1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/cpu-common.h" 26 #include "exec/hwaddr.h" 27 #include "exec/memattrs.h" 28 #include "qapi/qapi-types-run-state.h" 29 #include "qemu/bitmap.h" 30 #include "qemu/rcu_queue.h" 31 #include "qemu/queue.h" 32 #include "qemu/thread.h" 33 #include "qemu/plugin.h" 34 #include "qom/object.h" 35 36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 37 void *opaque); 38 39 /** 40 * SECTION:cpu 41 * @section_id: QEMU-cpu 42 * @title: CPU Class 43 * @short_description: Base class for all CPUs 44 */ 45 46 #define TYPE_CPU "cpu" 47 48 /* Since this macro is used a lot in hot code paths and in conjunction with 49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 50 * an unchecked cast. 51 */ 52 #define CPU(obj) ((CPUState *)(obj)) 53 54 /* 55 * The class checkers bring in CPU_GET_CLASS() which is potentially 56 * expensive given the eventual call to 57 * object_class_dynamic_cast_assert(). Because of this the CPUState 58 * has a cached value for the class in cs->cc which is set up in 59 * cpu_exec_realizefn() for use in hot code paths. 60 */ 61 typedef struct CPUClass CPUClass; 62 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 63 TYPE_CPU) 64 65 /** 66 * OBJECT_DECLARE_CPU_TYPE: 67 * @CpuInstanceType: instance struct name 68 * @CpuClassType: class struct name 69 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 70 * 71 * This macro is typically used in "cpu-qom.h" header file, and will: 72 * 73 * - create the typedefs for the CPU object and class structs 74 * - register the type for use with g_autoptr 75 * - provide three standard type cast functions 76 * 77 * The object struct and class struct need to be declared manually. 78 */ 79 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 80 typedef struct ArchCPU CpuInstanceType; \ 81 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 82 83 typedef enum MMUAccessType { 84 MMU_DATA_LOAD = 0, 85 MMU_DATA_STORE = 1, 86 MMU_INST_FETCH = 2 87 } MMUAccessType; 88 89 typedef struct CPUWatchpoint CPUWatchpoint; 90 91 /* see tcg-cpu-ops.h */ 92 struct TCGCPUOps; 93 94 /* see accel-cpu.h */ 95 struct AccelCPUClass; 96 97 /* see sysemu-cpu-ops.h */ 98 struct SysemuCPUOps; 99 100 /** 101 * CPUClass: 102 * @class_by_name: Callback to map -cpu command line model name to an 103 * instantiatable CPU type. 104 * @parse_features: Callback to parse command line arguments. 105 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 106 * @has_work: Callback for checking if there is work to do. 107 * @memory_rw_debug: Callback for GDB memory access. 108 * @dump_state: Callback for dumping state. 109 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 110 * @set_pc: Callback for setting the Program Counter register. This 111 * should have the semantics used by the target architecture when 112 * setting the PC from a source such as an ELF file entry point; 113 * for example on Arm it will also set the Thumb mode bit based 114 * on the least significant bit of the new PC value. 115 * If the target behaviour here is anything other than "set 116 * the PC register to the value passed in" then the target must 117 * also implement the synchronize_from_tb hook. 118 * @get_pc: Callback for getting the Program Counter register. 119 * As above, with the semantics of the target architecture. 120 * @gdb_read_register: Callback for letting GDB read a register. 121 * @gdb_write_register: Callback for letting GDB write a register. 122 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 123 * breakpoint. Used by AVR to handle a gdb mis-feature with 124 * its Harvard architecture split code and data. 125 * @gdb_num_core_regs: Number of core registers accessible to GDB. 126 * @gdb_core_xml_file: File name for core registers GDB XML description. 