 86 * the target defines #TARGET_ALIGNED_ONLY. 87 * @do_transaction_failed: Callback for handling failed memory transactions 88 * (ie bus faults or external aborts; not MMU faults) 89 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 90 * runtime configurable endianness is currently big-endian. Non-configurable 91 * CPUs can use the default implementation of this method. This method should 92 * not be used by any callers other than the pre-1.0 virtio devices. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @dump_statistics: Callback for dumping statistics. 96 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 97 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 98 * @get_memory_mapping: Callback for obtaining the memory mappings. 99 * @set_pc: Callback for setting the Program Counter register. This 100 * should have the semantics used by the target architecture when 101 * setting the PC from a source such as an ELF file entry point; 102 * for example on Arm it will also set the Thumb mode bit based 103 * on the least significant bit of the new PC value. 104 * If the target behaviour here is anything other than "set 105 * the PC register to the value passed in" then the target must 106 * also implement the synchronize_from_tb hook. 107 * @synchronize_from_tb: Callback for synchronizing state from a TCG 108 * #TranslationBlock. This is called when we abandon execution 109 * of a TB before starting it, and must set all parts of the CPU 110 * state which the previous TB in the chain may not have updated. 111 * This always includes at least the program counter; some targets 112 * will need to do more. If this hook is not implemented then the 113 * default is to call @set_pc(tb->pc). 114 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only 115 * address fault. For system mode, if the access is valid, call 116 * tlb_set_page and return true; if the access is invalid, and 117 * probe is true, return false; otherwise raise an exception and 118 * do not return. For user-only mode, always raise an exception 119 * and do not return. 120 * @get_phys_page_debug: Callback for obtaining a physical address. 121 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 122 * associated memory transaction attributes to use for the access. 123 * CPUs which use memory transaction attributes should implement this 124 * instead of get_phys_page_debug. 125 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 126 * a memory access with the specified memory transaction attributes. 127 * @gdb_read_register: Callback for letting GDB read a register. 128 * @gdb_write_register: Callback for letting GDB write a register. 129 * @debug_check_watchpoint: Callback: return true if the architectural 130 * watchpoint whose address has matched should really fire. 131 * @debug_excp_handler: Callback for handling debug exceptions. 132 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 133 * 64-bit VM coredump. 134 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 135 * note to a 32-bit VM coredump. 136 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 137 * 32-bit VM coredump. 138 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 139 * note to a 32-bit VM coredump. 140 * @vmsd: State description for migration. 141 * @gdb_num_core_regs: Number of core registers accessible to GDB. 142 * @gdb_core_xml_file: File name for core registers GDB XML description. 143 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 144 * before the insn which triggers a watchpoint rather than after it. 145 * @gdb_arch_name: Optional callback that returns the architecture name known 146 * to GDB. The caller must free the returned string with g_free. 147 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 148 * gdb stub. Returns a pointer to the XML contents for the specified XML file 149 * or NULL if the CPU doesn't have a dynamically generated content for it. 150 * @cpu_exec_enter: Callback for cpu_exec preparation. 151 * @cpu_exec_exit: Callback for cpu_exec cleanup. 152 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec. 153 * @disas_set_info: Setup architecture specific components of disassembly info 154 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 155 * address before attempting to match it against watchpoints. 