127 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 128 * before the insn which triggers a watchpoint rather than after it. 129 * @gdb_arch_name: Optional callback that returns the architecture name known 130 * to GDB. The caller must free the returned string with g_free. 131 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 132 * gdb stub. Returns a pointer to the XML contents for the specified XML file 133 * or NULL if the CPU doesn't have a dynamically generated content for it. 134 * @disas_set_info: Setup architecture specific components of disassembly info 135 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 136 * address before attempting to match it against watchpoints. 137 * @deprecation_note: If this CPUClass is deprecated, this field provides 138 * related information. 139 * 140 * Represents a CPU family or model. 141 */ 142 struct CPUClass { 143 /*< private >*/ 144 DeviceClass parent_class; 145 /*< public >*/ 146 147 ObjectClass *(*class_by_name)(const char *cpu_model); 148 void (*parse_features)(const char *typename, char *str, Error **errp); 149 150 bool (*has_work)(CPUState *cpu); 151 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 152 uint8_t *buf, int len, bool is_write); 153 void (*dump_state)(CPUState *cpu, FILE *, int flags); 154 int64_t (*get_arch_id)(CPUState *cpu); 155 void (*set_pc)(CPUState *cpu, vaddr value); 156 vaddr (*get_pc)(CPUState *cpu); 157 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 158 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 159 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 160 161 const char *gdb_core_xml_file; 162 gchar * (*gdb_arch_name)(CPUState *cpu); 163 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 164 165 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 166 167 const char *deprecation_note; 168 struct AccelCPUClass *accel_cpu; 169 170 /* when system emulation is not available, this pointer is NULL */ 171 const struct SysemuCPUOps *sysemu_ops; 172 173 /* when TCG is not available, this pointer is NULL */ 174 const struct TCGCPUOps *tcg_ops; 175 176 /* 177 * if not NULL, this is called in order for the CPUClass to initialize 178 * class data that depends on the accelerator, see accel/accel-common.c. 179 */ 180 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 181 182 /* 183 * Keep non-pointer data at the end to minimize holes. 184 */ 185 int reset_dump_flags; 186 int gdb_num_core_regs; 187 bool gdb_stop_before_watchpoint; 188 }; 189 190 /* 191 * Low 16 bits: number of cycles left, used only in icount mode. 192 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 193 * for this CPU and return to its top level loop (even in non-icount mode). 194 * This allows a single read-compare-cbranch-write sequence to test 195 * for both decrementer underflow and exceptions. 196 */ 197 typedef union IcountDecr { 198 uint32_t u32; 199 struct { 200 #if HOST_BIG_ENDIAN 201 uint16_t high; 202 uint16_t low; 203 #else 204 uint16_t low; 205 uint16_t high; 206 #endif 207 } u16; 208 } IcountDecr; 209 210 typedef struct CPUBreakpoint { 211 vaddr pc; 212 int flags; /* BP_* */ 213 QTAILQ_ENTRY(CPUBreakpoint) entry; 214 } CPUBreakpoint; 215 216 struct CPUWatchpoint { 217 vaddr vaddr; 218 vaddr len; 219 vaddr hitaddr; 220 MemTxAttrs hitattrs; 221 int flags; /* BP_* */ 222 QTAILQ_ENTRY(CPUWatchpoint) entry; 223 }; 224 225 #ifdef CONFIG_PLUGIN 226 /* 227 * For plugins we sometime need to save the resolved iotlb data before 228 * the memory regions get moved around by io_writex. 229 */ 230 typedef struct SavedIOTLB { 231 MemoryRegionSection *section; 232 hwaddr mr_offset; 233 } SavedIOTLB; 234 #endif 235 236 struct KVMState; 237 struct kvm_run; 238 239 struct hax_vcpu_state; 240 struct hvf_vcpu_state; 241 242 /* work queue */ 243 244 /* The union type allows passing of 64 bit target pointers on 32 bit 245 * hosts in a single parameter 246 */ 247 typedef union { 248 int host_int; 249 unsigned long host_ulong; 250 void *host_ptr; 251 vaddr target_ptr; 252 } run_on_cpu_data; 253 254 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 255 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 256 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 257 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 258 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 259 260 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 261 262 struct qemu_work_item; 263 264 #define CPU_UNSET_NUMA_NODE_ID -1 265 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 266 267 /** 268 * CPUState: 269 * @cpu_index: CPU index (informative). 