156 * 157 * Represents a CPU family or model. 158 */ 159 typedef struct CPUClass { 160 /*< private >*/ 161 DeviceClass parent_class; 162 /*< public >*/ 163 164 ObjectClass *(*class_by_name)(const char *cpu_model); 165 void (*parse_features)(const char *typename, char *str, Error **errp); 166 167 int reset_dump_flags; 168 bool (*has_work)(CPUState *cpu); 169 void (*do_interrupt)(CPUState *cpu); 170 void (*do_unaligned_access)(CPUState *cpu, vaddr addr, 171 MMUAccessType access_type, 172 int mmu_idx, uintptr_t retaddr); 173 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, 174 unsigned size, MMUAccessType access_type, 175 int mmu_idx, MemTxAttrs attrs, 176 MemTxResult response, uintptr_t retaddr); 177 bool (*virtio_is_big_endian)(CPUState *cpu); 178 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 179 uint8_t *buf, int len, bool is_write); 180 void (*dump_state)(CPUState *cpu, FILE *, int flags); 181 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 182 void (*dump_statistics)(CPUState *cpu, int flags); 183 int64_t (*get_arch_id)(CPUState *cpu); 184 bool (*get_paging_enabled)(const CPUState *cpu); 185 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 186 Error **errp); 187 void (*set_pc)(CPUState *cpu, vaddr value); 188 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb); 189 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, 190 MMUAccessType access_type, int mmu_idx, 191 bool probe, uintptr_t retaddr); 192 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 193 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 194 MemTxAttrs *attrs); 195 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 196 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 197 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 198 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); 199 void (*debug_excp_handler)(CPUState *cpu); 200 201 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 202 int cpuid, void *opaque); 203 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 204 void *opaque); 205 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 206 int cpuid, void *opaque); 207 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 208 void *opaque); 209 210 const VMStateDescription *vmsd; 211 const char *gdb_core_xml_file; 212 gchar * (*gdb_arch_name)(CPUState *cpu); 213 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 214 void (*cpu_exec_enter)(CPUState *cpu); 215 void (*cpu_exec_exit)(CPUState *cpu); 216 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); 217 218 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 219 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); 220 void (*tcg_initialize)(void); 221 222 /* Keep non-pointer data at the end to minimize holes. */ 223 int gdb_num_core_regs; 224 bool gdb_stop_before_watchpoint; 225 } CPUClass; 226 227 /* 228 * Low 16 bits: number of cycles left, used only in icount mode. 229 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 230 * for this CPU and return to its top level loop (even in non-icount mode). 231 * This allows a single read-compare-cbranch-write sequence to test 232 * for both decrementer underflow and exceptions. 233 */ 234 typedef union IcountDecr { 235 uint32_t u32; 236 struct { 237 #ifdef HOST_WORDS_BIGENDIAN 238 uint16_t high; 239 uint16_t low; 240 #else 241 uint16_t low; 242 uint16_t high; 243 #endif 244 } u16; 245 } IcountDecr; 246 247 typedef struct CPUBreakpoint { 248 vaddr pc; 249 int flags; /* BP_* */ 250 QTAILQ_ENTRY(CPUBreakpoint) entry; 251 } CPUBreakpoint; 252 253 struct CPUWatchpoint { 254 vaddr vaddr; 255 vaddr len; 256 vaddr hitaddr; 257 MemTxAttrs hitattrs; 258 int flags; /* BP_* */ 259 QTAILQ_ENTRY(CPUWatchpoint) entry; 260 }; 261 262 #ifdef CONFIG_PLUGIN 263 /* 264 * For plugins we sometime need to save the resolved iotlb data before 265 * the memory regions get moved around by io_writex. 266 */ 267 typedef struct SavedIOTLB { 268 hwaddr addr; 269 MemoryRegionSection *section; 270 hwaddr mr_offset; 271 } SavedIOTLB; 272 #endif 273 274 struct KVMState; 275 struct kvm_run; 276 277 struct hax_vcpu_state; 278 279 #define TB_JMP_CACHE_BITS 12 280 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 281 282 /* work queue */ 283 284 /* The union type allows passing of 64 bit target pointers on 32 bit 285 * hosts in a single parameter 286 */ 287 typedef union { 288 int host_int; 289 unsigned long host_ulong; 290 void *host_ptr; 291 vaddr target_ptr; 292 } run_on_cpu_data; 293 294 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 295 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 296 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 297 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 298 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 299 300 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 301 302 struct qemu_work_item; 303 304 #define CPU_UNSET_NUMA_NODE_ID -1 305 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 306 307 /** 308 * CPUState: 309 * @cpu_index: CPU index (informative). 310 * @cluster_index: Identifies which cluster this CPU is in. 311 * For boards which don't define clusters or for "loose" CPUs not assigned 312 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 313 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 314 * QOM parent. 315 * @nr_cores: Number of cores within this CPU package. 316 * @nr_threads: Number of threads within this CPU. 317 * @running: #true if CPU is currently running (lockless). 318 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 319 * valid under cpu_list_lock. 320 * @created: Indicates whether the CPU thread has been successfully created. 321 * @interrupt_request: Indicates a pending interrupt request. 322 * @halted: Nonzero if the CPU is in suspended state. 323 * @stop: Indicates a pending stop request. 324 * @stopped: Indicates the CPU has been artificially stopped. 325 * @unplug: Indicates a pending CPU unplug request. 326 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 327 * @singlestep_enabled: Flags for single-stepping. 328 * @icount_extra: Instructions until next timer event. 329 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 330 * requires that IO only be performed on the last instruction of a TB 331 * so that interrupts take effect immediately. 332 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 333 * AddressSpaces this CPU has) 334 * @num_ases: number of CPUAddressSpaces in @cpu_ases 335 * @as: Pointer to the first AddressSpace, for the convenience of targets which 336 * only have a single AddressSpace 337 * @env_ptr: Pointer to subclass-specific CPUArchState field. 338 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 339 * @gdb_regs: Additional GDB registers. 340 * @gdb_num_regs: Number of total registers accessible to GDB. 341 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 342 * @next_cpu: Next CPU sharing TB cache. 343 * @opaque: User data. 344 * @mem_io_pc: Host Program Counter at which the memory was accessed. 345 * @kvm_fd: vCPU file descriptor for KVM. 346 * @work_mutex: Lock to prevent multiple access to @work_list. 347 * @work_list: List of pending asynchronous work. 348 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 349 * to @trace_dstate). 350 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 351 * @plugin_mask: Plugin event bitmap. Modified only via async work. 352 * @ignore_memory_transaction_failures: Cached copy of the MachineState 353 * flag of the same name: allows the board to suppress calling of the 354 * CPU do_transaction_failed hook function. 355 * 356 * State of one CPU core or thread. 357 */ 358 struct CPUState { 359 /*< private >*/ 360 DeviceState parent_obj; 361 /*< public >*/ 362 363 int nr_cores; 364 int nr_threads; 365 366 struct QemuThread *thread; 367 #ifdef _WIN32 368 HANDLE hThread; 369 #endif 370 int thread_id; 371 bool running, has_waiter; 372 struct QemuCond *halt_cond; 373 bool thread_kicked; 374 bool created; 375 bool stop; 376 bool stopped; 377 378 /* Should CPU start in powered-off state? */ 379 bool start_powered_off; 380 381 bool unplug; 382 bool crash_occurred; 383 bool exit_request; 384 bool in_exclusive_context; 385 uint32_t cflags_next_tb; 386 /* updates protected by BQL */ 387 uint32_t interrupt_request; 388 int singlestep_enabled; 389 int64_t icount_budget; 390 int64_t icount_extra; 391 uint64_t random_seed; 392 sigjmp_buf jmp_env; 393 394 QemuMutex work_mutex; 395 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 396 397 CPUAddressSpace *cpu_ases; 398 int num_ases; 399 AddressSpace *as; 