270 * @cluster_index: Identifies which cluster this CPU is in. 271 * For boards which don't define clusters or for "loose" CPUs not assigned 272 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 273 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 274 * QOM parent. 275 * Under TCG this value is propagated to @tcg_cflags. 276 * See TranslationBlock::TCG CF_CLUSTER_MASK. 277 * @tcg_cflags: Pre-computed cflags for this cpu. 278 * @nr_cores: Number of cores within this CPU package. 279 * @nr_threads: Number of threads within this CPU. 280 * @running: #true if CPU is currently running (lockless). 281 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 282 * valid under cpu_list_lock. 283 * @created: Indicates whether the CPU thread has been successfully created. 284 * @interrupt_request: Indicates a pending interrupt request. 285 * @halted: Nonzero if the CPU is in suspended state. 286 * @stop: Indicates a pending stop request. 287 * @stopped: Indicates the CPU has been artificially stopped. 288 * @unplug: Indicates a pending CPU unplug request. 289 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 290 * @singlestep_enabled: Flags for single-stepping. 291 * @icount_extra: Instructions until next timer event. 292 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 293 * requires that IO only be performed on the last instruction of a TB 294 * so that interrupts take effect immediately. 295 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 296 * AddressSpaces this CPU has) 297 * @num_ases: number of CPUAddressSpaces in @cpu_ases 298 * @as: Pointer to the first AddressSpace, for the convenience of targets which 299 * only have a single AddressSpace 300 * @env_ptr: Pointer to subclass-specific CPUArchState field. 301 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 302 * @gdb_regs: Additional GDB registers. 303 * @gdb_num_regs: Number of total registers accessible to GDB. 304 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 305 * @next_cpu: Next CPU sharing TB cache. 306 * @opaque: User data. 307 * @mem_io_pc: Host Program Counter at which the memory was accessed. 308 * @kvm_fd: vCPU file descriptor for KVM. 309 * @work_mutex: Lock to prevent multiple access to @work_list. 310 * @work_list: List of pending asynchronous work. 311 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 312 * to @trace_dstate). 313 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 314 * @plugin_mask: Plugin event bitmap. Modified only via async work. 315 * @ignore_memory_transaction_failures: Cached copy of the MachineState 316 * flag of the same name: allows the board to suppress calling of the 317 * CPU do_transaction_failed hook function. 318 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 319 * ring is enabled. 320 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 321 * dirty ring structure. 322 * 323 * State of one CPU core or thread. 324 */ 325 struct CPUState { 326 /*< private >*/ 327 DeviceState parent_obj; 328 /* cache to avoid expensive CPU_GET_CLASS */ 329 CPUClass *cc; 330 /*< public >*/ 331 332 int nr_cores; 333 int nr_threads; 334 335 struct QemuThread *thread; 336 #ifdef _WIN32 337 HANDLE hThread; 338 QemuSemaphore sem; 339 #endif 340 int thread_id; 341 bool running, has_waiter; 342 struct QemuCond *halt_cond; 343 bool thread_kicked; 344 bool created; 345 bool stop; 346 bool stopped; 347 348 /* Should CPU start in powered-off state? */ 349 bool start_powered_off; 350 351 bool unplug; 352 bool crash_occurred; 353 bool exit_request; 354 int exclusive_context_count; 355 uint32_t cflags_next_tb; 356 /* updates protected by BQL */ 357 uint32_t interrupt_request; 358 int