400 MemoryRegion *memory; 401 402 void *env_ptr; /* CPUArchState */ 403 IcountDecr *icount_decr_ptr; 404 405 /* Accessed in parallel; all accesses must be atomic */ 406 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 407 408 struct GDBRegisterState *gdb_regs; 409 int gdb_num_regs; 410 int gdb_num_g_regs; 411 QTAILQ_ENTRY(CPUState) node; 412 413 /* ice debug support */ 414 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 415 416 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 417 CPUWatchpoint *watchpoint_hit; 418 419 void *opaque; 420 421 /* In order to avoid passing too many arguments to the MMIO helpers, 422 * we store some rarely used information in the CPU context. 423 */ 424 uintptr_t mem_io_pc; 425 426 int kvm_fd; 427 struct KVMState *kvm_state; 428 struct kvm_run *kvm_run; 429 430 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 431 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 432 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 433 434 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 435 436 #ifdef CONFIG_PLUGIN 437 GArray *plugin_mem_cbs; 438 /* saved iotlb data from io_writex */ 439 SavedIOTLB saved_iotlb; 440 #endif 441 442 /* TODO Move common fields from CPUArchState here. */ 443 int cpu_index; 444 int cluster_index; 445 uint32_t halted; 446 uint32_t can_do_io; 447 int32_t exception_index; 448 449 /* shared by kvm, hax and hvf */ 450 bool vcpu_dirty; 451 452 /* Used to keep track of an outstanding cpu throttle thread for migration 453 * autoconverge 454 */ 455 bool throttle_thread_scheduled; 456 457 bool ignore_memory_transaction_failures; 458 459 struct hax_vcpu_state *hax_vcpu; 460 461 int hvf_fd; 462 463 /* track IOMMUs whose translations we've cached in the TCG TLB */ 464 GArray *iommu_notifiers; 465 }; 466 467 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 468 extern CPUTailQ cpus; 469 470 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 471 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 472 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 473 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 474 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 475 476 extern __thread CPUState *current_cpu; 477 478 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 479 { 480 unsigned int i; 481 482 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 483 atomic_set(&cpu->tb_jmp_cache[i], NULL); 484 } 485 } 486 487 /** 488 * qemu_tcg_mttcg_enabled: 489 * Check whether we are running MultiThread TCG or not. 490 * 491 * Returns: %true if we are in MTTCG mode %false otherwise. 492 */ 493 extern bool mttcg_enabled; 494 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 495 496 /** 497 * cpu_paging_enabled: 498 * @cpu: The CPU whose state is to be inspected. 499 * 500 * Returns: %true if paging is enabled, %false otherwise. 501 */ 502 bool cpu_paging_enabled(const CPUState *cpu); 503 504 /** 505 * cpu_get_memory_mapping: 506 * @cpu: The CPU whose memory mappings are to be obtained. 507 * @list: Where to write the memory mappings to. 508 * @errp: Pointer for reporting an #Error. 509 */ 510 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 511 Error **errp); 512 513 #if !defined(CONFIG_USER_ONLY) 514 515 /** 516 * cpu_write_elf64_note: 517 * @f: pointer to a function that writes memory to a file 518 * @cpu: The CPU whose memory is to be dumped 519 * @cpuid: ID number of the CPU 520 * @opaque: pointer to the CPUState struct 521 */ 522 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 523 int cpuid, void *opaque); 524 525 /** 526 * cpu_write_elf64_qemunote: 527 * @f: pointer to a function that writes memory to a file 528 * @cpu: The CPU whose memory is to be dumped 529 * @cpuid: ID number of the CPU 530 * @opaque: pointer to the CPUState struct 531 */ 532 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 533 void *opaque); 534 535 /** 536 * cpu_write_elf32_note: 537 * @f: pointer to a function that writes memory to a file 538 * @cpu: The CPU whose memory is to be dumped 539 * @cpuid: ID number of the CPU 540 * @opaque: pointer to the CPUState struct 541 */ 542 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 543 int cpuid, void *opaque); 544 545 /** 546 * cpu_write_elf32_qemunote: 547 * @f: pointer to a function that writes memory to a file 548 * @cpu: The CPU whose memory is to be dumped 549 * @cpuid: ID number of the CPU 550 * @opaque: pointer to the CPUState struct 551 */ 552 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 553 void *opaque); 554 555 /** 556 * cpu_get_crash_info: 557 * @cpu: The CPU to get crash information for 558 * 559 * Gets the previously saved crash information. 