singlestep_enabled; 359 int64_t icount_budget; 360 int64_t icount_extra; 361 uint64_t random_seed; 362 sigjmp_buf jmp_env; 363 364 QemuMutex work_mutex; 365 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 366 367 CPUAddressSpace *cpu_ases; 368 int num_ases; 369 AddressSpace *as; 370 MemoryRegion *memory; 371 372 CPUArchState *env_ptr; 373 IcountDecr *icount_decr_ptr; 374 375 CPUJumpCache *tb_jmp_cache; 376 377 struct GDBRegisterState *gdb_regs; 378 int gdb_num_regs; 379 int gdb_num_g_regs; 380 QTAILQ_ENTRY(CPUState) node; 381 382 /* ice debug support */ 383 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 384 385 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 386 CPUWatchpoint *watchpoint_hit; 387 388 void *opaque; 389 390 /* In order to avoid passing too many arguments to the MMIO helpers, 391 * we store some rarely used information in the CPU context. 392 */ 393 uintptr_t mem_io_pc; 394 395 /* Only used in KVM */ 396 int kvm_fd; 397 struct KVMState *kvm_state; 398 struct kvm_run *kvm_run; 399 struct kvm_dirty_gfn *kvm_dirty_gfns; 400 uint32_t kvm_fetch_index; 401 uint64_t dirty_pages; 402 403 /* Use by accel-block: CPU is executing an ioctl() */ 404 QemuLockCnt in_ioctl_lock; 405 406 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 407 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 408 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 409 410 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 411 412 #ifdef CONFIG_PLUGIN 413 GArray *plugin_mem_cbs; 414 /* saved iotlb data from io_writex */ 415 SavedIOTLB saved_iotlb; 416 #endif 417 418 /* TODO Move common fields from CPUArchState here. */ 419 int cpu_index; 420 int cluster_index; 421 uint32_t tcg_cflags; 422 uint32_t halted; 423 uint32_t can_do_io; 424 int32_t exception_index; 425 426 /* shared by kvm, hax and hvf */ 427 bool vcpu_dirty; 428 429 /* Used to keep track of an outstanding cpu throttle thread for migration 430 * autoconverge 431 */ 432 bool throttle_thread_scheduled; 433 434 /* 435 * Sleep throttle_us_per_full microseconds once dirty ring is full 436 * if dirty page rate limit is enabled. 437 */ 438 int64_t throttle_us_per_full; 439 440 bool ignore_memory_transaction_failures; 441 442 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 443 bool prctl_unalign_sigbus; 444 445 struct hax_vcpu_state *hax_vcpu; 446 447 struct hvf_vcpu_state *hvf; 448 449 /* track IOMMUs whose translations we've cached in the TCG TLB */ 450 GArray *iommu_notifiers; 451 }; 452 453 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 454 extern CPUTailQ cpus; 455 456 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 457 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 458 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 459 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 460 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 461 462 extern __thread CPUState *current_cpu; 463 464 /** 465 * qemu_tcg_mttcg_enabled: 466 * Check whether we are running MultiThread TCG or not. 467 * 468 * Returns: %true if we are in MTTCG mode %false otherwise. 469 */ 470 extern bool mttcg_enabled; 471 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 472 473 /** 474 * cpu_paging_enabled: 475 * @cpu: The CPU whose state is to be inspected. 476 * 477 * Returns: %true if paging is enabled, %false otherwise. 478 */ 479 bool cpu_paging_enabled(const CPUState *cpu); 480 481 /** 482 * cpu_get_memory_mapping: 483 * @cpu: The CPU whose memory mappings are to be obtained. 484 * @list: Where to write the memory mappings to. 485 * @errp: Pointer for reporting an #Error. 