560 * Caller is responsible for freeing the data. 561 */ 562 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 563 564 #endif /* !CONFIG_USER_ONLY */ 565 566 /** 567 * CPUDumpFlags: 568 * @CPU_DUMP_CODE: 569 * @CPU_DUMP_FPU: dump FPU register state, not just integer 570 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 571 */ 572 enum CPUDumpFlags { 573 CPU_DUMP_CODE = 0x00010000, 574 CPU_DUMP_FPU = 0x00020000, 575 CPU_DUMP_CCOP = 0x00040000, 576 }; 577 578 /** 579 * cpu_dump_state: 580 * @cpu: The CPU whose state is to be dumped. 581 * @f: If non-null, dump to this stream, else to current print sink. 582 * 583 * Dumps CPU state. 584 */ 585 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 586 587 /** 588 * cpu_dump_statistics: 589 * @cpu: The CPU whose state is to be dumped. 590 * @flags: Flags what to dump. 591 * 592 * Dump CPU statistics to the current monitor if we have one, else to 593 * stdout. 594 */ 595 void cpu_dump_statistics(CPUState *cpu, int flags); 596 597 #ifndef CONFIG_USER_ONLY 598 /** 599 * cpu_get_phys_page_attrs_debug: 600 * @cpu: The CPU to obtain the physical page address for. 601 * @addr: The virtual address. 602 * @attrs: Updated on return with the memory transaction attributes to use 603 * for this access. 604 * 605 * Obtains the physical page corresponding to a virtual one, together 606 * with the corresponding memory transaction attributes to use for the access. 607 * Use it only for debugging because no protection checks are done. 608 * 609 * Returns: Corresponding physical page address or -1 if no page found. 610 */ 611 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 612 MemTxAttrs *attrs) 613 { 614 CPUClass *cc = CPU_GET_CLASS(cpu); 615 616 if (cc->get_phys_page_attrs_debug) { 617 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 618 } 619 /* Fallback for CPUs which don't implement the _attrs_ hook */ 620 *attrs = MEMTXATTRS_UNSPECIFIED; 621 return cc->get_phys_page_debug(cpu, addr); 622 } 623 624 /** 625 * cpu_get_phys_page_debug: 626 * @cpu: The CPU to obtain the physical page address for. 627 * @addr: The virtual address. 628 * 629 * Obtains the physical page corresponding to a virtual one. 630 * Use it only for debugging because no protection checks are done. 631 * 632 * Returns: Corresponding physical page address or -1 if no page found. 633 */ 634 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 635 { 636 MemTxAttrs attrs = {}; 637 638 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 639 } 640 641 /** cpu_asidx_from_attrs: 642 * @cpu: CPU 643 * @attrs: memory transaction attributes 644 * 645 * Returns the address space index specifying the CPU AddressSpace 646 * to use for a memory access with the given transaction attributes. 647 */ 648 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 649 { 650 CPUClass *cc = CPU_GET_CLASS(cpu); 651 int ret = 0; 652 653 if (cc->asidx_from_attrs) { 654 ret = cc->asidx_from_attrs(cpu, attrs); 655 assert(ret < cpu->num_ases && ret >= 0); 656 } 657 return ret; 658 } 659 660 #endif /* CONFIG_USER_ONLY */ 661 662 /** 663 * cpu_list_add: 664 * @cpu: The CPU to be added to the list of CPUs. 665 */ 666 void cpu_list_add(CPUState *cpu); 667 668 /** 669 * cpu_list_remove: 670 * @cpu: The CPU to be removed from the list of CPUs. 671 */ 672 void cpu_list_remove(CPUState *cpu); 673 674 /** 675 * cpu_reset: 676 * @cpu: The CPU whose state is to be reset. 677 */ 678 void cpu_reset(CPUState *cpu); 679 680 /** 681 * cpu_class_by_name: 682 * @typename: The CPU base type. 683 * @cpu_model: The model string without any parameters. 684 * 685 * Looks up a CPU #ObjectClass matching name @cpu_model. 686 * 687 * Returns: A #CPUClass or %NULL if not matching class is found. 688 */ 689 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 690 691 /** 692 * cpu_create: 693 * @typename: The CPU type. 694 * 695 * Instantiates a CPU and realizes the CPU. 696 * 697 * Returns: A #CPUState or %NULL if an error occurred. 