486 */ 487 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 488 Error **errp); 489 490 #if !defined(CONFIG_USER_ONLY) 491 492 /** 493 * cpu_write_elf64_note: 494 * @f: pointer to a function that writes memory to a file 495 * @cpu: The CPU whose memory is to be dumped 496 * @cpuid: ID number of the CPU 497 * @opaque: pointer to the CPUState struct 498 */ 499 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 500 int cpuid, void *opaque); 501 502 /** 503 * cpu_write_elf64_qemunote: 504 * @f: pointer to a function that writes memory to a file 505 * @cpu: The CPU whose memory is to be dumped 506 * @cpuid: ID number of the CPU 507 * @opaque: pointer to the CPUState struct 508 */ 509 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 510 void *opaque); 511 512 /** 513 * cpu_write_elf32_note: 514 * @f: pointer to a function that writes memory to a file 515 * @cpu: The CPU whose memory is to be dumped 516 * @cpuid: ID number of the CPU 517 * @opaque: pointer to the CPUState struct 518 */ 519 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 520 int cpuid, void *opaque); 521 522 /** 523 * cpu_write_elf32_qemunote: 524 * @f: pointer to a function that writes memory to a file 525 * @cpu: The CPU whose memory is to be dumped 526 * @cpuid: ID number of the CPU 527 * @opaque: pointer to the CPUState struct 528 */ 529 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 530 void *opaque); 531 532 /** 533 * cpu_get_crash_info: 534 * @cpu: The CPU to get crash information for 535 * 536 * Gets the previously saved crash information. 537 * Caller is responsible for freeing the data. 538 */ 539 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 540 541 #endif /* !CONFIG_USER_ONLY */ 542 543 /** 544 * CPUDumpFlags: 545 * @CPU_DUMP_CODE: 546 * @CPU_DUMP_FPU: dump FPU register state, not just integer 547 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 548 */ 549 enum CPUDumpFlags { 550 CPU_DUMP_CODE = 0x00010000, 551 CPU_DUMP_FPU = 0x00020000, 552 CPU_DUMP_CCOP = 0x00040000, 553 }; 554 555 /** 556 * cpu_dump_state: 557 * @cpu: The CPU whose state is to be dumped. 558 * @f: If non-null, dump to this stream, else to current print sink. 559 * 560 * Dumps CPU state. 561 */ 562 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 563 564 #ifndef CONFIG_USER_ONLY 565 /** 566 * cpu_get_phys_page_attrs_debug: 567 * @cpu: The CPU to obtain the physical page address for. 568 * @addr: The virtual address. 569 * @attrs: Updated on return with the memory transaction attributes to use 570 * for this access. 571 * 572 * Obtains the physical page corresponding to a virtual one, together 573 * with the corresponding memory transaction attributes to use for the access. 574 * Use it only for debugging because no protection checks are done. 575 * 576 * Returns: Corresponding physical page address or -1 if no page found. 577 */ 578 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 579 MemTxAttrs *attrs); 580 581 /** 582 * cpu_get_phys_page_debug: 583 * @cpu: The CPU to obtain the physical page address for. 584 * @addr: The virtual address. 585 * 586 * Obtains the physical page corresponding to a virtual one. 587 * Use it only for debugging because no protection checks are done. 588 * 589 * Returns: Corresponding physical page address or -1 if no page found. 590 */ 591 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 592 593 /** cpu_asidx_from_attrs: 594 * @cpu: CPU 595 * @attrs: memory transaction attributes 596 * 597 * Returns the address space index specifying the CPU AddressSpace 598 * to use for a memory access with the given transaction attributes. 599 */ 600 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 601 602 /** 603 * cpu_virtio_is_big_endian: 604 * @cpu: CPU 605 606 * Returns %true if a CPU which supports runtime configurable endianness 607 * is currently big-endian. 608 */ 609 bool cpu_virtio_is_big_endian(CPUState *cpu); 610 611 #endif /* CONFIG_USER_ONLY */ 612 613 /** 614 * cpu_list_add: 615 * @cpu: The CPU to be added to the list of CPUs. 616 */ 617 void cpu_list_add(CPUState *cpu); 618 619 /** 620 * cpu_list_remove: 621 * @cpu: The CPU to be removed from the list of CPUs. 622 */ 623 void cpu_list_remove(CPUState *cpu); 624 625 /** 626 * cpu_reset: 627 * @cpu: The CPU whose state is to be reset. 628 */ 629 void cpu_reset(CPUState *cpu); 630 631 /** 632 * cpu_class_by_name: 633 * @typename: The CPU base type. 634 * @cpu_model: The model string without any parameters. 