698 */ 699 CPUState *cpu_create(const char *typename); 700 701 /** 702 * parse_cpu_option: 703 * @cpu_option: The -cpu option including optional parameters. 704 * 705 * processes optional parameters and registers them as global properties 706 * 707 * Returns: type of CPU to create or prints error and terminates process 708 * if an error occurred. 709 */ 710 const char *parse_cpu_option(const char *cpu_option); 711 712 /** 713 * cpu_has_work: 714 * @cpu: The vCPU to check. 715 * 716 * Checks whether the CPU has work to do. 717 * 718 * Returns: %true if the CPU has work, %false otherwise. 719 */ 720 static inline bool cpu_has_work(CPUState *cpu) 721 { 722 CPUClass *cc = CPU_GET_CLASS(cpu); 723 724 g_assert(cc->has_work); 725 return cc->has_work(cpu); 726 } 727 728 /** 729 * qemu_cpu_is_self: 730 * @cpu: The vCPU to check against. 731 * 732 * Checks whether the caller is executing on the vCPU thread. 733 * 734 * Returns: %true if called from @cpu's thread, %false otherwise. 735 */ 736 bool qemu_cpu_is_self(CPUState *cpu); 737 738 /** 739 * qemu_cpu_kick: 740 * @cpu: The vCPU to kick. 741 * 742 * Kicks @cpu's thread. 743 */ 744 void qemu_cpu_kick(CPUState *cpu); 745 746 /** 747 * cpu_is_stopped: 748 * @cpu: The CPU to check. 749 * 750 * Checks whether the CPU is stopped. 751 * 752 * Returns: %true if run state is not running or if artificially stopped; 753 * %false otherwise. 754 */ 755 bool cpu_is_stopped(CPUState *cpu); 756 757 /** 758 * do_run_on_cpu: 759 * @cpu: The vCPU to run on. 760 * @func: The function to be executed. 761 * @data: Data to pass to the function. 762 * @mutex: Mutex to release while waiting for @func to run. 763 * 764 * Used internally in the implementation of run_on_cpu. 765 */ 766 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 767 QemuMutex *mutex); 768 769 /** 770 * run_on_cpu: 771 * @cpu: The vCPU to run on. 772 * @func: The function to be executed. 773 * @data: Data to pass to the function. 774 * 775 * Schedules the function @func for execution on the vCPU @cpu. 776 */ 777 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 778 779 /** 780 * async_run_on_cpu: 781 * @cpu: The vCPU to run on. 782 * @func: The function to be executed. 783 * @data: Data to pass to the function. 784 * 785 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 786 */ 787 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 788 789 /** 790 * async_safe_run_on_cpu: 791 * @cpu: The vCPU to run on. 792 * @func: The function to be executed. 793 * @data: Data to pass to the function. 794 * 795 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 796 * while all other vCPUs are sleeping. 797 * 798 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 799 * BQL. 800 */ 801 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 802 803 /** 804 * cpu_in_exclusive_context() 805 * @cpu: The vCPU to check 806 * 807 * Returns true if @cpu is an exclusive context, for example running 808 * something which has previously been queued via async_safe_run_on_cpu(). 809 */ 810 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 811 { 812 return cpu->in_exclusive_context; 813 } 814 815 /** 816 * qemu_get_cpu: 817 * @index: The CPUState@cpu_index value of the CPU to obtain. 818 * 819 * Gets a CPU matching @index. 820 * 821 * Returns: The CPU or %NULL if there is no matching CPU. 822 */ 823 CPUState *qemu_get_cpu(int index); 824 825 /** 826 * cpu_exists: 827 * @id: Guest-exposed CPU ID to lookup. 828 * 829 * Search for CPU with specified ID. 830 * 831 * Returns: %true - CPU is found, %false - CPU isn't found. 832 */ 833 bool cpu_exists(int64_t id); 834 835 /** 836 * cpu_by_arch_id: 837 * @id: Guest-exposed CPU ID of the CPU to obtain. 838 * 839 * Get a CPU with matching @id. 840 * 841 * Returns: The CPU or %NULL if there is no matching CPU. 842 */ 843 CPUState *cpu_by_arch_id(int64_t id); 844 845 #ifndef CONFIG_USER_ONLY 846 847 typedef void (*CPUInterruptHandler)(CPUState *, int); 848 849 extern CPUInterruptHandler cpu_interrupt_handler; 850 851 /** 852 * cpu_interrupt: 853 * @cpu: The CPU to set an interrupt on. 854 * @mask: The interrupts to set. 855 * 856 * Invokes the interrupt handler. 857 */ 858 static inline void cpu_interrupt(CPUState *cpu, int mask) 859 { 860 cpu_interrupt_handler(cpu, mask); 861 } 862 863 #else /* USER_ONLY */ 864 865 void cpu_interrupt(CPUState *cpu, int mask); 866 867 #endif /* USER_ONLY */ 868 869 #ifdef NEED_CPU_H 870 871 #ifdef CONFIG_SOFTMMU 872 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 873 MMUAccessType access_type, 874 int mmu_idx, uintptr_t retaddr) 875 { 876 CPUClass *cc = CPU_GET_CLASS(cpu); 877 878 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 879 } 880 881 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 882 vaddr addr, unsigned size, 883 MMUAccessType access_type, 884 int mmu_idx, MemTxAttrs attrs, 885 MemTxResult response, 886 uintptr_t retaddr) 887 { 888 CPUClass *cc = CPU_GET_CLASS(cpu); 889 890 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) { 891 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type, 892 mmu_idx, attrs, response, retaddr); 893 } 894 } 895 #endif 896 897 #endif /* NEED_CPU_H */ 898 899 /** 900 * cpu_set_pc: 901 * @cpu: The CPU to set the program counter for. 902 * @addr: Program counter value. 903 * 904 * Sets the program counter for a CPU. 905 */ 906 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 907 { 908 CPUClass *cc = CPU_GET_CLASS(cpu); 909 910 cc->set_pc(cpu, addr); 911 } 912 913 /** 914 * cpu_reset_interrupt: 915 * @cpu: The CPU to clear the interrupt on. 916 * @mask: The interrupt mask to clear. 917 * 918 * Resets interrupts on the vCPU @cpu. 919 */ 920 void cpu_reset_interrupt(CPUState *cpu, int mask); 921 922 /** 923 * cpu_exit: 924 * @cpu: The CPU to exit. 925 * 926 * Requests the CPU @cpu to exit execution. 927 */ 928 void cpu_exit(CPUState *cpu); 929 930 /** 931 * cpu_resume: 932 * @cpu: The CPU to resume. 933 * 934 * Resumes CPU, i.e. puts CPU into runnable state. 935 */ 936 void cpu_resume(CPUState *cpu); 937 938 /** 939 * cpu_remove: 940 * @cpu: The CPU to remove. 941 * 942 * Requests the CPU to be removed. 943 */ 944 void cpu_remove(CPUState *cpu); 945 946 /** 947 * cpu_remove_sync: 948 * @cpu: The CPU to remove. 949 * 950 * Requests the CPU to be removed and waits till it is removed. 951 */ 952 void cpu_remove_sync(CPUState *cpu); 953 954 /** 955 * process_queued_cpu_work() - process all items on CPU work queue 956 * @cpu: The CPU which work queue to process. 957 */ 958 void process_queued_cpu_work(CPUState *cpu); 959 960 /** 961 * cpu_exec_start: 962 * @cpu: The CPU for the current thread. 963 * 964 * Record that a CPU has started execution and can be interrupted with 965 * cpu_exit. 966 */ 967 void cpu_exec_start(CPUState *cpu); 968 969 /** 970 * cpu_exec_end: 971 * @cpu: The CPU for the current thread. 972 * 973 * Record that a CPU has stopped execution and exclusive sections 974 * can be executed without interrupting it. 975 */ 976 void cpu_exec_end(CPUState *cpu); 977 978 /** 979 * start_exclusive: 980 * 981 * Wait for a concurrent exclusive section to end, and then start 982 * a section of work that is run while other CPUs are not running 983 * between cpu_exec_start and cpu_exec_end. CPUs that are running 984 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 985 * during the exclusive section go to sleep until this CPU calls 986 * end_exclusive. 987 */ 988 void start_exclusive(void); 989 990 /** 991 * end_exclusive: 992 * 993 * Concludes an exclusive execution section started by start_exclusive. 994 */ 995 void end_exclusive(void); 996 997 /** 998 * qemu_init_vcpu: 999 * @cpu: The vCPU to initialize. 1000 * 1001 * Initializes a vCPU. 1002 */ 1003 void qemu_init_vcpu(CPUState *cpu); 1004 1005 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1006 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1007 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1008 1009 /** 1010 * cpu_single_step: 1011 * @cpu: CPU to the flags for. 1012 * @enabled: Flags to enable. 