635 * 636 * Looks up a CPU #ObjectClass matching name @cpu_model. 637 * 638 * Returns: A #CPUClass or %NULL if not matching class is found. 639 */ 640 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 641 642 /** 643 * cpu_create: 644 * @typename: The CPU type. 645 * 646 * Instantiates a CPU and realizes the CPU. 647 * 648 * Returns: A #CPUState or %NULL if an error occurred. 649 */ 650 CPUState *cpu_create(const char *typename); 651 652 /** 653 * parse_cpu_option: 654 * @cpu_option: The -cpu option including optional parameters. 655 * 656 * processes optional parameters and registers them as global properties 657 * 658 * Returns: type of CPU to create or prints error and terminates process 659 * if an error occurred. 660 */ 661 const char *parse_cpu_option(const char *cpu_option); 662 663 /** 664 * cpu_has_work: 665 * @cpu: The vCPU to check. 666 * 667 * Checks whether the CPU has work to do. 668 * 669 * Returns: %true if the CPU has work, %false otherwise. 670 */ 671 static inline bool cpu_has_work(CPUState *cpu) 672 { 673 CPUClass *cc = CPU_GET_CLASS(cpu); 674 675 g_assert(cc->has_work); 676 return cc->has_work(cpu); 677 } 678 679 /** 680 * qemu_cpu_is_self: 681 * @cpu: The vCPU to check against. 682 * 683 * Checks whether the caller is executing on the vCPU thread. 684 * 685 * Returns: %true if called from @cpu's thread, %false otherwise. 686 */ 687 bool qemu_cpu_is_self(CPUState *cpu); 688 689 /** 690 * qemu_cpu_kick: 691 * @cpu: The vCPU to kick. 692 * 693 * Kicks @cpu's thread. 694 */ 695 void qemu_cpu_kick(CPUState *cpu); 696 697 /** 698 * cpu_is_stopped: 699 * @cpu: The CPU to check. 700 * 701 * Checks whether the CPU is stopped. 702 * 703 * Returns: %true if run state is not running or if artificially stopped; 704 * %false otherwise. 705 */ 706 bool cpu_is_stopped(CPUState *cpu); 707 708 /** 709 * do_run_on_cpu: 710 * @cpu: The vCPU to run on. 711 * @func: The function to be executed. 712 * @data: Data to pass to the function. 713 * @mutex: Mutex to release while waiting for @func to run. 714 * 715 * Used internally in the implementation of run_on_cpu. 716 */ 717 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 718 QemuMutex *mutex); 719 720 /** 721 * run_on_cpu: 722 * @cpu: The vCPU to run on. 723 * @func: The function to be executed. 724 * @data: Data to pass to the function. 725 * 726 * Schedules the function @func for execution on the vCPU @cpu. 727 */ 728 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 729 730 /** 731 * async_run_on_cpu: 732 * @cpu: The vCPU to run on. 733 * @func: The function to be executed. 734 * @data: Data to pass to the function. 735 * 736 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 737 */ 738 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 739 740 /** 741 * async_safe_run_on_cpu: 742 * @cpu: The vCPU to run on. 743 * @func: The function to be executed. 744 * @data: Data to pass to the function. 745 * 746 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 747 * while all other vCPUs are sleeping. 748 * 749 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 750 * BQL. 751 */ 752 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 753 754 /** 755 * cpu_in_exclusive_context() 756 * @cpu: The vCPU to check 757 * 758 * Returns true if @cpu is an exclusive context, for example running 759 * something which has previously been queued via async_safe_run_on_cpu(). 760 */ 761 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 762 { 763 return cpu->exclusive_context_count; 764 } 765 766 /** 767 * qemu_get_cpu: 768 * @index: The CPUState@cpu_index value of the CPU to obtain. 769 * 770 * Gets a CPU matching @index. 771 * 772 * Returns: The CPU or %NULL if there is no matching CPU. 773 */ 774 CPUState *qemu_get_cpu(int index); 775 776 /** 777 * cpu_exists: 778 * @id: Guest-exposed CPU ID to lookup. 779 * 780 * Search for CPU with specified ID. 781 * 782 * Returns: %true - CPU is found, %false - CPU isn't found. 783 */ 784 bool cpu_exists(int64_t id); 785 786 /** 787 * cpu_by_arch_id: 788 * @id: Guest-exposed CPU ID of the CPU to obtain. 789 * 790 * Get a CPU with matching @id. 791 * 792 * Returns: The CPU or %NULL if there is no matching CPU. 793 */ 794 CPUState *cpu_by_arch_id(int64_t id); 795 796 /** 797 * cpu_interrupt: 798 * @cpu: The CPU to set an interrupt on. 799 * @mask: The interrupts to set. 800 * 801 * Invokes the interrupt handler. 802 */ 803 804 void cpu_interrupt(CPUState *cpu, int mask); 805 806 /** 807 * cpu_set_pc: 808 * @cpu: The CPU to set the program counter for. 809 * @addr: Program counter value. 810 * 811 * Sets the program counter for a CPU. 812 */ 813 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 814 { 815 CPUClass *cc = CPU_GET_CLASS(cpu); 816 817 cc->set_pc(cpu, addr); 818 } 819 820 /** 821 * cpu_reset_interrupt: 822 * @cpu: The CPU to clear the interrupt on. 823 * @mask: The interrupt mask to clear. 824 * 825 * Resets interrupts on the vCPU @cpu. 826 */ 827 void cpu_reset_interrupt(CPUState *cpu, int mask); 828 829 /** 830 * cpu_exit: 831 * @cpu: The CPU to exit. 832 * 833 * Requests the CPU @cpu to exit execution. 834 */ 835 void cpu_exit(CPUState *cpu); 836 837 /** 838 * cpu_resume: 839 * @cpu: The CPU to resume. 840 * 841 * Resumes CPU, i.e. puts CPU into runnable state. 842 */ 843 void cpu_resume(CPUState *cpu); 844 845 /** 846 * cpu_remove_sync: 847 * @cpu: The CPU to remove. 848 * 849 * Requests the CPU to be removed and waits till it is removed. 850 */ 851 void cpu_remove_sync(CPUState *cpu); 852 853 /** 854 * process_queued_cpu_work() - process all items on CPU work queue 855 * @cpu: The CPU which work queue to process. 856 */ 857 void process_queued_cpu_work(CPUState *cpu); 858 859 /** 860 * cpu_exec_start: 861 * @cpu: The CPU for the current thread. 862 * 863 * Record that a CPU has started execution and can be interrupted with 864 * cpu_exit. 865 */ 866 void cpu_exec_start(CPUState *cpu); 867 868 /** 869 * cpu_exec_end: 870 * @cpu: The CPU for the current thread. 871 * 872 * Record that a CPU has stopped execution and exclusive sections 873 * can be executed without interrupting it. 874 */ 875 void cpu_exec_end(CPUState *cpu); 876 877 /** 878 * start_exclusive: 879 * 880 * Wait for a concurrent exclusive section to end, and then start 881 * a section of work that is run while other CPUs are not running 882 * between cpu_exec_start and cpu_exec_end. CPUs that are running 883 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 884 * during the exclusive section go to sleep until this CPU calls 885 * end_exclusive. 886 */ 887 void start_exclusive(void); 888 889 /** 890 * end_exclusive: 891 * 892 * Concludes an exclusive execution section started by start_exclusive. 893 */ 894 void end_exclusive(void); 895 896 /** 897 * qemu_init_vcpu: 898 * @cpu: The vCPU to initialize. 899 * 900 * Initializes a vCPU. 901 */ 902 void qemu_init_vcpu(CPUState *cpu); 903 904 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 905 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 906 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 907 908 /** 909 * cpu_single_step: 910 * @cpu: CPU to the flags for. 911 * @enabled: Flags to enable. 912 * 913 * Enables or disables single-stepping for @cpu. 914 */ 915 void cpu_single_step(CPUState *cpu, int enabled); 916 917 /* Breakpoint/watchpoint flags */ 918 #define BP_MEM_READ 0x01 919 #define BP_MEM_WRITE 0x02 920 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 921 #define BP_STOP_BEFORE_ACCESS 0x04 922 /* 0x08 currently unused */ 923 #define BP_GDB 0x10 924 #define BP_CPU 0x20 925 #define BP_ANY (BP_GDB | BP_CPU) 926 #define BP_HIT_SHIFT 6 927 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 928 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 929 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 930 931 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 932 CPUBreakpoint **breakpoint); 933 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 934 