1013 * 1014 * Enables or disables single-stepping for @cpu. 1015 */ 1016 void cpu_single_step(CPUState *cpu, int enabled); 1017 1018 /* Breakpoint/watchpoint flags */ 1019 #define BP_MEM_READ 0x01 1020 #define BP_MEM_WRITE 0x02 1021 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1022 #define BP_STOP_BEFORE_ACCESS 0x04 1023 /* 0x08 currently unused */ 1024 #define BP_GDB 0x10 1025 #define BP_CPU 0x20 1026 #define BP_ANY (BP_GDB | BP_CPU) 1027 #define BP_WATCHPOINT_HIT_READ 0x40 1028 #define BP_WATCHPOINT_HIT_WRITE 0x80 1029 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 1030 1031 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1032 CPUBreakpoint **breakpoint); 1033 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1034 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1035 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1036 1037 /* Return true if PC matches an installed breakpoint. */ 1038 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1039 { 1040 CPUBreakpoint *bp; 1041 1042 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1043 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1044 if (bp->pc == pc && (bp->flags & mask)) { 1045 return true; 1046 } 1047 } 1048 } 1049 return false; 1050 } 1051 1052 #ifdef CONFIG_USER_ONLY 1053 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1054 int flags, CPUWatchpoint **watchpoint) 1055 { 1056 return -ENOSYS; 1057 } 1058 1059 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1060 vaddr len, int flags) 1061 { 1062 return -ENOSYS; 1063 } 1064 1065 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1066 CPUWatchpoint *wp) 1067 { 1068 } 1069 1070 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1071 { 1072 } 1073 1074 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1075 MemTxAttrs atr, int fl, uintptr_t ra) 1076 { 1077 } 1078 1079 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 1080 vaddr addr, vaddr len) 1081 { 1082 return 0; 1083 } 1084 #else 1085 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1086 int flags, CPUWatchpoint **watchpoint); 1087 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1088 vaddr len, int flags); 1089 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1090 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1091 1092 /** 1093 * cpu_check_watchpoint: 1094 * @cpu: cpu context 1095 * @addr: guest virtual address 1096 * @len: access length 1097 * @attrs: memory access attributes 1098 * @flags: watchpoint access type 1099 * @ra: unwind return address 1100 * 1101 * Check for a watchpoint hit in [addr, addr+len) of the type 1102 * specified by @flags. Exit via exception with a hit. 1103 */ 1104 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1105 MemTxAttrs attrs, int flags, uintptr_t ra); 1106 1107 /** 1108 * cpu_watchpoint_address_matches: 1109 * @cpu: cpu context 1110 * @addr: guest virtual address 1111 * @len: access length 1112 * 1113 * Return the watchpoint flags that apply to [addr, addr+len). 1114 * If no watchpoint is registered for the range, the result is 0. 1115 */ 1116 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1117 #endif 1118 1119 /** 1120 * cpu_get_address_space: 1121 * @cpu: CPU to get address space from 1122 * @asidx: index identifying which address space to get 1123 * 1124 * Return the requested address space of this CPU. @asidx 1125 * specifies which address space to read. 1126 */ 1127 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1128 1129 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1130 GCC_FMT_ATTR(2, 3); 1131 extern Property cpu_common_props[]; 1132 void cpu_exec_initfn(CPUState *cpu); 1133 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1134 void cpu_exec_unrealizefn(CPUState *cpu); 1135 1136 /** 1137 * target_words_bigendian: 1138 * Returns true if the (default) endianness of the target is big endian, 1139 * false otherwise. Note that in target-specific code, you can use 1140 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1141 * code should normally never need to know about the endianness of the 1142 * target, so please do *not* use this function unless you know very well 1143 * what you are doing! 1144 */ 1145 bool target_words_bigendian(void); 1146 1147 #ifdef NEED_CPU_H 1148 1149 #ifdef CONFIG_SOFTMMU 1150 extern const VMStateDescription vmstate_cpu_common; 1151 #else 1152 #define vmstate_cpu_common vmstate_dummy 1153 #endif 1154 1155 #define VMSTATE_CPU() { \ 1156 .name = "parent_obj", \ 1157 .size = sizeof(CPUState), \ 1158 .vmsd = &vmstate_cpu_common, \ 1159 .flags = VMS_STRUCT, \ 1160 .offset = 0, \ 1161 } 1162 1163 #endif /* NEED_CPU_H */ 1164 1165 #define UNASSIGNED_CPU_INDEX -1 1166 #define UNASSIGNED_CLUSTER_INDEX -1 1167 1168 #endif 1169