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 935 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 936 937 /* Return true if PC matches an installed breakpoint. */ 938 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 939 { 940 CPUBreakpoint *bp; 941 942 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 943 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 944 if (bp->pc == pc && (bp->flags & mask)) { 945 return true; 946 } 947 } 948 } 949 return false; 950 } 951 952 #if !defined(CONFIG_TCG) || defined(CONFIG_USER_ONLY) 953 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 954 int flags, CPUWatchpoint **watchpoint) 955 { 956 return -ENOSYS; 957 } 958 959 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 960 vaddr len, int flags) 961 { 962 return -ENOSYS; 963 } 964 965 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 966 CPUWatchpoint *wp) 967 { 968 } 969 970 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 971 { 972 } 973 974 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 975 MemTxAttrs atr, int fl, uintptr_t ra) 976 { 977 } 978 979 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 980 vaddr addr, vaddr len) 981 { 982 return 0; 983 } 984 #else 985 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 986 int flags, CPUWatchpoint **watchpoint); 987 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 988 vaddr len, int flags); 989 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 990 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 991 992 /** 993 * cpu_check_watchpoint: 994 * @cpu: cpu context 995 * @addr: guest virtual address 996 * @len: access length 997 * @attrs: memory access attributes 998 * @flags: watchpoint access type 999 * @ra: unwind return address 1000 * 1001 * Check for a watchpoint hit in [addr, addr+len) of the type 1002 * specified by @flags. Exit via exception with a hit. 1003 */ 1004 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1005 MemTxAttrs attrs, int flags, uintptr_t ra); 1006 1007 /** 1008 * cpu_watchpoint_address_matches: 1009 * @cpu: cpu context 1010 * @addr: guest virtual address 1011 * @len: access length 1012 * 1013 * Return the watchpoint flags that apply to [addr, addr+len). 1014 * If no watchpoint is registered for the range, the result is 0. 1015 */ 1016 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1017 #endif 1018 1019 /** 1020 * cpu_get_address_space: 1021 * @cpu: CPU to get address space from 1022 * @asidx: index identifying which address space to get 1023 * 1024 * Return the requested address space of this CPU. @asidx 1025 * specifies which address space to read. 1026 */ 1027 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1028 1029 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1030 G_GNUC_PRINTF(2, 3); 1031 1032 /* $(top_srcdir)/cpu.c */ 1033 void cpu_class_init_props(DeviceClass *dc); 1034 void cpu_exec_initfn(CPUState *cpu); 1035 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1036 void cpu_exec_unrealizefn(CPUState *cpu); 1037 1038 /** 1039 * target_words_bigendian: 1040 * Returns true if the (default) endianness of the target is big endian, 1041 * false otherwise. Note that in target-specific code, you can use 1042 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1043 * code should normally never need to know about the endianness of the 1044 * target, so please do *not* use this function unless you know very well 1045 * what you are doing! 1046 */ 1047 bool target_words_bigendian(void); 1048 1049 void page_size_init(void); 1050 1051 #ifdef NEED_CPU_H 1052 1053 #ifdef CONFIG_SOFTMMU 1054 1055 extern const VMStateDescription vmstate_cpu_common; 1056 1057 #define VMSTATE_CPU() { \ 1058 .name = "parent_obj", \ 1059 .size = sizeof(CPUState), \ 1060 .vmsd = &vmstate_cpu_common, \ 1061 .flags = VMS_STRUCT, \ 1062 .offset = 0, \ 1063 } 1064 #endif /* CONFIG_SOFTMMU */ 1065 1066 #endif /* NEED_CPU_H */ 1067 1068 #define UNASSIGNED_CPU_INDEX -1 1069 #define UNASSIGNED_CLUSTER_INDEX -1 1070 1071 #endif 1072